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CHAPTER

ONE

MODELING COVID 19

Contents

• Modeling COVID 19

– Overview

– The SIR Model

– Implementation

– Experiments

– Ending Lockdown

1.1 Overview

This is a Python version of the code for analyzing the COVID-19 pandemic provided by Andrew Atkeson.

See, in particular

• NBER Working Paper No. 26867

• COVID-19 Working papers and code

The purpose of his notes is to introduce economists to quantitative modeling of infectious disease dynamics.

Dynamics are modeled using a standard SIR (Susceptible-Infected-Removed) model of disease spread.

The model dynamics are represented by a system of ordinary differential equations.

The main objective is to study the impact of suppression through social distancing on the spread of the infection.

The focus is on US outcomes but the parameters can be adjusted to study other countries.

We will use the following standard imports:

import matplotlib.pyplot as plt
import numpy as np
from numpy import exp

We will also use SciPy’s numerical routine odeint for solving differential equations.

from scipy.integrate import odeint
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This routine calls into compiled code from the FORTRAN library odepack.

1.2 The SIR Model

In the version of the SIR model we will analyze there are four states.

All individuals in the population are assumed to be in one of these four states.

The states are: susceptible (S), exposed (E), infected (I) and removed ®.

Comments:

• Those in state R have been infected and either recovered or died.

• Those who have recovered are assumed to have acquired immunity.

• Those in the exposed group are not yet infectious.

1.2.1 Time Path

The flow across states follows the path 𝑆 → 𝐸 → 𝐼 → 𝑅.

All individuals in the population are eventually infected when the transmission rate is positive and 𝑖(0) > 0.
The interest is primarily in

• the number of infections at a given time (which determines whether or not the health care system is overwhelmed)
and

• how long the caseload can be deferred (hopefully until a vaccine arrives)

Using lower case letters for the fraction of the population in each state, the dynamics are

̇𝑠(𝑡) = −𝛽(𝑡) 𝑠(𝑡) 𝑖(𝑡)
̇𝑒(𝑡) = 𝛽(𝑡) 𝑠(𝑡) 𝑖(𝑡) − 𝜎𝑒(𝑡)
̇𝑖(𝑡) = 𝜎𝑒(𝑡) − 𝛾𝑖(𝑡)

(1.1)

In these equations,

• 𝛽(𝑡) is called the transmission rate (the rate at which individuals bump into others and expose them to the virus).

• 𝜎 is called the infection rate (the rate at which those who are exposed become infected)

• 𝛾 is called the recovery rate (the rate at which infected people recover or die).

• the dot symbol ̇𝑦 represents the time derivative 𝑑𝑦/𝑑𝑡.
We do not need to model the fraction 𝑟 of the population in state 𝑅 separately because the states form a partition.

In particular, the “removed” fraction of the population is 𝑟 = 1 − 𝑠 − 𝑒 − 𝑖.
We will also track 𝑐 = 𝑖 + 𝑟, which is the cumulative caseload (i.e., all those who have or have had the infection).
The system (1.1) can be written in vector form as

̇𝑥 = 𝐹(𝑥, 𝑡), 𝑥 ∶= (𝑠, 𝑒, 𝑖) (1.2)

for suitable definition of 𝐹 (see the code below).
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1.2.2 Parameters

Both 𝜎 and 𝛾 are thought of as fixed, biologically determined parameters.

As in Atkeson’s note, we set

• 𝜎 = 1/5.2 to reflect an average incubation period of 5.2 days.
• 𝛾 = 1/18 to match an average illness duration of 18 days.

The transmission rate is modeled as

• 𝛽(𝑡) ∶= 𝑅(𝑡)𝛾 where 𝑅(𝑡) is the effective reproduction number at time 𝑡.
(The notation is slightly confusing, since 𝑅(𝑡) is different to 𝑅, the symbol that represents the removed state.)

1.3 Implementation

First we set the population size to match the US.

pop_size = 3.3e8

Next we fix parameters as described above.

γ = 1 / 18
σ = 1 / 5.2

Now we construct a function that represents 𝐹 in (1.2)

def F(x, t, R0=1.6):
"""
Time derivative of the state vector.

* x is the state vector (array_like)
* t is time (scalar)
* R0 is the effective transmission rate, defaulting to a constant

"""
s, e, i = x

# New exposure of susceptibles
β = R0(t) * γ if callable(R0) else R0 * γ
ne = β * s * i

# Time derivatives
ds = - ne
de = ne - σ * e
di = σ * e - γ * i

return ds, de, di

Note that R0 can be either constant or a given function of time.

The initial conditions are set to

# initial conditions of s, e, i
i_0 = 1e-7

(continues on next page)
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(continued from previous page)

e_0 = 4 * i_0
s_0 = 1 - i_0 - e_0

In vector form the initial condition is

x_0 = s_0, e_0, i_0

We solve for the time path numerically using odeint, at a sequence of dates t_vec.

def solve_path(R0, t_vec, x_init=x_0):
"""
Solve for i(t) and c(t) via numerical integration,
given the time path for R0.

"""
G = lambda x, t: F(x, t, R0)
s_path, e_path, i_path = odeint(G, x_init, t_vec).transpose()

c_path = 1 - s_path - e_path # cumulative cases
return i_path, c_path

1.4 Experiments

Let’s run some experiments using this code.

The time period we investigate will be 550 days, or around 18 months:

t_length = 550
grid_size = 1000
t_vec = np.linspace(0, t_length, grid_size)

1.4.1 Experiment 1: Constant R0 Case

Let’s start with the case where R0 is constant.

We calculate the time path of infected people under different assumptions for R0:

R0_vals = np.linspace(1.6, 3.0, 6)
labels = [f'$R0 = {r:.2f}$' for r in R0_vals]
i_paths, c_paths = [], []

for r in R0_vals:
i_path, c_path = solve_path(r, t_vec)
i_paths.append(i_path)
c_paths.append(c_path)

Here’s some code to plot the time paths.

def plot_paths(paths, labels, times=t_vec):

fig, ax = plt.subplots()

for path, label in zip(paths, labels):

(continues on next page)
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(continued from previous page)

ax.plot(times, path, label=label)

ax.legend(loc='upper left')

plt.show()

Let’s plot current cases as a fraction of the population.

plot_paths(i_paths, labels)

As expected, lower effective transmission rates defer the peak of infections.

They also lead to a lower peak in current cases.

Here are cumulative cases, as a fraction of population:

plot_paths(c_paths, labels)
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1.4.2 Experiment 2: Changing Mitigation

Let’s look at a scenario where mitigation (e.g., social distancing) is successively imposed.

Here’s a specification for R0 as a function of time.

def R0_mitigating(t, r0=3, η=1, r_bar=1.6):
R0 = r0 * exp(- η * t) + (1 - exp(- η * t)) * r_bar
return R0

The idea is that R0 starts off at 3 and falls to 1.6.

This is due to progressive adoption of stricter mitigation measures.

The parameter η controls the rate, or the speed at which restrictions are imposed.

We consider several different rates:

η_vals = 1/5, 1/10, 1/20, 1/50, 1/100
labels = [fr'$\eta = {η:.2f}$' for η in η_vals]

This is what the time path of R0 looks like at these alternative rates:

fig, ax = plt.subplots()

for η, label in zip(η_vals, labels):
ax.plot(t_vec, R0_mitigating(t_vec, η=η), label=label)

ax.legend()
plt.show()
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Let’s calculate the time path of infected people:

i_paths, c_paths = [], []

for η in η_vals:
R0 = lambda t: R0_mitigating(t, η=η)
i_path, c_path = solve_path(R0, t_vec)
i_paths.append(i_path)
c_paths.append(c_path)

These are current cases under the different scenarios:

plot_paths(i_paths, labels)
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Here are cumulative cases, as a fraction of population:

plot_paths(c_paths, labels)
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1.5 Ending Lockdown

The following replicates additional results by Andrew Atkeson on the timing of lifting lockdown.

Consider these two mitigation scenarios:

1. 𝑅𝑡 = 0.5 for 30 days and then 𝑅𝑡 = 2 for the remaining 17 months. This corresponds to lifting lockdown in 30
days.

2. 𝑅𝑡 = 0.5 for 120 days and then 𝑅𝑡 = 2 for the remaining 14 months. This corresponds to lifting lockdown in 4
months.

The parameters considered here start the model with 25,000 active infections and 75,000 agents already exposed to the
virus and thus soon to be contagious.

# initial conditions
i_0 = 25_000 / pop_size
e_0 = 75_000 / pop_size
s_0 = 1 - i_0 - e_0
x_0 = s_0, e_0, i_0

Let’s calculate the paths:

R0_paths = (lambda t: 0.5 if t < 30 else 2,
lambda t: 0.5 if t < 120 else 2)

labels = [f'scenario {i}' for i in (1, 2)]

i_paths, c_paths = [], []

for R0 in R0_paths:
i_path, c_path = solve_path(R0, t_vec, x_init=x_0)
i_paths.append(i_path)
c_paths.append(c_path)

Here is the number of active infections:

plot_paths(i_paths, labels)

1.5. Ending Lockdown 15
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What kind of mortality can we expect under these scenarios?

Suppose that 1% of cases result in death

ν = 0.01

This is the cumulative number of deaths:

paths = [path * ν * pop_size for path in c_paths]
plot_paths(paths, labels)
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This is the daily death rate:

paths = [path * ν * γ * pop_size for path in i_paths]
plot_paths(paths, labels)
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Pushing the peak of curve further into the future may reduce cumulative deaths if a vaccine is found.
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TWO

LINEAR ALGEBRA

Contents

• Linear Algebra

– Overview

– Vectors

– Matrices

– Solving Systems of Equations

– Eigenvalues and Eigenvectors

– Further Topics

– Exercises

2.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in.

For example, many applied problems in economics and finance require the solution of a linear system of equations, such
as

𝑦1 = 𝑎𝑥1 + 𝑏𝑥2
𝑦2 = 𝑐𝑥1 + 𝑑𝑥2

or, more generally,

𝑦1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑘𝑥𝑘
⋮

𝑦𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑘𝑥𝑘

(2.1)

The objective here is to solve for the “unknowns” 𝑥1, … , 𝑥𝑘 given 𝑎11, … , 𝑎𝑛𝑘 and 𝑦1, … , 𝑦𝑛.

When considering such problems, it is essential that we first consider at least some of the following questions

• Does a solution actually exist?

• Are there in fact many solutions, and if so how should we interpret them?

• If no solution exists, is there a best “approximate” solution?
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• If a solution exists, how should we compute it?

These are the kinds of topics addressed by linear algebra.

In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.

We admit some overlap with this lecture, where operations on NumPy arrays were first explained.

Note that this lecture is more theoretical than most, and contains background material that will be used in applications as
we go along.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from scipy.linalg import inv, solve, det, eig

2.2 Vectors

A vector of length 𝑛 is just a sequence (or array, or tuple) of 𝑛 numbers, which we write as 𝑥 = (𝑥1, … , 𝑥𝑛) or
𝑥 = [𝑥1, … , 𝑥𝑛].
We will write these sequences either horizontally or vertically as we please.

(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)

The set of all 𝑛-vectors is denoted by ℝ𝑛.

For example, ℝ2 is the plane, and a vector in ℝ2 is just a point in the plane.

Traditionally, vectors are represented visually as arrows from the origin to the point.

The following figure represents three vectors in this manner

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(xlim=(-5, 5), ylim=(-5, 5))
ax.grid()
vecs = ((2, 4), (-3, 3), (-4, -3.5))
for v in vecs:

ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.7,
width=0.5))

ax.text(1.1 * v[0], 1.1 * v[1], str(v))
plt.show()
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2.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.

As a matter of definition, when we add two vectors, we add them element-by-element

𝑥 + 𝑦 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥
⎦

∶=
⎡
⎢⎢
⎣

𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑛 + 𝑦𝑛

⎤
⎥⎥
⎦

Scalar multiplication is an operation that takes a number 𝛾 and a vector 𝑥 and produces

𝛾𝑥 ∶=
⎡
⎢⎢
⎣

𝛾𝑥1
𝛾𝑥2

⋮
𝛾𝑥𝑛

⎤
⎥⎥
⎦

Scalar multiplication is illustrated in the next figure

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

(continues on next page)
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(continued from previous page)

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(xlim=(-5, 5), ylim=(-5, 5))
x = (2, 2)
ax.annotate('', xy=x, xytext=(0, 0),

arrowprops=dict(facecolor='blue',
shrink=0,
alpha=1,
width=0.5))

ax.text(x[0] + 0.4, x[1] - 0.2, '$x$', fontsize='16')

scalars = (-2, 2)
x = np.array(x)

for s in scalars:
v = s * x
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.5,
width=0.5))

ax.text(v[0] + 0.4, v[1] - 0.2, f'${s} x$', fontsize='16')
plt.show()
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In Python, a vector can be represented as a list or tuple, such as x = (2, 4, 6), but is more commonly represented
as a NumPy array.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax

x = np.ones(3) # Vector of three ones
y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array
x + y

array([3., 5., 7.])

4 * x

array([4., 4., 4.])

2.2. Vectors 23
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2.2.2 Inner Product and Norm

The inner product of vectors 𝑥, 𝑦 ∈ ℝ𝑛 is defined as

𝑥′𝑦 ∶=
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

Two vectors are called orthogonal if their inner product is zero.

The norm of a vector 𝑥 represents its “length” (i.e., its distance from the zero vector) and is defined as

‖𝑥‖ ∶=
√

𝑥′𝑥 ∶= (
𝑛

∑
𝑖=1

𝑥2
𝑖 )

1/2

The expression ‖𝑥 − 𝑦‖ is thought of as the distance between 𝑥 and 𝑦.
Continuing on from the previous example, the inner product and norm can be computed as follows

np.sum(x * y) # Inner product of x and y, method 1

np.float64(12.0)

x @ y # Inner product of x and y, method 2 (preferred)

np.float64(12.0)

The @ operator is preferred because it uses optimized BLAS libraries that implement fused multiply-add operations,
providing better performance and numerical accuracy compared to the separate multiply and sum operations.

np.sqrt(np.sum(x**2)) # Norm of x, take one

np.float64(1.7320508075688772)

np.sqrt(x @ x) # Norm of x, take two (preferred)

np.float64(1.7320508075688772)

np.linalg.norm(x) # Norm of x, take three

np.float64(1.7320508075688772)

2.2.3 Span

Given a set of vectors 𝐴 ∶= {𝑎1, … , 𝑎𝑘} in ℝ𝑛, it’s natural to think about the new vectors we can create by performing
linear operations.

New vectors created in this manner are called linear combinations of 𝐴.
In particular, 𝑦 ∈ ℝ𝑛 is a linear combination of 𝐴 ∶= {𝑎1, … , 𝑎𝑘} if

𝑦 = 𝛽1𝑎1 + ⋯ + 𝛽𝑘𝑎𝑘 for some scalars 𝛽1, … , 𝛽𝑘

In this context, the values 𝛽1, … , 𝛽𝑘 are called the coefficients of the linear combination.
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The set of linear combinations of 𝐴 is called the span of 𝐴.
The next figure shows the span of 𝐴 = {𝑎1, 𝑎2} in ℝ3.

The span is a two-dimensional plane passing through these two points and the origin.

ax = plt.figure(figsize=(10, 8)).add_subplot(projection='3d')

x_min, x_max = -5, 5
y_min, y_max = -5, 5

α, β = 0.2, 0.1

ax.set(xlim=(x_min, x_max), ylim=(x_min, x_max), zlim=(x_min, x_max),
xticks=(0,), yticks=(0,), zticks=(0,))

gs = 3
z = np.linspace(x_min, x_max, gs)
x = np.zeros(gs)
y = np.zeros(gs)
ax.plot(x, y, z, 'k-', lw=2, alpha=0.5)
ax.plot(z, x, y, 'k-', lw=2, alpha=0.5)
ax.plot(y, z, x, 'k-', lw=2, alpha=0.5)

# Fixed linear function, to generate a plane
def f(x, y):

return α * x + β * y

# Vector locations, by coordinate
x_coords = np.array((3, 3))
y_coords = np.array((4, -4))
z = f(x_coords, y_coords)
for i in (0, 1):

ax.text(x_coords[i], y_coords[i], z[i], f'$a_{i+1}$', fontsize=14)

# Lines to vectors
for i in (0, 1):

x = (0, x_coords[i])
y = (0, y_coords[i])
z = (0, f(x_coords[i], y_coords[i]))
ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.6)

# Draw the plane
grid_size = 20
xr2 = np.linspace(x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
x2, y2 = np.meshgrid(xr2, yr2)
z2 = f(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet,

linewidth=0, antialiased=True, alpha=0.2)
plt.show()
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Examples

If 𝐴 contains only one vector 𝑎1 ∈ ℝ2, then its span is just the scalar multiples of 𝑎1, which is the unique line passing
through both 𝑎1 and the origin.

If 𝐴 = {𝑒1, 𝑒2, 𝑒3} consists of the canonical basis vectors of ℝ3, that is

𝑒1 ∶= ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑒2 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝑒3 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

then the span of 𝐴 is all of ℝ3, because, for any 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, we can write

𝑥 = 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3

Now consider 𝐴0 = {𝑒1, 𝑒2, 𝑒1 + 𝑒2}.
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If 𝑦 = (𝑦1, 𝑦2, 𝑦3) is any linear combination of these vectors, then 𝑦3 = 0 (check it).
Hence 𝐴0 fails to span all of ℝ3.

2.2.4 Linear Independence

As we’ll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described
by linear operators on a few vectors.

The condition we need for a set of vectors to have a large span is what’s called linear independence.

In particular, a collection of vectors 𝐴 ∶= {𝑎1, … , 𝑎𝑘} in ℝ𝑛 is said to be

• linearly dependent if some strict subset of 𝐴 has the same span as 𝐴.
• linearly independent if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent
otherwise.

To illustrate the idea, recall the figure that showed the span of vectors {𝑎1, 𝑎2} in ℝ3 as a plane through the origin.

If we take a third vector 𝑎3 and form the set {𝑎1, 𝑎2, 𝑎3}, this set will be
• linearly dependent if 𝑎3 lies in the plane

• linearly independent otherwise

As another illustration of the concept, since ℝ𝑛 can be spanned by 𝑛 vectors (see the discussion of canonical basis vectors
above), any collection of 𝑚 > 𝑛 vectors in ℝ𝑛 must be linearly dependent.

The following statements are equivalent to linear independence of 𝐴 ∶= {𝑎1, … , 𝑎𝑘} ⊂ ℝ𝑛

1. No vector in 𝐴 can be formed as a linear combination of the other elements.

2. If 𝛽1𝑎1 + ⋯ 𝛽𝑘𝑎𝑘 = 0 for scalars 𝛽1, … , 𝛽𝑘, then 𝛽1 = ⋯ = 𝛽𝑘 = 0.
(The zero in the first expression is the origin of ℝ𝑛)

2.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation
as a linear combination of these vectors.

In other words, if 𝐴 ∶= {𝑎1, … , 𝑎𝑘} ⊂ ℝ𝑛 is linearly independent and

𝑦 = 𝛽1𝑎1 + ⋯ 𝛽𝑘𝑎𝑘

then no other coefficient sequence 𝛾1, … , 𝛾𝑘 will produce the same vector 𝑦.
Indeed, if we also have 𝑦 = 𝛾1𝑎1 + ⋯ 𝛾𝑘𝑎𝑘, then

(𝛽1 − 𝛾1)𝑎1 + ⋯ + (𝛽𝑘 − 𝛾𝑘)𝑎𝑘 = 0

Linear independence now implies 𝛾𝑖 = 𝛽𝑖 for all 𝑖.
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2.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.

An 𝑛 × 𝑘 matrix is a rectangular array 𝐴 of numbers with 𝑛 rows and 𝑘 columns:

𝐴 =
⎡
⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑘
𝑎21 𝑎22 ⋯ 𝑎2𝑘

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘

⎤
⎥⎥
⎦

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this
lecture.

For obvious reasons, the matrix 𝐴 is also called a vector if either 𝑛 = 1 or 𝑘 = 1.
In the former case, 𝐴 is called a row vector, while in the latter it is called a column vector.

If 𝑛 = 𝑘, then 𝐴 is called square.

The matrix formed by replacing 𝑎𝑖𝑗 by 𝑎𝑗𝑖 for every 𝑖 and 𝑗 is called the transpose of 𝐴 and denoted 𝐴′ or 𝐴⊤.

If 𝐴 = 𝐴′, then 𝐴 is called symmetric.

For a square matrix 𝐴, the 𝑖 elements of the form 𝑎𝑖𝑖 for 𝑖 = 1, … , 𝑛 are called the principal diagonal.

𝐴 is called diagonal if the only nonzero entries are on the principal diagonal.

If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then 𝐴 is called the identity
matrix and denoted by 𝐼 .

2.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.

Scalar multiplication and addition are immediate generalizations of the vector case:

𝛾𝐴 = 𝛾 ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝛾𝑎11 ⋯ 𝛾𝑎1𝑘
⋮ ⋮ ⋮

𝛾𝑎𝑛1 ⋯ 𝛾𝑎𝑛𝑘

⎤⎥
⎦

and

𝐴 + 𝐵 = ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

+ ⎡⎢
⎣

𝑏11 ⋯ 𝑏1𝑘
⋮ ⋮ ⋮

𝑏𝑛1 ⋯ 𝑏𝑛𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝑎11 + 𝑏11 ⋯ 𝑎1𝑘 + 𝑏1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 + 𝑏𝑛1 ⋯ 𝑎𝑛𝑘 + 𝑏𝑛𝑘

⎤⎥
⎦

In the latter case, the matrices must have the same shape in order for the definition to make sense.

We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multi-
plication play well with basic linear operations.

If 𝐴 and 𝐵 are two matrices, then their product 𝐴𝐵 is formed by taking as its 𝑖, 𝑗-th element the inner product of the
𝑖-th row of 𝐴 and the 𝑗-th column of 𝐵.

There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.

If 𝐴 is 𝑛 × 𝑘 and 𝐵 is 𝑗 × 𝑚, then to multiply 𝐴 and 𝐵 we require 𝑘 = 𝑗, and the resulting matrix 𝐴𝐵 is 𝑛 × 𝑚.

As perhaps the most important special case, consider multiplying 𝑛 × 𝑘 matrix 𝐴 and 𝑘 × 1 column vector 𝑥.

28 Chapter 2. Linear Algebra

https://www.mathsisfun.com/algebra/matrix-multiplying.html
https://en.wikipedia.org/wiki/Matrix_multiplication


Intermediate Quantitative Economics with Python

According to the preceding rule, this gives us an 𝑛 × 1 column vector

𝐴𝑥 = ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋮ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑘

⎤⎥
⎦

⎡⎢
⎣

𝑥1
⋮

𝑥𝑘

⎤⎥
⎦

∶= ⎡⎢
⎣

𝑎11𝑥1 + ⋯ + 𝑎1𝑘𝑥𝑘
⋮

𝑎𝑛1𝑥1 + ⋯ + 𝑎𝑛𝑘𝑥𝑘

⎤⎥
⎦

(2.2)

Note

𝐴𝐵 and 𝐵𝐴 are not generally the same thing.

Another important special case is the identity matrix.

You should check that if 𝐴 is 𝑛 × 𝑘 and 𝐼 is the 𝑘 × 𝑘 identity matrix, then 𝐴𝐼 = 𝐴.
If 𝐼 is the 𝑛 × 𝑛 identity matrix, then 𝐼𝐴 = 𝐴.

2.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix oper-
ations1.

You can create them manually from tuples of tuples (or lists of lists) as follows

A = ((1, 2),
(3, 4))

type(A)

tuple

A = np.array(A)

type(A)

numpy.ndarray

A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more discussion.

To get the transpose of A, use A.transpose() or, more simply, A.T.

There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax

A = np.identity(3)
B = np.ones((3, 3))
2 * A

1 Although there is a specialized matrix data type defined in NumPy, it’s more standard to work with ordinary NumPy arrays. See this discussion.

2.3. Matrices 29

https://python-programming.quantecon.org/numpy.html#shape-and-dimension
https://python-programming.quantecon.org/numpy.html#creating-arrays
https://python-programming.quantecon.org/numpy.html#matrix-multiplication


Intermediate Quantitative Economics with Python

array([[2., 0., 0.],
[0., 2., 0.],
[0., 0., 2.]])

A + B

array([[2., 1., 1.],
[1., 2., 1.],
[1., 1., 2.]])

To multiply matrices we use the @ symbol.

In particular, A @ B is matrix multiplication, whereas A * B is element-by-element multiplication.

See here for more discussion.

2.3.3 Matrices as Maps

Each 𝑛 × 𝑘 matrix 𝐴 can be identified with a function 𝑓(𝑥) = 𝐴𝑥 that maps 𝑥 ∈ ℝ𝑘 into 𝑦 = 𝐴𝑥 ∈ ℝ𝑛.

These kinds of functions have a special property: they are linear.

A function 𝑓 ∶ ℝ𝑘 → ℝ𝑛 is called linear if, for all 𝑥, 𝑦 ∈ ℝ𝑘 and all scalars 𝛼, 𝛽, we have

𝑓(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)

You can check that this holds for the function 𝑓(𝑥) = 𝐴𝑥 + 𝑏 when 𝑏 is the zero vector and fails when 𝑏 is nonzero.
In fact, it’s known that 𝑓 is linear if and only if there exists a matrix 𝐴 such that 𝑓(𝑥) = 𝐴𝑥 for all 𝑥.

2.4 Solving Systems of Equations

Recall again the system of equations (2.1).

If we compare (2.1) and (2.2), we see that (2.1) can now be written more conveniently as

𝑦 = 𝐴𝑥 (2.3)

The problem we face is to determine a vector 𝑥 ∈ ℝ𝑘 that solves (2.3), taking 𝑦 and 𝐴 as given.

This is a special case of a more general problem: Find an 𝑥 such that 𝑦 = 𝑓(𝑥).
Given an arbitrary function 𝑓 and a 𝑦, is there always an 𝑥 such that 𝑦 = 𝑓(𝑥)?
If so, is it always unique?

The answer to both these questions is negative, as the next figure shows

def f(x):
return 0.6 * np.cos(4 * x) + 1.4

xmin, xmax = -1, 1
x = np.linspace(xmin, xmax, 160)
y = f(x)
ya, yb = np.min(y), np.max(y)

(continues on next page)
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(continued from previous page)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

for ax in axes:
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')

ax.set(ylim=(-0.6, 3.2), xlim=(xmin, xmax),
yticks=(), xticks=())

ax.plot(x, y, 'k-', lw=2, label='$f$')
ax.fill_between(x, ya, yb, facecolor='blue', alpha=0.05)
ax.vlines([0], ya, yb, lw=3, color='blue', label='range of $f$')
ax.text(0.04, -0.3, '$0$', fontsize=16)

ax = axes[0]

ax.legend(loc='upper right', frameon=False)
ybar = 1.5
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.05, 0.8 * ybar, '$y$', fontsize=16)
for i, z in enumerate((-0.35, 0.35)):

ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)
ax.text(z, -0.2, f'$x_{i}$', fontsize=16)

ax = axes[1]

ybar = 2.6
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.04, 0.91 * ybar, '$y$', fontsize=16)

plt.show()
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In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions,
since 𝑦 lies outside the range of 𝑓 .
Can we impose conditions on 𝐴 in (2.3) that rule out these problems?

In this context, themost important thing to recognize about the expression𝐴𝑥 is that it corresponds to a linear combination
of the columns of 𝐴.
In particular, if 𝑎1, … , 𝑎𝑘 are the columns of 𝐴, then

𝐴𝑥 = 𝑥1𝑎1 + ⋯ + 𝑥𝑘𝑎𝑘

Hence the range of 𝑓(𝑥) = 𝐴𝑥 is exactly the span of the columns of 𝐴.
We want the range to be large so that it contains arbitrary 𝑦.
As you might recall, the condition that we want for the span to be large is linear independence.

A happy fact is that linear independence of the columns of 𝐴 also gives us uniqueness.
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Indeed, it follows from our earlier discussion that if {𝑎1, … , 𝑎𝑘} are linearly independent and 𝑦 = 𝐴𝑥 = 𝑥1𝑎1+⋯+𝑥𝑘𝑎𝑘,
then no 𝑧 ≠ 𝑥 satisfies 𝑦 = 𝐴𝑧.

2.4.1 The Square Matrix Case

Let’s discuss some more details, starting with the case where 𝐴 is 𝑛 × 𝑛.
This is the familiar case where the number of unknowns equals the number of equations.

For arbitrary 𝑦 ∈ ℝ𝑛, we hope to find a unique 𝑥 ∈ ℝ𝑛 such that 𝑦 = 𝐴𝑥.
In view of the observations immediately above, if the columns of 𝐴 are linearly independent, then their span, and hence
the range of 𝑓(𝑥) = 𝐴𝑥, is all of ℝ𝑛.

Hence there always exists an 𝑥 such that 𝑦 = 𝐴𝑥.
Moreover, the solution is unique.

In particular, the following are equivalent

1. The columns of 𝐴 are linearly independent.

2. For any 𝑦 ∈ ℝ𝑛, the equation 𝑦 = 𝐴𝑥 has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?

If 𝑦 and 𝐴 are scalar with 𝐴 ≠ 0, then the solution is 𝑥 = 𝐴−1𝑦.
A similar expression is available in the matrix case.

In particular, if square matrix 𝐴 has full column rank, then it possesses a multiplicative inverse matrix 𝐴−1, with the
property that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 .
As a consequence, if we pre-multiply both sides of 𝑦 = 𝐴𝑥 by 𝐴−1, we get 𝑥 = 𝐴−1𝑦.
This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the deter-
minant of the matrix — you can find the expression for it here.

If the determinant of 𝐴 is not zero, then we say that 𝐴 is nonsingular.

Perhaps the most important fact about determinants is that 𝐴 is nonsingular if and only if 𝐴 is of full column rank.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.
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2.4.2 More Rows than Columns

This is the 𝑛 × 𝑘 case with 𝑛 > 𝑘.
This case is very important in many settings, not least in the setting of linear regression (where 𝑛 is the number of
observations, and 𝑘 is the number of explanatory variables).

Given arbitrary 𝑦 ∈ ℝ𝑛, we seek an 𝑥 ∈ ℝ𝑘 such that 𝑦 = 𝐴𝑥.
In this setting, the existence of a solution is highly unlikely.

Without much loss of generality, let’s go over the intuition focusing on the case where the columns of 𝐴 are linearly
independent.

It follows that the span of the columns of 𝐴 is a 𝑘-dimensional subspace of ℝ𝑛.

This span is very “unlikely” to contain arbitrary 𝑦 ∈ ℝ𝑛.

To see why, recall the figure above, where 𝑘 = 2 and 𝑛 = 3.
Imagine an arbitrarily chosen 𝑦 ∈ ℝ3, located somewhere in that three-dimensional space.

What’s the likelihood that 𝑦 lies in the span of {𝑎1, 𝑎2} (i.e., the two dimensional plane through these points)?
In a sense, it must be very small, since this plane has zero “thickness”.

As a result, in the 𝑛 > 𝑘 case we usually give up on existence.

However, we can still seek the best approximation, for example, an 𝑥 that makes the distance ‖𝑦 − 𝐴𝑥‖ as small as
possible.

To solve this problem, one can use either calculus or the theory of orthogonal projections.

The solution is known to be ̂𝑥 = (𝐴′𝐴)−1𝐴′𝑦 — see for example chapter 3 of these notes.

2.4.3 More Columns than Rows

This is the 𝑛 × 𝑘 case with 𝑛 < 𝑘, so there are fewer equations than unknowns.
In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.

For example, consider the case where 𝑘 = 3 and 𝑛 = 2.
Thus, the columns of 𝐴 consists of 3 vectors in ℝ2.

This set can never be linearly independent, since it is possible to find two vectors that span ℝ2.

(For example, use the canonical basis vectors)

It follows that one column is a linear combination of the other two.

For example, let’s say that 𝑎1 = 𝛼𝑎2 + 𝛽𝑎3.

Then if 𝑦 = 𝐴𝑥 = 𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3, we can also write

𝑦 = 𝑥1(𝛼𝑎2 + 𝛽𝑎3) + 𝑥2𝑎2 + 𝑥3𝑎3 = (𝑥1𝛼 + 𝑥2)𝑎2 + (𝑥1𝛽 + 𝑥3)𝑎3

In other words, uniqueness fails.
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2.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s linalg submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code

A = ((1, 2), (3, 4))
A = np.array(A)
y = np.ones((2, 1)) # Column vector
det(A) # Check that A is nonsingular, and hence invertible

np.float64(-2.0)

A_inv = inv(A) # Compute the inverse
A_inv

array([[-2. , 1. ],
[ 1.5, -0.5]])

x = A_inv @ y # Solution
A @ x # Should equal y

array([[1.],
[1.]])

solve(A, y) # Produces the same solution

array([[-1.],
[ 1.]])

Observe how we can solve for 𝑥 = 𝐴−1𝑦 by either via inv(A) @ y, or using solve(A, y).

The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost
always be preferred.

To obtain the least-squares solution ̂𝑥 = (𝐴′𝐴)−1𝐴′𝑦, use scipy.linalg.lstsq(A, y).

2.5 Eigenvalues and Eigenvectors

Let 𝐴 be an 𝑛 × 𝑛 square matrix.

If 𝜆 is scalar and 𝑣 is a non-zero vector in ℝ𝑛 such that

𝐴𝑣 = 𝜆𝑣

then we say that 𝜆 is an eigenvalue of 𝐴, and 𝑣 is an eigenvector.

Thus, an eigenvector of 𝐴 is a vector such that when the map 𝑓(𝑥) = 𝐴𝑥 is applied, 𝑣 is merely scaled.
The next figure shows two eigenvectors (blue arrows) and their images under 𝐴 (red arrows).

As expected, the image 𝐴𝑣 of each 𝑣 is just a scaled version of the original
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A = ((1, 2),
(2, 1))

A = np.array(A)
evals, evecs = eig(A)
evecs = evecs[:, 0], evecs[:, 1]

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:

ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:

ax.spines[spine].set_color('none')
ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3
ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

# Plot each eigenvector
for v in evecs:

ax.annotate('', xy=v, xytext=(0, 0),
arrowprops=dict(facecolor='blue',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the image of each eigenvector
for v in evecs:

v = A @ v
ax.annotate('', xy=v, xytext=(0, 0),

arrowprops=dict(facecolor='red',
shrink=0,
alpha=0.6,
width=0.5))

# Plot the lines they run through
x = np.linspace(xmin, xmax, 3)
for v in evecs:

a = v[1] / v[0]
ax.plot(x, a * x, 'b-', lw=0.4)

plt.show()
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The eigenvalue equation is equivalent to (𝐴 − 𝜆𝐼)𝑣 = 0, and this has a nonzero solution 𝑣 only when the columns of
𝐴 − 𝜆𝐼 are linearly dependent.

This in turn is equivalent to stating that the determinant is zero.

Hence to find all eigenvalues, we can look for 𝜆 such that the determinant of 𝐴 − 𝜆𝐼 is zero.

This problem can be expressed as one of solving for the roots of a polynomial in 𝜆 of degree 𝑛.
This in turn implies the existence of 𝑛 solutions in the complex plane, although some might be repeated.

Some nice facts about the eigenvalues of a square matrix 𝐴 are as follows

1. The determinant of 𝐴 equals the product of the eigenvalues.

2. The trace of 𝐴 (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.

3. If 𝐴 is symmetric, then all of its eigenvalues are real.

4. If 𝐴 is invertible and 𝜆1, … , 𝜆𝑛 are its eigenvalues, then the eigenvalues of 𝐴−1 are 1/𝜆1, … , 1/𝜆𝑛.

A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.

Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

A = ((1, 2),
(2, 1))

(continues on next page)
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(continued from previous page)

A = np.array(A)
evals, evecs = eig(A)
evals

array([ 3.+0.j, -1.+0.j])

evecs

array([[ 0.70710678, -0.70710678],
[ 0.70710678, 0.70710678]])

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes
the length of each eigenvector to one.

2.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for givenmatrices𝐴 and𝐵, seeks generalized
eigenvalues 𝜆 and eigenvectors 𝑣 such that

𝐴𝑣 = 𝜆𝐵𝑣

This can be solved in SciPy via scipy.linalg.eig(A, B).

Of course, if 𝐵 is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue
problem 𝐵−1𝐴𝑣 = 𝜆𝑣, but this is not always the case.

2.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

2.6.1 Series Expansions

Recall the usual summation formula for a geometric progression, which states that if |𝑎| < 1, then∑∞
𝑘=0 𝑎𝑘 = (1−𝑎)−1.

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let 𝐴 be a square matrix, and let

‖𝐴‖ ∶= max
‖𝑥‖=1

‖𝐴𝑥‖

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm— in
this case, the so-called spectral norm.

For example, for a square matrix 𝑆, the condition ‖𝑆‖ < 1 means that 𝑆 is contractive, in the sense that it pulls all vectors
towards the origin2.

2 Suppose that ‖𝑆‖ < 1. Take any nonzero vector 𝑥, and let 𝑟 ∶= ‖𝑥‖. We have ‖𝑆𝑥‖ = 𝑟‖𝑆(𝑥/𝑟)‖ ≤ 𝑟‖𝑆‖ < 𝑟 = ‖𝑥‖. Hence every point is
pulled towards the origin.
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Neumann’s Theorem

Let 𝐴 be a square matrix and let 𝐴𝑘 ∶= 𝐴𝐴𝑘−1 with 𝐴1 ∶= 𝐴.
In other words, 𝐴𝑘 is the 𝑘-th power of 𝐴.
Neumann’s theorem states the following: If ‖𝐴𝑘‖ < 1 for some 𝑘 ∈ ℕ, then 𝐼 − 𝐴 is invertible, and

(𝐼 − 𝐴)−1 =
∞

∑
𝑘=0

𝐴𝑘 (2.4)

Spectral Radius

A result known as Gelfand’s formula tells us that, for any square matrix 𝐴,

𝜌(𝐴) = lim
𝑘→∞

‖𝐴𝑘‖1/𝑘

Here 𝜌(𝐴) is the spectral radius, defined as max𝑖 |𝜆𝑖|, where {𝜆𝑖}𝑖 is the set of eigenvalues of 𝐴.
As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a 𝑘 with
‖𝐴𝑘‖ < 1.
In which case (2.4) is valid.

2.6.2 Positive Definite Matrices

Let 𝐴 be a symmetric 𝑛 × 𝑛 matrix.

We say that 𝐴 is

1. positive definite if 𝑥′𝐴𝑥 > 0 for every 𝑥 ∈ ℝ𝑛 ∖ {0}
2. positive semi-definite or nonnegative definite if 𝑥′𝐴𝑥 ≥ 0 for every 𝑥 ∈ ℝ𝑛

Analogous definitions exist for negative definite and negative semi-definite matrices.

It is notable that if 𝐴 is positive definite, then all of its eigenvalues are strictly positive, and hence 𝐴 is invertible (with
positive definite inverse).

2.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let

• 𝑧, 𝑥 and 𝑎 all be 𝑛 × 1 vectors
• 𝐴 be an 𝑛 × 𝑛 matrix

• 𝐵 be an 𝑚 × 𝑛 matrix and 𝑦 be an 𝑚 × 1 vector
Then

1. 𝜕𝑎′𝑥
𝜕𝑥 = 𝑎

2. 𝜕𝐴𝑥
𝜕𝑥 = 𝐴′

3. 𝜕𝑥′𝐴𝑥
𝜕𝑥 = (𝐴 + 𝐴′)𝑥

4. 𝜕𝑦′𝐵𝑧
𝜕𝑦 = 𝐵𝑧

2.6. Further Topics 39



Intermediate Quantitative Economics with Python

5. 𝜕𝑦′𝐵𝑧
𝜕𝐵 = 𝑦𝑧′

Exercise 2.7.1 below asks you to apply these formulas.

2.6.4 Further Reading

The documentation of the scipy.linalg submodule can be found here.

Chapters 2 and 3 of the Econometric Theory contains a discussion of linear algebra along the same lines as above, with
solved exercises.

If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Jänich, 1994].

2.7 Exercises
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Exercise 2.7.1

Let 𝑥 be a given 𝑛 × 1 vector and consider the problem
𝑣(𝑥) = max

𝑦,𝑢
{−𝑦′𝑃𝑦 − 𝑢′𝑄𝑢}

subject to the linear constraint

𝑦 = 𝐴𝑥 + 𝐵𝑢
Here

• 𝑃 is an 𝑛 × 𝑛 matrix and 𝑄 is an 𝑚 × 𝑚 matrix

• 𝐴 is an 𝑛 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑚 matrix

• both 𝑃 and 𝑄 are symmetric and positive semidefinite

(What must the dimensions of 𝑦 and 𝑢 be to make this a well-posed problem?)

One way to solve the problem is to form the Lagrangian

ℒ = −𝑦′𝑃𝑦 − 𝑢′𝑄𝑢 + 𝜆′ [𝐴𝑥 + 𝐵𝑢 − 𝑦]
where 𝜆 is an 𝑛 × 1 vector of Lagrange multipliers.
Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions
for maximizing ℒ with respect to 𝑦, 𝑢 and minimizing it with respect to 𝜆.
Show that these conditions imply that

1. 𝜆 = −2𝑃𝑦.
2. The optimizing choice of 𝑢 satisfies 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥.
3. The function 𝑣 satisfies 𝑣(𝑥) = −𝑥′ ̃𝑃 𝑥 where ̃𝑃 = 𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴.

As we will see, in economic contexts Lagrange multipliers often are shadow prices.

Note

If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and
then just maximize −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢 with respect to 𝑢. You can verify that this leads to the
same maximizer.

Solution to Exercise 2.7.1

We have an optimization problem:

𝑣(𝑥) = max
𝑦,𝑢

{−𝑦′𝑃𝑦 − 𝑢′𝑄𝑢}

s.t.

𝑦 = 𝐴𝑥 + 𝐵𝑢

with primitives

• 𝑃 be a symmetric and positive semidefinite 𝑛 × 𝑛 matrix

• 𝑄 be a symmetric and positive semidefinite 𝑚 × 𝑚 matrix
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• 𝐴 an 𝑛 × 𝑛 matrix

• 𝐵 an 𝑛 × 𝑚 matrix

The associated Lagrangian is:

𝐿 = −𝑦′𝑃𝑦 − 𝑢′𝑄𝑢 + 𝜆′[𝐴𝑥 + 𝐵𝑢 − 𝑦]

Step 1.

Differentiating Lagrangian equation w.r.t y and setting its derivative equal to zero yields

𝜕𝐿
𝜕𝑦 = −(𝑃 + 𝑃 ′)𝑦 − 𝜆 = −2𝑃𝑦 − 𝜆 = 0 ,

since P is symmetric.

Accordingly, the first-order condition for maximizing L w.r.t. y implies

𝜆 = −2𝑃𝑦

Step 2.

Differentiating Lagrangian equation w.r.t. u and setting its derivative equal to zero yields

𝜕𝐿
𝜕𝑢 = −(𝑄 + 𝑄′)𝑢 − 𝐵′𝜆 = −2𝑄𝑢 + 𝐵′𝜆 = 0

Substituting 𝜆 = −2𝑃𝑦 gives

𝑄𝑢 + 𝐵′𝑃𝑦 = 0

Substituting the linear constraint 𝑦 = 𝐴𝑥 + 𝐵𝑢 into above equation gives

𝑄𝑢 + 𝐵′𝑃(𝐴𝑥 + 𝐵𝑢) = 0

(𝑄 + 𝐵′𝑃𝐵)𝑢 + 𝐵′𝑃𝐴𝑥 = 0
which is the first-order condition for maximizing 𝐿 w.r.t. 𝑢.
Thus, the optimal choice of u must satisfy

𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥 ,

which follows from the definition of the first-order conditions for Lagrangian equation.

Step 3.

Rewriting our problem by substituting the constraint into the objective function, we get

𝑣(𝑥) = max
𝑢

{−(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢}

Since we know the optimal choice of u satisfies 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥, then

𝑣(𝑥) = −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢 𝑤𝑖𝑡ℎ 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

To evaluate the function

𝑣(𝑥) = −(𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢
= −(𝑥′𝐴′ + 𝑢′𝐵′)𝑃 (𝐴𝑥 + 𝐵𝑢) − 𝑢′𝑄𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 − 𝑢′𝐵′𝑃𝐴𝑥 − 𝑥′𝐴′𝑃𝐵𝑢 − 𝑢′𝐵′𝑃𝐵𝑢 − 𝑢′𝑄𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 − 2𝑢′𝐵′𝑃𝐴𝑥 − 𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢
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For simplicity, denote by 𝑆 ∶= (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴, then 𝑢 = −𝑆𝑥.
Regarding the second term −2𝑢′𝐵′𝑃𝐴𝑥,

−2𝑢′𝐵′𝑃𝐴𝑥 = −2𝑥′𝑆′𝐵′𝑃𝐴𝑥
= 2𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

Notice that the term (𝑄 + 𝐵′𝑃𝐵)−1 is symmetric as both P and Q are symmetric.

Regarding the third term −𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢,

−𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢 = −𝑥′𝑆′(𝑄 + 𝐵′𝑃𝐵)𝑆𝑥
= −𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

Hence, the summation of second and third terms is 𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥.
This implies that

𝑣(𝑥) = −𝑥′𝐴′𝑃𝐴𝑥 − 2𝑢′𝐵′𝑃𝐴𝑥 − 𝑢′(𝑄 + 𝐵′𝑃𝐵)𝑢
= −𝑥′𝐴′𝑃𝐴𝑥 + 𝑥′𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥
= −𝑥′[𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴]𝑥

Therefore, the solution to the optimization problem 𝑣(𝑥) = −𝑥′ ̃𝑃 𝑥 follows the above result by denoting ̃𝑃 ∶=
𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
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CHAPTER

THREE

QR DECOMPOSITION

3.1 Overview

This lecture describes the QR decomposition and how it relates to

• Orthogonal projection and least squares

• A Gram-Schmidt process

• Eigenvalues and eigenvectors

We’ll write some Python code to help consolidate our understandings.

3.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of
an orthogonal matrix and a triangular matrix.

A QR decomposition of a real matrix 𝐴 takes the form

𝐴 = 𝑄𝑅

where

• 𝑄 is an orthogonal matrix (so that 𝑄𝑇 𝑄 = 𝐼)
• 𝑅 is an upper triangular matrix

We’ll use a Gram-Schmidt process to compute a QR decomposition

Because doing so is so educational, we’ll write our own Python code to do the job

3.3 Gram-Schmidt process

We’ll start with a square matrix 𝐴.
If a square matrix 𝐴 is nonsingular, then a 𝑄𝑅 factorization is unique.

We’ll deal with a rectangular matrix 𝐴 later.

Actually, our algorithm will work with a rectangular 𝐴 that is not square.
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3.3.1 Gram-Schmidt process for square 𝐴

Here we apply a Gram-Schmidt process to the columns of matrix 𝐴.
In particular, let

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ]

Let || · || denote the L2 norm.
The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order

• normalize a vector to have unit norm

• orthogonalize the next vector

To begin, we set 𝑢1 = 𝑎1 and then normalize:

𝑢1 = 𝑎1, 𝑒1 = 𝑢1
||𝑢1||

We orthogonalize first to compute 𝑢2 and then normalize to create 𝑒2:

𝑢2 = 𝑎2 − (𝑎2 · 𝑒1)𝑒1, 𝑒2 = 𝑢2
||𝑢2||

We invite the reader to verify that 𝑒1 is orthogonal to 𝑒2 by checking that 𝑒1 ⋅ 𝑒2 = 0.
The Gram-Schmidt procedure continues iterating.

Thus, for 𝑘 = 2, … , 𝑛 − 1 we construct

𝑢𝑘+1 = 𝑎𝑘+1 − (𝑎𝑘+1 · 𝑒1)𝑒1 − ⋯ − (𝑎𝑘+1 · 𝑒𝑘)𝑒𝑘, 𝑒𝑘+1 = 𝑢𝑘+1
||𝑢𝑘+1||

Here (𝑎𝑗 ⋅ 𝑒𝑖) can be interpreted as the linear least squares regression coefficient of 𝑎𝑗 on 𝑒𝑖

• it is the inner product of 𝑎𝑗 and 𝑒𝑖 divided by the inner product of 𝑒𝑖 where 𝑒𝑖 ⋅𝑒𝑖 = 1, as normalization has assured
us.

• this regression coefficient has an interpretation as being a covariance divided by a variance

It can be verified that

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛

⎤
⎥⎥
⎦

Thus, we have constructed the decomposision

𝐴 = 𝑄𝑅

where

𝑄 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑛 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]

and

𝑅 =
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛

⎤
⎥⎥
⎦
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3.3.2 𝐴 not square

Now suppose that 𝐴 is an 𝑛 × 𝑚 matrix where 𝑚 > 𝑛.
Then a 𝑄𝑅 decomposition is

𝐴 = [ 𝑎1 𝑎2 ⋯ 𝑎𝑚 ] = [ 𝑒1 𝑒2 ⋯ 𝑒𝑛 ]
⎡
⎢⎢
⎣

𝑎1 · 𝑒1 𝑎2 · 𝑒1 ⋯ 𝑎𝑛 · 𝑒1 𝑎𝑛+1 ⋅ 𝑒1 ⋯ 𝑎𝑚 ⋅ 𝑒1
0 𝑎2 · 𝑒2 ⋯ 𝑎𝑛 · 𝑒2 𝑎𝑛+1 ⋅ 𝑒2 ⋯ 𝑎𝑚 ⋅ 𝑒2
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛 · 𝑒𝑛 𝑎𝑛+1 ⋅ 𝑒𝑛 ⋯ 𝑎𝑚 ⋅ 𝑒𝑛

⎤
⎥⎥
⎦

which implies that

𝑎1 = (𝑎1 ⋅ 𝑒1)𝑒1
𝑎2 = (𝑎2 ⋅ 𝑒1)𝑒1 + (𝑎2 ⋅ 𝑒2)𝑒2

⋮ ⋮
𝑎𝑛 = (𝑎𝑛 ⋅ 𝑒1)𝑒1 + (𝑎𝑛 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑛 ⋅ 𝑒𝑛)𝑒𝑛

𝑎𝑛+1 = (𝑎𝑛+1 ⋅ 𝑒1)𝑒1 + (𝑎𝑛+1 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑛+1 ⋅ 𝑒𝑛)𝑒𝑛
⋮ ⋮

𝑎𝑚 = (𝑎𝑚 ⋅ 𝑒1)𝑒1 + (𝑎𝑚 ⋅ 𝑒2)𝑒2 + ⋯ + (𝑎𝑚 ⋅ 𝑒𝑛)𝑒𝑛

3.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process
described above.

import numpy as np
from scipy.linalg import qr

def QR_Decomposition(A):
n, m = A.shape # get the shape of A

Q = np.empty((n, n)) # initialize matrix Q
u = np.empty((n, n)) # initialize matrix u

u[:, 0] = A[:, 0]
Q[:, 0] = u[:, 0] / np.linalg.norm(u[:, 0])

for i in range(1, n):

u[:, i] = A[:, i]
for j in range(i):

u[:, i] -= (A[:, i] @ Q[:, j]) * Q[:, j] # get each u vector

Q[:, i] = u[:, i] / np.linalg.norm(u[:, i]) # compute each e vetor

R = np.zeros((n, m))
for i in range(n):

for j in range(i, m):
R[i, j] = A[:, j] @ Q[:, i]

return Q, R
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The preceding code is fine but can benefit from some further housekeeping.

We want to do this because later in this notebook we want to compare results from using our homemade code above with
the code for a QR that the Python scipy package delivers.

There can be be sign differences between the 𝑄 and 𝑅 matrices produced by different numerical algorithms.

All of these are valid QR decompositions because of how the sign differences cancel out when we compute 𝑄𝑅.

However, to make the results from our homemade function and the QR module in scipy comparable, let’s require that
𝑄 have positive diagonal entries.

We do this by adjusting the signs of the columns in 𝑄 and the rows in 𝑅 appropriately.

To accomplish this we’ll define a pair of functions.

def diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

return D

def adjust_sign(Q, R):
"""
Adjust the signs of the columns in Q and rows in R to
impose positive diagonal of Q
"""

D = diag_sign(Q)

Q[:, :] = Q @ D
R[:, :] = D @ R

return Q, R

3.5 Example

Now let’s do an example.

A = np.array([[1.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0]])
# A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0], [0.0, 1.0, 1.0]])
# A = np.array([[1.0, 0.5, 0.2], [0.5, 0.5, 1.0]])

A

array([[1., 1., 0.],
[1., 0., 1.],
[0., 1., 1.]])

Q, R = adjust_sign(*QR_Decomposition(A))

Q
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array([[ 0.70710678, -0.40824829, -0.57735027],
[ 0.70710678, 0.40824829, 0.57735027],
[ 0. , -0.81649658, 0.57735027]])

R

array([[ 1.41421356, 0.70710678, 0.70710678],
[ 0. , -1.22474487, -0.40824829],
[ 0. , 0. , 1.15470054]])

Let’s compare outcomes with what the scipy package produces

Q_scipy, R_scipy = adjust_sign(*qr(A))

print('Our Q: \n', Q)
print('\n')
print('Scipy Q: \n', Q_scipy)

Our Q:
[[ 0.70710678 -0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]]

Scipy Q:
[[ 0.70710678 -0.40824829 -0.57735027]
[ 0.70710678 0.40824829 0.57735027]
[ 0. -0.81649658 0.57735027]]

print('Our R: \n', R)
print('\n')
print('Scipy R: \n', R_scipy)

Our R:
[[ 1.41421356 0.70710678 0.70710678]
[ 0. -1.22474487 -0.40824829]
[ 0. 0. 1.15470054]]

Scipy R:
[[ 1.41421356 0.70710678 0.70710678]
[ 0. -1.22474487 -0.40824829]
[ 0. 0. 1.15470054]]

The above outcomes give us the good news that our homemade function agrees with what scipy produces.

Now let’s do a QR decomposition for a rectangular matrix 𝐴 that is 𝑛 × 𝑚 with 𝑚 > 𝑛.
A = np.array([[1, 3, 4], [2, 0, 9]])

Q, R = adjust_sign(*QR_Decomposition(A))
Q, R

(array([[ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 ]]),

(continues on next page)
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array([[ 2.23606798, 1.34164079, 9.8386991 ],
[ 0. , -2.68328157, 0.4472136 ]]))

Q_scipy, R_scipy = adjust_sign(*qr(A))
Q_scipy, R_scipy

(array([[ 0.4472136 , -0.89442719],
[ 0.89442719, 0.4472136 ]]),

array([[ 2.23606798, 1.34164079, 9.8386991 ],
[ 0. , -2.68328157, 0.4472136 ]]))

3.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.

The following iterations on the QR decomposition can be used to compute eigenvalues of a square matrix 𝐴.
Here is the algorithm:

1. Set 𝐴0 = 𝐴 and form 𝐴0 = 𝑄0𝑅0

2. Form 𝐴1 = 𝑅0𝑄0 . Note that 𝐴1 is similar to 𝐴0 (easy to verify) and so has the same eigenvalues.

3. Form 𝐴1 = 𝑄1𝑅1 (i.e., form the 𝑄𝑅 decomposition of 𝐴1).

4. Form 𝐴2 = 𝑅1𝑄1 and then 𝐴2 = 𝑄2𝑅2 .

5. Iterate to convergence.

6. Compute eigenvalues of 𝐴 and compare them to the diagonal values of the limiting 𝐴𝑛 found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!

Let’s write some Python code to try out the algorithm

def QR_eigvals(A, tol=1e-12, maxiter=1000):
"Find the eigenvalues of A using QR decomposition."

A_old = np.copy(A)
A_new = np.copy(A)

diff = np.inf
i = 0
while (diff > tol) and (i < maxiter):

A_old[:, :] = A_new
Q, R = QR_Decomposition(A_old)

A_new[:, :] = R @ Q

diff = np.abs(A_new - A_old).max()
i += 1

eigvals = np.diag(A_new)

return eigvals

Now let’s try the code and compare the results with what scipy.linalg.eigvals gives us
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Here goes

# experiment this with one random A matrix
A = np.random.random((3, 3))

sorted(QR_eigvals(A))

[np.float64(0.06922716928505425),
np.float64(0.6941058490765715),
np.float64(1.9454301125549824)]

Compare with the scipy package.

sorted(np.linalg.eigvals(A))

[np.float64(0.06922716928505432),
np.float64(0.6941058490764265),
np.float64(1.9454301125551277)]

3.7 𝑄𝑅 and PCA

There are interesting connections between the 𝑄𝑅 decomposition and principal components analysis (PCA).

Here are some.

1. Let 𝑋′ be a 𝑘 × 𝑛 random matrix where the 𝑗th column is a random draw from 𝒩(𝜇, Σ) where 𝜇 is 𝑘 × 1 vector
of means and Σ is a 𝑘 × 𝑘 covariance matrix. We want 𝑛 >> 𝑘 – this is an “econometrics example”.

2. Form 𝑋′ = 𝑄𝑅 where 𝑄 is 𝑘 × 𝑘 and 𝑅 is 𝑘 × 𝑛.
3. Form the eigenvalues of 𝑅𝑅′, i.e., we’ll compute 𝑅𝑅′ = ̃𝑃Λ ̃𝑃 ′.

4. Form 𝑋′𝑋 = 𝑄 ̃𝑃Λ ̃𝑃 ′𝑄′ and compare it with the eigen decomposition 𝑋′𝑋 = 𝑃 Λ̂𝑃 ′.

5. It will turn out that that Λ = Λ̂ and that 𝑃 = 𝑄 ̃𝑃 .

Let’s verify conjecture 5 with some Python code.

Start by simulating a random (𝑛, 𝑘) matrix 𝑋.

k = 5
n = 1000

# generate some random moments
𝜇 = np.random.random(size=k)
C = np.random.random((k, k))
Σ = C.T @ C

# X is random matrix where each column follows multivariate normal dist.
X = np.random.multivariate_normal(𝜇, Σ, size=n)

X.shape

(1000, 5)

Let’s apply the QR decomposition to 𝑋′.
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Q, R = adjust_sign(*QR_Decomposition(X.T))

Check the shapes of 𝑄 and 𝑅.

Q.shape, R.shape

((5, 5), (5, 1000))

Now we can construct 𝑅𝑅′ = ̃𝑃Λ ̃𝑃 ′ and form an eigen decomposition.

RR = R @ R.T

𝜆, P_tilde = np.linalg.eigh(RR)
Λ = np.diag(𝜆)

We can also apply the decomposition to 𝑋′𝑋 = 𝑃 Λ̂𝑃 ′.

XX = X.T @ X

𝜆_hat, P = np.linalg.eigh(XX)
Λ_hat = np.diag(𝜆_hat)

Compare the eigenvalues that are on the diagonals of Λ and Λ̂.
𝜆, 𝜆_hat

(array([ 11.42082415, 27.64976978, 496.15569634, 1008.03893217,
10173.30840821]),

array([ 11.42082415, 27.64976978, 496.15569634, 1008.03893217,
10173.30840821]))

Let’s compare 𝑃 and 𝑄 ̃𝑃 .

Again we need to be careful about sign differences between the columns of 𝑃 and 𝑄 ̃𝑃 .

QP_tilde = Q @ P_tilde

np.abs(P @ diag_sign(P) - QP_tilde @ diag_sign(QP_tilde)).max()

np.float64(3.297362383136715e-14)

Let’s verify that 𝑋′𝑋 can be decomposed as 𝑄 ̃𝑃Λ ̃𝑃 ′𝑄′.

QPΛPQ = Q @ P_tilde @ Λ @ P_tilde.T @ Q.T

np.abs(QPΛPQ - XX).max()

np.float64(5.1159076974727213e-11)
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CHAPTER

FOUR

CIRCULANT MATRICES

4.1 Overview

This lecture describes circulant matrices and some of their properties.

Circulant matrices have a special structure that connects them to useful concepts including

• convolution

• Fourier transforms

• permutation matrices

Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.

We begin by importing some Python packages

import numpy as np
from numba import jit
import matplotlib.pyplot as plt

np.set_printoptions(precision=3, suppress=True)

4.2 Constructing a Circulant Matrix

To construct an 𝑁 × 𝑁 circulant matrix, we need only the first row, say,

[𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 ⋯ 𝑐𝑁−1] .

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

𝐶 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 ⋯ 𝑐𝑁−1
𝑐𝑁−1 𝑐0 𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑁−2
𝑐𝑁−2 𝑐𝑁−1 𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑁−3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 ⋯ 𝑐2
𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 ⋯ 𝑐1
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 ⋯ 𝑐0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.1)

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first
column needs to be specified.

Let’s write some Python code to generate a circulant matrix.
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@jit
def construct_cirlulant(row):

N = row.size

C = np.empty((N, N))

for i in range(N):

C[i, i:] = row[:N-i]
C[i, :i] = row[N-i:]

return C

# a simple case when N = 3
construct_cirlulant(np.array([1., 2., 3.]))

array([[1., 2., 3.],
[3., 1., 2.],
[2., 3., 1.]])

4.2.1 Some Properties of Circulant Matrices

Here are some useful properties:

Suppose that 𝐴 and 𝐵 are both circulant matrices. Then it can be verified that

• The transpose of a circulant matrix is a circulant matrix.

• 𝐴 + 𝐵 is a circulant matrix

• 𝐴𝐵 is a circulant matrix

• 𝐴𝐵 = 𝐵𝐴
Now consider a circulant matrix with first row

𝑐 = [𝑐0 𝑐1 ⋯ 𝑐𝑁−1]

and consider a vector

𝑎 = [𝑎0 𝑎1 ⋯ 𝑎𝑁−1]

The convolution of vectors 𝑐 and 𝑎 is defined as the vector 𝑏 = 𝑐 ∗ 𝑎 with components

𝑏𝑘 =
𝑛−1
∑
𝑖=0

𝑐𝑘−𝑖𝑎𝑖 (4.2)

We use ∗ to denote convolution via the calculation described in equation (4.2).
It can be verified that the vector 𝑏 satisfies

𝑏 = 𝐶𝑇 𝑎

where 𝐶𝑇 is the transpose of the circulant matrix defined in equation (4.1).
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4.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix.

Before defining a permutationmatrix, we’ll define a permutation.

A permutation of a set of the set of non-negative integers {0, 1, 2, …} is a one-to-one mapping of the set into itself.
A permutation of a set {1, 2, … , 𝑛} rearranges the 𝑛 integers in the set.

A permutation matrix is obtained by permuting the rows of an 𝑛 × 𝑛 identity matrix according to a permutation of the
numbers 1 to 𝑛.
Thus, every row and every column contain precisely a single 1 with 0 everywhere else.
Every permutation corresponds to a unique permutation matrix.

For example, the 𝑁 × 𝑁 matrix

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1
1 0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎦

(4.3)

serves as a cyclic shift operator that, when applied to an 𝑁 × 1 vector ℎ, shifts entries in rows 2 through 𝑁 up one row
and shifts the entry in row 1 to row 𝑁 .

Eigenvalues of the cyclic shift permutation matrix 𝑃 defined in equation (4.3) can be computed by constructing

𝑃 − 𝜆𝐼 =

⎡
⎢
⎢
⎢
⎢
⎣

−𝜆 1 0 0 ⋯ 0
0 −𝜆 1 0 ⋯ 0
0 0 −𝜆 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1
1 0 0 0 ⋯ −𝜆

⎤
⎥
⎥
⎥
⎥
⎦

and solving

det(𝑃 − 𝜆𝐼) = (−1)𝑁𝜆𝑁 − 1 = 0

Eigenvalues 𝜆𝑖 can be complex.

Magnitudes ∣ 𝜆𝑖 ∣ of these eigenvalues 𝜆𝑖 all equal 1.
Thus, singular values of the permutation matrix 𝑃 defined in equation (4.3) all equal 1.
It can be verified that permutation matrices are orthogonal matrices:

𝑃𝑃 ′ = 𝐼
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4.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

@jit
def construct_P(N):

P = np.zeros((N, N))

for i in range(N-1):
P[i, i+1] = 1

P[-1, 0] = 1

return P

P4 = construct_P(4)
P4

array([[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]])

# compute the eigenvalues and eigenvectors
𝜆, Q = np.linalg.eig(P4)

for i in range(4):
print(f'𝜆{i} = {𝜆[i]:.1f} \nvec{i} = {Q[i, :]}\n')

𝜆0 = -1.0+0.0j
vec0 = [-0.5+0.j 0. +0.5j 0. -0.5j -0.5+0.j ]

𝜆1 = 0.0+1.0j
vec1 = [ 0.5+0.j -0.5+0.j -0.5-0.j -0.5+0.j]

𝜆2 = 0.0-1.0j
vec2 = [-0.5+0.j 0. -0.5j 0. +0.5j -0.5+0.j ]

𝜆3 = 1.0+0.0j
vec3 = [ 0.5+0.j 0.5-0.j 0.5+0.j -0.5+0.j]

In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.

These eigenvalues are uniformly distributed along the unit circle.

They are the 𝑛 roots of unity, meaning they are the 𝑛 numbers 𝑧 that solve 𝑧𝑛 = 1, where 𝑧 is a complex number.
In particular, the 𝑛 roots of unity are

𝑧 = exp(2𝜋𝑗𝑘
𝑁 ) , 𝑘 = 0, … , 𝑁 − 1

where 𝑗 denotes the purely imaginary unit number.
fig, ax = plt.subplots(2, 2, figsize=(10, 10))

(continues on next page)
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for i, N in enumerate([3, 4, 6, 8]):

row_i = i // 2
col_i = i % 2

P = construct_P(N)
𝜆, Q = np.linalg.eig(P)

circ = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
ax[row_i, col_i].add_patch(circ)

for j in range(N):
ax[row_i, col_i].scatter(𝜆[j].real, 𝜆[j].imag, c='b')

ax[row_i, col_i].set_title(f'N = {N}')
ax[row_i, col_i].set_xlabel('real')
ax[row_i, col_i].set_ylabel('imaginary')

plt.show()
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For a vector of coefficients {𝑐𝑖}𝑛−1
𝑖=0 , eigenvectors of 𝑃 are also eigenvectors of

𝐶 = 𝑐0𝐼 + 𝑐1𝑃 + 𝑐2𝑃 2 + ⋯ + 𝑐𝑁−1𝑃 𝑁−1.

Consider an example in which 𝑁 = 8 and let 𝑤 = 𝑒−2𝜋𝑗/𝑁 .

It can be verified that the matrix 𝐹8 of eigenvectors of 𝑃8 is

𝐹8 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 𝑤 𝑤2 ⋯ 𝑤7

1 𝑤2 𝑤4 ⋯ 𝑤14

1 𝑤3 𝑤6 ⋯ 𝑤21

1 𝑤4 𝑤8 ⋯ 𝑤28

1 𝑤5 𝑤10 ⋯ 𝑤35

1 𝑤6 𝑤12 ⋯ 𝑤42

1 𝑤7 𝑤14 ⋯ 𝑤49

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix 𝐹8 defines a Discete Fourier Transform.
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To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by
√

8.
• stare at the first column of 𝐹8 above to convince yourself of this fact

The eigenvalues corresponding to each eigenvector are {𝑤𝑗}7
𝑗=0 in order.

def construct_F(N):

w = np.e ** (-complex(0, 2*np.pi/N))

F = np.ones((N, N), dtype=complex)
for i in range(1, N):

F[i, 1:] = w ** (i * np.arange(1, N))

return F, w

F8, w = construct_F(8)

w

(0.7071067811865476-0.7071067811865475j)

F8

array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ,
1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ],

[ 1. +0.j , 0.707-0.707j, 0. -1.j , -0.707-0.707j,
-1. -0.j , -0.707+0.707j, -0. +1.j , 0.707+0.707j],

[ 1. +0.j , 0. -1.j , -1. -0.j , -0. +1.j ,
1. +0.j , 0. -1.j , -1. -0.j , -0. +1.j ],

[ 1. +0.j , -0.707-0.707j, -0. +1.j , 0.707-0.707j,
-1. -0.j , 0.707+0.707j, 0. -1.j , -0.707+0.707j],

[ 1. +0.j , -1. -0.j , 1. +0.j , -1. -0.j ,
1. +0.j , -1. -0.j , 1. +0.j , -1. -0.j ],

[ 1. +0.j , -0.707+0.707j, 0. -1.j , 0.707+0.707j,
-1. -0.j , 0.707-0.707j, -0. +1.j , -0.707-0.707j],

[ 1. +0.j , -0. +1.j , -1. -0.j , 0. -1.j ,
1. +0.j , -0. +1.j , -1. -0.j , 0. -1.j ],

[ 1. +0.j , 0.707+0.707j, -0. +1.j , -0.707+0.707j,
-1. -0.j , -0.707-0.707j, 0. -1.j , 0.707-0.707j]])

# normalize
Q8 = F8 / np.sqrt(8)

# verify the orthogonality (unitarity)
Q8 @ np.conjugate(Q8)

array([[ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j],

[-0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j,
0.+0.j],

[-0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j,
0.+0.j],

[-0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j,
-0.+0.j],

[-0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j,

(continues on next page)
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-0.+0.j],
[ 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j,
-0.+0.j],

[ 0.-0.j, 0.-0.j, 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, 1.+0.j,
-0.+0.j],

[ 0.-0.j, 0.-0.j, 0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j, -0.-0.j,
1.+0.j]])

Let’s verify that 𝑘th column of 𝑄8 is an eigenvector of 𝑃8 with an eigenvalue 𝑤𝑘.

P8 = construct_P(8)

diff_arr = np.empty(8, dtype=complex)
for j in range(8):

diff = P8 @ Q8[:, j] - w ** j * Q8[:, j]
diff_arr[j] = diff @ diff.T

diff_arr

array([ 0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j,
-0.+0.j])

4.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix 𝐶 defined in equation (4.1) can be written as

𝐶 = 𝑐0𝐼 + 𝑐1𝑃 + ⋯ + 𝑐𝑛−1𝑃 𝑛−1

and that every eigenvector of 𝑃 is also an eigenvector of 𝐶.

We illustrate this for 𝑁 = 8 case.
c = np.random.random(8)

c

array([0.321, 0.997, 0.066, 0.84 , 0.417, 0.546, 0.849, 0.811])

C8 = construct_cirlulant(c)

Compute 𝑐0𝐼 + 𝑐1𝑃 + ⋯ + 𝑐𝑛−1𝑃 𝑛−1.

N = 8

C = np.zeros((N, N))
P = np.eye(N)

for i in range(N):
C += c[i] * P
P = P8 @ P
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C

array([[0.321, 0.997, 0.066, 0.84 , 0.417, 0.546, 0.849, 0.811],
[0.811, 0.321, 0.997, 0.066, 0.84 , 0.417, 0.546, 0.849],
[0.849, 0.811, 0.321, 0.997, 0.066, 0.84 , 0.417, 0.546],
[0.546, 0.849, 0.811, 0.321, 0.997, 0.066, 0.84 , 0.417],
[0.417, 0.546, 0.849, 0.811, 0.321, 0.997, 0.066, 0.84 ],
[0.84 , 0.417, 0.546, 0.849, 0.811, 0.321, 0.997, 0.066],
[0.066, 0.84 , 0.417, 0.546, 0.849, 0.811, 0.321, 0.997],
[0.997, 0.066, 0.84 , 0.417, 0.546, 0.849, 0.811, 0.321]])

C8

array([[0.321, 0.997, 0.066, 0.84 , 0.417, 0.546, 0.849, 0.811],
[0.811, 0.321, 0.997, 0.066, 0.84 , 0.417, 0.546, 0.849],
[0.849, 0.811, 0.321, 0.997, 0.066, 0.84 , 0.417, 0.546],
[0.546, 0.849, 0.811, 0.321, 0.997, 0.066, 0.84 , 0.417],
[0.417, 0.546, 0.849, 0.811, 0.321, 0.997, 0.066, 0.84 ],
[0.84 , 0.417, 0.546, 0.849, 0.811, 0.321, 0.997, 0.066],
[0.066, 0.84 , 0.417, 0.546, 0.849, 0.811, 0.321, 0.997],
[0.997, 0.066, 0.84 , 0.417, 0.546, 0.849, 0.811, 0.321]])

Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

np.abs(C - C8).max()

np.float64(0.0)

The 𝑘th column of 𝑃8 associated with eigenvalue 𝑤𝑘−1 is an eigenvector of 𝐶8 associated with an eigenvalue
∑7

ℎ=0 𝑐𝑗𝑤ℎ𝑘.

𝜆_C8 = np.zeros(8, dtype=complex)

for j in range(8):
for k in range(8):

𝜆_C8[j] += c[k] * w ** (j * k)

𝜆_C8

array([ 4.847+0.j , 0.202+0.443j, -0.177+0.108j, -0.394-1.122j,
-1.541-0.j , -0.394+1.122j, -0.177-0.108j, 0.202-0.443j])

We can verify this by comparing C8 @ Q8[:, j] with 𝜆_C8[j] * Q8[:, j].

# verify
for j in range(8):

diff = C8 @ Q8[:, j] - 𝜆_C8[j] * Q8[:, j]
print(diff)

[0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.-0.j -0.-0.j -0.-0.j -0.-0.j -0.+0.j -0.+0.j 0.+0.j]
[ 0.-0.j -0.-0.j -0.-0.j -0.+0.j 0.+0.j 0.-0.j -0.-0.j -0.+0.j]
[ 0.+0.j -0.-0.j -0.-0.j 0.+0.j -0.-0.j -0.-0.j -0.+0.j 0.-0.j]
[0.-0.j 0.-0.j 0.-0.j 0.-0.j 0.+0.j 0.-0.j 0.+0.j 0.-0.j]

(continues on next page)
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[ 0.-0.j 0.-0.j 0.-0.j -0.+0.j 0.-0.j 0.-0.j 0.+0.j -0.-0.j]
[-0.+0.j -0.-0.j 0.-0.j 0.+0.j -0.+0.j -0.-0.j 0.-0.j 0.+0.j]
[-0.+0.j -0.-0.j 0.-0.j 0.-0.j 0.-0.j 0.+0.j 0.+0.j -0.+0.j]

4.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex
sinusoids.

Consider a sequence of 𝑁 real number {𝑥𝑗}𝑁−1
𝑗=0 .

The Discrete Fourier Transform maps {𝑥𝑗}𝑁−1
𝑗=0 into a sequence of complex numbers {𝑋𝑘}𝑁−1

𝑘=0

where

𝑋𝑘 =
𝑁−1
∑
𝑛=0

𝑥𝑛𝑒−2𝜋 𝑘𝑛
𝑁 𝑖

def DFT(x):
"The discrete Fourier transform."

N = len(x)
w = np.e ** (-complex(0, 2*np.pi/N))

X = np.zeros(N, dtype=complex)
for k in range(N):

for n in range(N):
X[k] += x[n] * w ** (k * n)

return X

Consider the following example.

𝑥𝑛 = {1/2 𝑛 = 0, 1
0 otherwise

x = np.zeros(10)
x[0:2] = 1/2

x

array([0.5, 0.5, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ])

Apply a discrete Fourier transform.

X = DFT(x)

X

array([ 1. +0.j , 0.905-0.294j, 0.655-0.476j, 0.345-0.476j,
0.095-0.294j, -0. +0.j , 0.095+0.294j, 0.345+0.476j,
0.655+0.476j, 0.905+0.294j])
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We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.

def plot_magnitude(x=None, X=None):

data = []
names = []
xs = []
if (x is not None):

data.append(x)
names.append('x')
xs.append('n')

if (X is not None):
data.append(X)
names.append('X')
xs.append('j')

num = len(data)
for i in range(num):

n = data[i].size
plt.figure(figsize=(8, 3))
plt.scatter(range(n), np.abs(data[i]))
plt.vlines(range(n), 0, np.abs(data[i]), color='b')

plt.xlabel(xs[i])
plt.ylabel('magnitude')
plt.title(names[i])
plt.show()

plot_magnitude(x=x, X=X)
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The inverse Fourier transform transforms a Fourier transform 𝑋 of 𝑥 back to 𝑥.
The inverse Fourier transform is defined as

𝑥𝑛 =
𝑁−1
∑
𝑘=0

1
𝑁 𝑋𝑘𝑒2𝜋( 𝑘𝑛

𝑁 )𝑖, 𝑛 = 0, 1, … , 𝑁 − 1

def inverse_transform(X):

N = len(X)
w = np.e ** (complex(0, 2*np.pi/N))

x = np.zeros(N, dtype=complex)
for n in range(N):

for k in range(N):
x[n] += X[k] * w ** (k * n) / N

return x

inverse_transform(X)

array([ 0.5+0.j, 0.5-0.j, -0. -0.j, -0. -0.j, -0. -0.j, -0. -0.j,
-0. +0.j, -0. +0.j, -0. +0.j, -0. +0.j])

Another example is

𝑥𝑛 = 2 cos(2𝜋 11
40𝑛) , 𝑛 = 0, 1, 2, ⋯ 19

Since 𝑁 = 20, we cannot use an integer multiple of 1
20 to represent a frequency 11

40 .

To handle this, we shall end up using all 𝑁 of the availble frequencies in the DFT.

Since 11
40 is in between 10

40 and 12
40 (each of which is an integer multiple of 1

20 ), the complex coefficients in the DFT have
their largest magnitudes at 𝑘 = 5, 6, 15, 16, not just at a single frequency.
N = 20
x = np.empty(N)

(continues on next page)
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for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

X = DFT(x)

plot_magnitude(x=x, X=X)

What happens if we change the last example to 𝑥𝑛 = 2 cos (2𝜋 10
40 𝑛)?

Note that 10
40 is an integer multiple of 1

20 .

N = 20
x = np.empty(N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 10 * j / 40)
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X = DFT(x)

plot_magnitude(x=x, X=X)

If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix 𝐹𝑁 of eigenvectors of the
permutation matrix 𝑃𝑁 .

We can use the example where 𝑥𝑛 = 2 cos (2𝜋 11
40 𝑛) , 𝑛 = 0, 1, 2, ⋯ 19 to illustrate this.

N = 20
x = np.empty(N)

for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

x
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array([ 2. , -0.313, -1.902, 0.908, 1.618, -1.414, -1.176, 1.782,
0.618, -1.975, -0. , 1.975, -0.618, -1.782, 1.176, 1.414,

-1.618, -0.908, 1.902, 0.313])

First use the summation formula to transform 𝑥 to 𝑋.

X = DFT(x)
X

array([2. +0.j , 2. +0.558j, 2. +1.218j, 2. +2.174j, 2. +4.087j,
2.+12.785j, 2.-12.466j, 2. -3.751j, 2. -1.801j, 2. -0.778j,
2. -0.j , 2. +0.778j, 2. +1.801j, 2. +3.751j, 2.+12.466j,
2.-12.785j, 2. -4.087j, 2. -2.174j, 2. -1.218j, 2. -0.558j])

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix 𝐹20 by the vector 𝑥, a product that we claim
should equal the Fourier tranform of the sequence {𝑥𝑛}𝑁−1

𝑛=0 .

F20, _ = construct_F(20)

F20 @ x

array([2. +0.j , 2. +0.558j, 2. +1.218j, 2. +2.174j, 2. +4.087j,
2.+12.785j, 2.-12.466j, 2. -3.751j, 2. -1.801j, 2. -0.778j,
2. -0.j , 2. +0.778j, 2. +1.801j, 2. +3.751j, 2.+12.466j,
2.-12.785j, 2. -4.087j, 2. -2.174j, 2. -1.218j, 2. -0.558j])

Similarly, the inverse DFT can be expressed as a inverse DFT matrix 𝐹 −1
20 .

F20_inv = np.linalg.inv(F20)
F20_inv @ X

array([ 2. -0.j, -0.313-0.j, -1.902+0.j, 0.908-0.j, 1.618-0.j,
-1.414+0.j, -1.176+0.j, 1.782+0.j, 0.618-0.j, -1.975-0.j,
-0. +0.j, 1.975-0.j, -0.618-0.j, -1.782+0.j, 1.176+0.j,
1.414-0.j, -1.618-0.j, -0.908+0.j, 1.902+0.j, 0.313-0.j])
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CHAPTER

FIVE

SINGULAR VALUE DECOMPOSITION (SVD)

5.1 Overview

The singular value decomposition (SVD) is a work-horse in applications of least squares projection that form founda-
tions for many statistical and machine learning methods.

After defining the SVD, we’ll describe how it connects to

• four fundamental spaces of linear algebra

• under-determined and over-determined least squares regressions

• principal components analysis (PCA)

Like principal components analysis (PCA), DMD can be thought of as a data-reduction procedure that represents salient
patterns by projecting data onto a limited set of factors.

In a sequel to this lecture aboutDynamicMode Decompositions, we’ll describe how SVD’s provide ways rapidly to compute
reduced-order approximations to first-order Vector Autoregressions (VARs).

5.2 The Setting

Let 𝑋 be an 𝑚 × 𝑛 matrix of rank 𝑝.
Necessarily, 𝑝 ≤ min(𝑚, 𝑛).
In much of this lecture, we’ll think of 𝑋 as a matrix of data in which

• each column is an individual – a time period or person, depending on the application

• each row is a random variable describing an attribute of a time period or a person, depending on the application

We’ll be interested in two situations

• A short and fat case in which 𝑚 << 𝑛, so that there are many more columns (individuals) than rows (attributes).
• A tall and skinny case in which𝑚 >> 𝑛, so that there are manymore rows (attributes) than columns (individuals).

We’ll apply a singular value decomposition of 𝑋 in both situations.

In the 𝑚 << 𝑛 case in which there are many more individuals 𝑛 than attributes 𝑚, we can calculate sample moments of
a joint distribution by taking averages across observations of functions of the observations.

In this 𝑚 << 𝑛 case, we’ll look for patterns by using a singular value decomposition to do a principal components
analysis (PCA).

In the 𝑚 >> 𝑛 case in which there are many more attributes 𝑚 than individuals 𝑛 and when we are in a time-series
setting in which 𝑛 equals the number of time periods covered in the data set 𝑋, we’ll proceed in a different way.
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We’ll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD)

5.3 Singular Value Decomposition

A singular value decomposition of an 𝑚 × 𝑛 matrix 𝑋 of rank 𝑝 ≤ min(𝑚, 𝑛) is

𝑋 = 𝑈Σ𝑉 ⊤ (5.1)

where

𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

and

• 𝑈 is an 𝑚 × 𝑚 orthogonal matrix of left singular vectors of 𝑋
• Columns of 𝑈 are eigenvectors of 𝑋𝑋⊤

• 𝑉 is an 𝑛 × 𝑛 orthogonal matrix of right singular vectors of 𝑋
• Columns of 𝑉 are eigenvectors of 𝑋⊤𝑋
• Σ is an 𝑚 × 𝑛 matrix in which the first 𝑝 places on its main diagonal are positive numbers 𝜎1, 𝜎2, … , 𝜎𝑝 called
singular values; remaining entries of Σ are all zero

• The 𝑝 singular values are positive square roots of the eigenvalues of the 𝑚 × 𝑚 matrix 𝑋𝑋⊤ and also of the 𝑛 × 𝑛
matrix 𝑋⊤𝑋

• We adopt a convention that when 𝑈 is a complex valued matrix, 𝑈⊤ denotes the conjugate-transpose or
Hermitian-transpose of 𝑈 , meaning that 𝑈⊤

𝑖𝑗 is the complex conjugate of 𝑈𝑗𝑖.

• Similarly, when 𝑉 is a complex valued matrix, 𝑉 ⊤ denotes the conjugate-transpose or Hermitian-transpose of
𝑉

The matrices 𝑈, Σ, 𝑉 entail linear transformations that reshape in vectors in the following ways:

• multiplying vectors by the unitary matrices 𝑈 and 𝑉 rotates them, but leaves angles between vectors and lengths
of vectors unchanged.

• multiplying vectors by the diagonal matrix Σ leaves angles between vectors unchanged but rescales vectors.

Thus, representation (5.1) asserts that multiplying an 𝑛 × 1 vector 𝑦 by the 𝑚 × 𝑛 matrix 𝑋 amounts to performing the
following three multiplications of 𝑦 sequentially:

• rotating 𝑦 by computing 𝑉 ⊤𝑦
• rescaling 𝑉 ⊤𝑦 by multiplying it by Σ
• rotating Σ𝑉 ⊤𝑦 by multiplying it by 𝑈

This structure of the 𝑚 × 𝑛 matrix 𝑋 opens the door to constructing systems of data encoders and decoders.

Thus,

• 𝑉 ⊤𝑦 is an encoder
• Σ is an operator to be applied to the encoded data

• 𝑈 is a decoder to be applied to the output from applying operator Σ to the encoded data
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We’ll apply this circle of ideas later in this lecture when we study Dynamic Mode Decomposition.

Road Ahead

What we have described above is called a full SVD.

In a full SVD, the shapes of 𝑈 , Σ, and 𝑉 are (𝑚, 𝑚), (𝑚, 𝑛), (𝑛, 𝑛), respectively.
Later we’ll also describe an economy or reduced SVD.

Before we study a reduced SVD we’ll say a little more about properties of a full SVD.

5.4 Four Fundamental Subspaces

Let 𝒞 denote a column space, 𝒩 denote a null space, and ℛ denote a row space.

Let’s start by recalling the four fundamental subspaces of an 𝑚 × 𝑛 matrix 𝑋 of rank 𝑝.
• The column space of 𝑋, denoted 𝒞(𝑋), is the span of the columns of 𝑋, i.e., all vectors 𝑦 that can be written as
linear combinations of columns of 𝑋. Its dimension is 𝑝.

• The null space of 𝑋, denoted 𝒩(𝑋) consists of all vectors 𝑦 that satisfy 𝑋𝑦 = 0. Its dimension is 𝑛 − 𝑝.
• The row space of 𝑋, denoted ℛ(𝑋) is the column space of 𝑋⊤. It consists of all vectors 𝑧 that can be written as
linear combinations of rows of 𝑋. Its dimension is 𝑝.

• The left null space of 𝑋, denoted 𝒩(𝑋⊤), consist of all vectors 𝑧 such that 𝑋⊤𝑧 = 0. Its dimension is 𝑚 − 𝑝.
For a full SVD of a matrix 𝑋, the matrix 𝑈 of left singular vectors and the matrix 𝑉 of right singular vectors contain
orthogonal bases for all four subspaces.

They form two pairs of orthogonal subspaces that we’ll describe now.

Let 𝑢𝑖, 𝑖 = 1, … , 𝑚 be the 𝑚 column vectors of 𝑈 and let 𝑣𝑖, 𝑖 = 1, … , 𝑛 be the 𝑛 column vectors of 𝑉 .

Let’s write the full SVD of X as

𝑋 = [𝑈𝐿 𝑈𝑅] [Σ𝑝 0
0 0] [𝑉𝐿 𝑉𝑅]⊤

(5.2)

where Σ𝑝 is a 𝑝 × 𝑝 diagonal matrix with the 𝑝 singular values on the diagonal and

𝑈𝐿 = [𝑢1 ⋯ 𝑢𝑝] , 𝑈𝑅 = [𝑢𝑝+1 ⋯ 𝑢𝑚]
𝑉𝐿 = [𝑣1 ⋯ 𝑣𝑝] , 𝑈𝑅 = [𝑣𝑝+1 ⋯ 𝑢𝑛]

Representation (5.2) implies that

𝑋 [𝑉𝐿 𝑉𝑅] = [𝑈𝐿 𝑈𝑅] [Σ𝑝 0
0 0]

or

𝑋𝑉𝐿 = 𝑈𝐿Σ𝑝
𝑋𝑉𝑅 = 0 (5.3)

or

𝑋𝑣𝑖 = 𝜎𝑖𝑢𝑖, 𝑖 = 1, … , 𝑝
𝑋𝑣𝑖 = 0, 𝑖 = 𝑝 + 1, … , 𝑛 (5.4)

Equations (5.4) tell how the transformation𝑋 maps a pair of orthonormal vectors 𝑣𝑖, 𝑣𝑗 for 𝑖 and 𝑗 both less than or equal
to the rank 𝑝 of 𝑋 into a pair of orthonormal vectors 𝑢𝑖, 𝑢𝑗.
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Equations (5.3) assert that

𝒞(𝑋) = 𝒞(𝑈𝐿)
𝒩(𝑋) = 𝒞(𝑉𝑅)

Taking transposes on both sides of representation (5.2) implies

𝑋⊤ [𝑈𝐿 𝑈𝑅] = [𝑉𝐿 𝑉𝑅] [Σ𝑝 0
0 0]

or

𝑋⊤𝑈𝐿 = 𝑉𝐿Σ𝑝
𝑋⊤𝑈𝑅 = 0 (5.5)

or

𝑋⊤𝑢𝑖 = 𝜎𝑖𝑣𝑖, 𝑖 = 1, … , 𝑝
𝑋⊤𝑢𝑖 = 0 𝑖 = 𝑝 + 1, … , 𝑚 (5.6)

Notice how equations (5.6) assert that the transformation 𝑋⊤ maps a pair of distinct orthonormal vectors 𝑢𝑖, 𝑢𝑗 for 𝑖 and
𝑗 both less than or equal to the rank 𝑝 of 𝑋 into a pair of distinct orthonormal vectors 𝑣𝑖, 𝑣𝑗 .

Equations (5.5) assert that

ℛ(𝑋) ≡ 𝒞(𝑋⊤) = 𝒞(𝑉𝐿)
𝒩(𝑋⊤) = 𝒞(𝑈𝑅)

Thus, taken together, the systems of equations (5.3) and (5.5) describe the four fundamental subspaces of 𝑋 in the
following ways:

𝒞(𝑋) = 𝒞(𝑈𝐿)
𝒩(𝑋⊤) = 𝒞(𝑈𝑅)

ℛ(𝑋) ≡ 𝒞(𝑋⊤) = 𝒞(𝑉𝐿)
𝒩(𝑋) = 𝒞(𝑉𝑅)

(5.7)

Since 𝑈 and 𝑉 are both orthonormal matrices, collection (5.7) asserts that

• 𝑈𝐿 is an orthonormal basis for the column space of 𝑋
• 𝑈𝑅 is an orthonormal basis for the null space of 𝑋⊤

• 𝑉𝐿 is an orthonormal basis for the row space of 𝑋
• 𝑉𝑅 is an orthonormal basis for the null space of 𝑋

We have verified the four claims in (5.7) simply by performing the multiplications called for by the right side of (5.2) and
reading them.

The claims in (5.7) and the fact that 𝑈 and 𝑉 are both unitary (i.e, orthonormal) matrices imply that

• the column space of 𝑋 is orthogonal to the null space of 𝑋⊤

• the null space of 𝑋 is orthogonal to the row space of 𝑋
Sometimes these properties are described with the following two pairs of orthogonal complement subspaces:

• 𝒞(𝑋) is the orthogonal complement of 𝒩(𝑋⊤)
• ℛ(𝑋) is the orthogonal complement 𝒩(𝑋)

Let’s do an example.
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import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt

Having imported these modules, let’s do the example.

np.set_printoptions(precision=2)

# Define the matrix
A = np.array([[1, 2, 3, 4, 5],

[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8],
[5, 6, 7, 8, 9]])

# Compute the SVD of the matrix
U, S, V = np.linalg.svd(A,full_matrices=True)

# Compute the rank of the matrix
rank = np.linalg.matrix_rank(A)

# Print the rank of the matrix
print("Rank of matrix:\n", rank)
print("S: \n", S)

# Compute the four fundamental subspaces
row_space = U[:, :rank]
col_space = V[:, :rank]
null_space = V[:, rank:]
left_null_space = U[:, rank:]

print("U:\n", U)
print("Column space:\n", col_space)
print("Left null space:\n", left_null_space)
print("V.T:\n", V.T)
print("Row space:\n", row_space.T)
print("Right null space:\n", null_space.T)

Rank of matrix:
2

S:
[2.69e+01 1.86e+00 1.20e-15 2.24e-16 5.82e-17]

U:
[[-0.27 -0.73 0.63 -0.06 0.06]
[-0.35 -0.42 -0.69 -0.45 0.12]
[-0.43 -0.11 -0.24 0.85 0.12]
[-0.51 0.19 0.06 -0.1 -0.83]
[-0.59 0.5 0.25 -0.24 0.53]]

Column space:
[[-0.27 -0.35]
[ 0.73 0.42]
[ 0.32 -0.65]
[ 0.54 -0.39]
[-0.06 -0.35]]

Left null space:
[[ 0.63 -0.06 0.06]

(continues on next page)
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[-0.69 -0.45 0.12]
[-0.24 0.85 0.12]
[ 0.06 -0.1 -0.83]
[ 0.25 -0.24 0.53]]

V.T:
[[-0.27 0.73 0.32 0.54 -0.06]
[-0.35 0.42 -0.65 -0.39 -0.35]
[-0.43 0.11 0.02 -0.29 0.85]
[-0.51 -0.19 0.61 -0.41 -0.4 ]
[-0.59 -0.5 -0.31 0.55 -0.04]]

Row space:
[[-0.27 -0.35 -0.43 -0.51 -0.59]
[-0.73 -0.42 -0.11 0.19 0.5 ]]

Right null space:
[[-0.43 0.11 0.02 -0.29 0.85]
[-0.51 -0.19 0.61 -0.41 -0.4 ]
[-0.59 -0.5 -0.31 0.55 -0.04]]

5.5 Eckart-Young Theorem

Suppose that we want to construct the best rank 𝑟 approximation of an 𝑚 × 𝑛 matrix 𝑋.

By best, we mean a matrix 𝑋𝑟 of rank 𝑟 < 𝑝 that, among all rank 𝑟 matrices, minimizes

||𝑋 − 𝑋𝑟||

where || ⋅ || denotes a norm of a matrix 𝑋 and where 𝑋𝑟 belongs to the space of all rank 𝑟 matrices of dimension 𝑚 × 𝑛.
Three popular matrix norms of an 𝑚 × 𝑛 matrix 𝑋 can be expressed in terms of the singular values of 𝑋

• the spectral or 𝑙2 norm ||𝑋||2 = max||𝑦||≠0
||𝑋𝑦||
||𝑦|| = 𝜎1

• the Frobenius norm ||𝑋||𝐹 = √𝜎2
1 + ⋯ + 𝜎2𝑝

• the nuclear norm ||𝑋||𝑁 = 𝜎1 + ⋯ + 𝜎𝑝

The Eckart-Young theorem states that for each of these three norms, same rank 𝑟 matrix is best and that it equals

𝑋̂𝑟 = 𝜎1𝑈1𝑉 ⊤
1 + 𝜎2𝑈2𝑉 ⊤

2 + ⋯ + 𝜎𝑟𝑈𝑟𝑉 ⊤
𝑟 (5.8)

This is a very powerful theorem that says that we can take our 𝑚 × 𝑛 matrix 𝑋 that in not full rank, and we can best
approximate it by a full rank 𝑝 × 𝑝 matrix through the SVD.
Moreover, if some of these 𝑝 singular values carry more information than others, and if we want to have the most amount
of information with the least amount of data, we can take 𝑟 leading singular values ordered by magnitude.
We’ll say more about this later when we present Principal Component Analysis.

You can read about the Eckart-Young theorem and some of its uses here.

We’ll make use of this theorem when we discuss principal components analysis (PCA) and also dynamic mode decom-
position (DMD).
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5.6 Full and Reduced SVD’s

Up to now we have described properties of a full SVD in which shapes of 𝑈 , Σ, and 𝑉 are (𝑚, 𝑚), (𝑚, 𝑛), (𝑛, 𝑛),
respectively.

There is an alternative bookkeeping convention called an economy or reduced SVD in which the shapes of 𝑈, Σ and 𝑉
are different from what they are in a full SVD.

Thus, note that because we assume that 𝑋 has rank 𝑝, there are only 𝑝 nonzero singular values, where 𝑝 = rank(𝑋) ≤
min (𝑚, 𝑛).
A reduced SVD uses this fact to express 𝑈 , Σ, and 𝑉 as matrices with shapes (𝑚, 𝑝), (𝑝, 𝑝), (𝑛, 𝑝).
You can read about reduced and full SVD here https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

For a full SVD,

𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

But not all these properties hold for a reduced SVD.

Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.

• In a tall-skinny case in which 𝑚 >> 𝑛, for a reduced SVD
𝑈𝑈⊤ ≠ 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 = 𝐼

• In a short-fat case in which 𝑚 << 𝑛, for a reduced SVD
𝑈𝑈⊤ = 𝐼 𝑈⊤𝑈 = 𝐼
𝑉 𝑉 ⊤ = 𝐼 𝑉 ⊤𝑉 ≠ 𝐼

When we study DynamicMode Decomposition below, we shall want to remember these properties when we use a reduced
SVD to compute some DMD representations.

Let’s do an exercise to compare full and reduced SVD’s.

To review,

• in a full SVD

– 𝑈 is 𝑚 × 𝑚
– Σ is 𝑚 × 𝑛
– 𝑉 is 𝑛 × 𝑛

• in a reduced SVD

– 𝑈 is 𝑚 × 𝑝
– Σ is 𝑝 × 𝑝
– 𝑉 is 𝑛 × 𝑝

First, let’s study a case in which 𝑚 = 5 > 𝑛 = 2.
(This is a small example of the tall-skinny case that will concern us when we study Dynamic Mode Decompositions
below.)
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import numpy as np
X = np.random.rand(5,2)
U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print('U, S, V =')
U, S, V

U, S, V =

(array([[-0.64, 0.33, -0.62, -0.27, 0.18],
[-0.29, -0.15, 0.13, -0.37, -0.86],
[-0.46, 0.4 , 0.76, -0.03, 0.21],
[-0.44, -0.18, -0.08, 0.85, -0.19],
[-0.33, -0.82, 0.12, -0.25, 0.38]]),

array([1.6 , 0.71]),
array([[-0.83, -0.56],

[ 0.56, -0.83]]))

print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array([[-0.64, 0.33],
[-0.29, -0.15],
[-0.46, 0.4 ],
[-0.44, -0.18],
[-0.33, -0.82]]),

array([1.6 , 0.71]),
array([[-0.83, -0.56],

[ 0.56, -0.83]]))

rr = np.linalg.matrix_rank(X)
print(f'rank of X = {rr}')

rank of X = 2

Properties:

• Where 𝑈 is constructed via a full SVD, 𝑈⊤𝑈 = 𝐼𝑚×𝑚 and 𝑈𝑈⊤ = 𝐼𝑚×𝑚

• Where ̂𝑈 is constructed via a reduced SVD, although ̂𝑈⊤ ̂𝑈 = 𝐼𝑝×𝑝, it happens that ̂𝑈 ̂𝑈⊤ ≠ 𝐼𝑚×𝑚

We illustrate these properties for our example with the following code cells.

UTU = U.T@U
UUT = U@U.T
print('UUT, UTU = ')
UUT, UTU

UUT, UTU =

(array([[ 1.00e+00, 1.03e-16, -3.31e-17, -3.53e-17, 5.11e-17],
[ 1.03e-16, 1.00e+00, 1.16e-16, -6.84e-17, -2.39e-16],
[-3.31e-17, 1.16e-16, 1.00e+00, -2.16e-17, 4.93e-17],

(continues on next page)
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[-3.53e-17, -6.84e-17, -2.16e-17, 1.00e+00, 4.12e-17],
[ 5.11e-17, -2.39e-16, 4.93e-17, 4.12e-17, 1.00e+00]]),

array([[ 1.00e+00, -2.00e-17, -4.37e-17, -4.23e-17, -5.27e-17],
[-2.00e-17, 1.00e+00, 8.52e-17, -1.22e-16, -3.31e-16],
[-4.37e-17, 8.52e-17, 1.00e+00, -2.00e-17, 7.58e-17],
[-4.23e-17, -1.22e-16, -2.00e-17, 1.00e+00, -5.75e-17],
[-5.27e-17, -3.31e-16, 7.58e-17, -5.75e-17, 1.00e+00]]))

UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.T@Uhat
print('UhatUhatT, UhatTUhat= ')
UhatUhatT, UhatTUhat

UhatUhatT, UhatTUhat=

(array([[ 0.51, 0.14, 0.42, 0.22, -0.06],
[ 0.14, 0.11, 0.07, 0.16, 0.22],
[ 0.42, 0.07, 0.37, 0.13, -0.18],
[ 0.22, 0.16, 0.13, 0.23, 0.29],
[-0.06, 0.22, -0.18, 0.29, 0.78]]),

array([[ 1.e+00, -2.e-17],
[-2.e-17, 1.e+00]]))

Remarks:

The cells above illustrate the application of the full_matrices=True and full_matrices=False options.
Using full_matrices=False returns a reduced singular value decomposition.

The full and reduced SVD’s both accurately decompose an 𝑚 × 𝑛 matrix 𝑋
When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties
of full and reduced SVD’s in such tall-skinny cases.

Now let’s turn to a short-fat case.

To illustrate this case, we’ll set 𝑚 = 2 < 5 = 𝑛 and compute both full and reduced SVD’s.

import numpy as np
X = np.random.rand(2,5)
U, S, V = np.linalg.svd(X,full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X,full_matrices=False) # economy SVD
print('U, S, V = ')
U, S, V

U, S, V =

(array([[ 0.71, -0.71],
[ 0.71, 0.71]]),

array([2. , 0.54]),
array([[ 0.45, 0.35, 0.63, 0.41, 0.34],

[ 0.04, 0.07, -0.11, 0.67, -0.73],
[-0.64, -0.14, 0.71, -0.09, -0.24],
[-0.11, -0.75, -0.05, 0.51, 0.39],
[-0.62, 0.54, -0.28, 0.34, 0.37]]))
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print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array([[ 0.71, -0.71],
[ 0.71, 0.71]]),

array([2. , 0.54]),
array([[ 0.45, 0.35, 0.63, 0.41, 0.34],

[ 0.04, 0.07, -0.11, 0.67, -0.73]]))

Let’s verify that our reduced SVD accurately represents 𝑋
SShat=np.diag(Shat)
np.allclose(X, Uhat@SShat@Vhat)

True

5.7 Polar Decomposition

A reduced singular value decomposition (SVD) of 𝑋 is related to a polar decomposition of 𝑋

𝑋 = 𝑆𝑄

where

𝑆 = 𝑈Σ𝑈⊤

𝑄 = 𝑈𝑉 ⊤

Here

• 𝑆 is an 𝑚 × 𝑚 symmetric matrix

• 𝑄 is an 𝑚 × 𝑛 orthogonal matrix

and in our reduced SVD

• 𝑈 is an 𝑚 × 𝑝 orthonormal matrix
• Σ is a 𝑝 × 𝑝 diagonal matrix
• 𝑉 is an 𝑛 × 𝑝 orthonormal

5.8 Application: Principal Components Analysis (PCA)

Let’s begin with a case in which 𝑛 >> 𝑚, so that we have many more individuals 𝑛 than attributes 𝑚.

The matrix 𝑋 is short and fat in an 𝑛 >> 𝑚 case as opposed to a tall and skinny case with 𝑚 >> 𝑛 to be discussed
later.

We regard 𝑋 as an 𝑚 × 𝑛 matrix of data:

𝑋 = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛]
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where for 𝑗 = 1, … , 𝑛 the column vector 𝑋𝑗 =
⎡
⎢⎢
⎣

𝑥1𝑗
𝑥2𝑗

⋮
𝑥𝑚𝑗

⎤
⎥⎥
⎦
is a vector of observations on variables

⎡
⎢⎢
⎣

𝑋1
𝑋2
⋮

𝑋𝑚

⎤
⎥⎥
⎦
.

In a time series setting, we would think of columns 𝑗 as indexing different times at which random variables are observed,
while rows index different random variables.

In a cross-section setting, we would think of columns 𝑗 as indexing different individuals for which random variables are
observed, while rows index different attributes.

As we have seen before, the SVD is a way to decompose a matrix into useful components, just like polar decomposition,
eigendecomposition, and many others.

PCA, on the other hand, is a method that builds on the SVD to analyze data. The goal is to apply certain steps, to help
better visualize patterns in data, using statistical tools to capture the most important patterns in data.

Step 1: Standardize the data:

Because our data matrix may hold variables of different units and scales, we first need to standardize the data.

First by computing the average of each row of 𝑋.

̄𝑋𝑖 = 1
𝑛

𝑛
∑
𝑗=1

𝑥𝑖𝑗

We then create an average matrix out of these means:

𝑋̄ =
⎡
⎢⎢
⎣

̄𝑋1̄𝑋2
…

̄𝑋𝑚

⎤
⎥⎥
⎦

[1 ∣ 1 ∣ ⋯ ∣ 1]

And subtract out of the original matrix to create a mean centered matrix:

𝐵 = 𝑋 − 𝑋̄

Step 2: Compute the covariance matrix:

Then because we want to extract the relationships between variables rather than just their magnitude, in other words, we
want to know how they can explain each other, we compute the covariance matrix of 𝐵.

𝐶 = 1
𝑛𝐵𝐵⊤

Step 3: Decompose the covariance matrix and arrange the singular values:

Since the matrix 𝐶 is positive definite, we can eigendecompose it, find its eigenvalues, and rearrange the eigenvalue and
eigenvector matrices in a decreasing order.

The eigendecomposition of 𝐶 can be found by decomposing 𝐵 instead. Since 𝐵 is not a square matrix, we obtain an
SVD of 𝐵:

𝐵𝐵⊤ = 𝑈Σ𝑉 ⊤(𝑈Σ𝑉 ⊤)⊤

= 𝑈Σ𝑉 ⊤𝑉 Σ⊤𝑈⊤

= 𝑈ΣΣ⊤𝑈⊤

𝐶 = 1
𝑛𝑈ΣΣ⊤𝑈⊤

We can then rearrange the columns in the matrices 𝑈 and Σ so that the singular values are in decreasing order.
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Step 4: Select singular values, (optional) truncate the rest:

We can now decide how many singular values to pick, based on how much variance you want to retain. (e.g., retaining
95% of the total variance).

We can obtain the percentage by calculating the variance contained in the leading 𝑟 factors divided by the variance in
total:

∑𝑟
𝑖=1 𝜎2

𝑖
∑𝑝

𝑖=1 𝜎2
𝑖

Step 5: Create the Score Matrix:

𝑇 = 𝐵𝑉
= 𝑈Σ𝑉 ⊤𝑉
= 𝑈Σ

5.9 Relationship of PCA to SVD

To relate an SVD to a PCA of data set 𝑋, first construct the SVD of the data matrix 𝑋:

Let’s assume that sample means of all variables are zero, so we don’t need to standardize our matrix.

𝑋 = 𝑈Σ𝑉 ⊤ = 𝜎1𝑈1𝑉 ⊤
1 + 𝜎2𝑈2𝑉 ⊤

2 + ⋯ + 𝜎𝑝𝑈𝑝𝑉 ⊤
𝑝 (5.9)

where

𝑈 = [𝑈1|𝑈2| … |𝑈𝑚]

𝑉 ⊤ =
⎡
⎢⎢
⎣

𝑉 ⊤
1

𝑉 ⊤
2

…
𝑉 ⊤

𝑛

⎤
⎥⎥
⎦

In equation (5.9), each of the 𝑚 × 𝑛 matrices 𝑈𝑗𝑉 ⊤
𝑗 is evidently of rank 1.

Thus, we have

𝑋 = 𝜎1
⎡
⎢⎢
⎣

𝑈11𝑉 ⊤
1

𝑈21𝑉 ⊤
1

⋯
𝑈𝑚1𝑉 ⊤

1

⎤
⎥⎥
⎦

+ 𝜎2
⎡
⎢⎢
⎣

𝑈12𝑉 ⊤
2

𝑈22𝑉 ⊤
2

⋯
𝑈𝑚2𝑉 ⊤

2

⎤
⎥⎥
⎦

+ … + 𝜎𝑝
⎡
⎢⎢
⎣

𝑈1𝑝𝑉 ⊤
𝑝

𝑈2𝑝𝑉 ⊤
𝑝

⋯
𝑈𝑚𝑝𝑉 ⊤

𝑝

⎤
⎥⎥
⎦

(5.10)

Here is how we would interpret the objects in the matrix equation (5.10) in a time series context:

• for each 𝑘 = 1, … , 𝑛, the object {𝑉𝑘𝑗}𝑛
𝑗=1 is a time series for the 𝑘th principal component

• 𝑈𝑗 =
⎡
⎢⎢
⎣

𝑈1𝑘
𝑈2𝑘
…

𝑈𝑚𝑘

⎤
⎥⎥
⎦

𝑘 = 1, … , 𝑚 is a vector of loadings of variables 𝑋𝑖 on the 𝑘th principal component, 𝑖 = 1, … , 𝑚

• 𝜎𝑘 for each 𝑘 = 1, … , 𝑝 is the strength of 𝑘th principal component, where strength means contribution to the
overall covariance of 𝑋.
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5.10 PCA with Eigenvalues and Eigenvectors

We now use an eigen decomposition of a sample covariance matrix to do PCA.

Let 𝑋𝑚×𝑛 be our 𝑚 × 𝑛 data matrix.

Let’s assume that sample means of all variables are zero.

We can assure this by pre-processing the data by subtracting sample means.

Define a sample covariance matrix Ω as

Ω = 𝑋𝑋⊤

Then use an eigen decomposition to represent Ω as follows:

Ω = 𝑃Λ𝑃 ⊤

Here

• 𝑃 is 𝑚 × 𝑚 matrix of eigenvectors of Ω
• Λ is a diagonal matrix of eigenvalues of Ω

We can then represent 𝑋 as

𝑋 = 𝑃𝜖

where

𝜖 = 𝑃 −1𝑋

and

𝜖𝜖⊤ = Λ.

We can verify that

𝑋𝑋⊤ = 𝑃Λ𝑃 ⊤. (5.11)

It follows that we can represent the data matrix 𝑋 as

𝑋 = [𝑋1|𝑋2| … |𝑋𝑚] = [𝑃1|𝑃2| … |𝑃𝑚]
⎡
⎢⎢
⎣

𝜖1
𝜖2
…
𝜖𝑚

⎤
⎥⎥
⎦

= 𝑃1𝜖1 + 𝑃2𝜖2 + … + 𝑃𝑚𝜖𝑚

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that
𝜖2

𝑗 = 𝜆𝑗 ≡ 𝜎2
𝑗 .

Now define ̃𝜖𝑗 = 𝜖𝑗
√𝜆𝑗

, which implies that ̃𝜖𝑗 ̃𝜖⊤
𝑗 = 1.

Therefore

𝑋 = √𝜆1𝑃1 ̃𝜖1 + √𝜆2𝑃2 ̃𝜖2 + … + √𝜆𝑚𝑃𝑚 ̃𝜖𝑚
= 𝜎1𝑃1 ̃𝜖2 + 𝜎2𝑃2 ̃𝜖2 + … + 𝜎𝑚𝑃𝑚 ̃𝜖𝑚,

which agrees with

𝑋 = 𝜎1𝑈1𝑉1
𝑇 + 𝜎2𝑈2𝑉2

𝑇 + … + 𝜎𝑟𝑈𝑟𝑉𝑟
𝑇

provided that we set
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• 𝑈𝑗 = 𝑃𝑗 (a vector of loadings of variables on principal component 𝑗)

• 𝑉𝑘
𝑇 = ̃𝜖𝑘 (the 𝑘th principal component)

Because there are alternative algorithms for computing 𝑃 and 𝑈 for given a data matrix 𝑋, depending on algorithms
used, we might have sign differences or different orders of eigenvectors.

We can resolve such ambiguities about 𝑈 and 𝑃 by

1. sorting eigenvalues and singular values in descending order

2. imposing positive diagonals on 𝑃 and 𝑈 and adjusting signs in 𝑉 ⊤ accordingly

5.11 Connections

To pull things together, it is useful to assemble and compare some formulas presented above.

First, consider an SVD of an 𝑚 × 𝑛 matrix:

𝑋 = 𝑈Σ𝑉 ⊤

Compute:

𝑋𝑋⊤ = 𝑈Σ𝑉 ⊤𝑉 Σ⊤𝑈⊤

≡ 𝑈ΣΣ⊤𝑈⊤

≡ 𝑈Λ𝑈⊤
(5.12)

Compare representation (5.12) with equation (5.11) above.

Evidently, 𝑈 in the SVD is the matrix 𝑃 of eigenvectors of 𝑋𝑋⊤ and ΣΣ⊤ is the matrix Λ of eigenvalues.

Second, let’s compute

𝑋⊤𝑋 = 𝑉 Σ⊤𝑈⊤𝑈Σ𝑉 ⊤

= 𝑉 Σ⊤Σ𝑉 ⊤

Thus, the matrix 𝑉 in the SVD is the matrix of eigenvectors of 𝑋⊤𝑋
Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix

𝑋𝑋⊤ = 𝑃Λ𝑃 ⊤

where 𝑃 is an orthogonal matrix.

Further, from the SVD of 𝑋, we know that

𝑋𝑋⊤ = 𝑈ΣΣ⊤𝑈⊤

where 𝑈 is an orthogonal matrix.

Thus, 𝑃 = 𝑈 and we have the representation of 𝑋

𝑋 = 𝑃𝜖 = 𝑈Σ𝑉 ⊤

It follows that

𝑈⊤𝑋 = Σ𝑉 ⊤ = 𝜖

82 Chapter 5. Singular Value Decomposition (SVD)



Intermediate Quantitative Economics with Python

Note that the preceding implies that

𝜖𝜖⊤ = Σ𝑉 ⊤𝑉 Σ⊤ = ΣΣ⊤ = Λ,
so that everything fits together.

Below we define a class DecomAnalysis that wraps PCA and SVD for a given a data matrix X.

class DecomAnalysis:
"""
A class for conducting PCA and SVD.
X: data matrix
r_component: chosen rank for best approximation
"""

def __init__(self, X, r_component=None):

self.X = X

self.Ω = (X @ X.T)

self.m, self.n = X.shape
self.r = LA.matrix_rank(X)

if r_component:
self.r_component = r_component

else:
self.r_component = self.m

def pca(self):

𝜆, P = LA.eigh(self.Ω) # columns of P are eigenvectors

ind = sorted(range(𝜆.size), key=lambda x: 𝜆[x], reverse=True)

# sort by eigenvalues
self.𝜆 = 𝜆[ind]
P = P[:, ind]
self.P = P @ diag_sign(P)

self.Λ = np.diag(self.𝜆)

self.explained_ratio_pca = np.cumsum(self.𝜆) / self.𝜆.sum()

# compute the N by T matrix of principal components
self.𝜖 = self.P.T @ self.X

P = self.P[:, :self.r_component]
𝜖 = self.𝜖[:self.r_component, :]

# transform data
self.X_pca = P @ 𝜖

def svd(self):

U, 𝜎, VT = LA.svd(self.X)

ind = sorted(range(𝜎.size), key=lambda x: 𝜎[x], reverse=True)

(continues on next page)
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(continued from previous page)

# sort by eigenvalues
d = min(self.m, self.n)

self.𝜎 = 𝜎[ind]
U = U[:, ind]
D = diag_sign(U)
self.U = U @ D
VT[:d, :] = D @ VT[ind, :]
self.VT = VT

self.Σ = np.zeros((self.m, self.n))
self.Σ[:d, :d] = np.diag(self.𝜎)

𝜎_sq = self.𝜎 ** 2
self.explained_ratio_svd = np.cumsum(𝜎_sq) / 𝜎_sq.sum()

# slicing matrices by the number of components to use
U = self.U[:, :self.r_component]
Σ = self.Σ[:self.r_component, :self.r_component]
VT = self.VT[:self.r_component, :]

# transform data
self.X_svd = U @ Σ @ VT

def fit(self, r_component):

# pca
P = self.P[:, :r_component]
𝜖 = self.𝜖[:r_component, :]

# transform data
self.X_pca = P @ 𝜖

# svd
U = self.U[:, :r_component]
Σ = self.Σ[:r_component, :r_component]
VT = self.VT[:r_component, :]

# transform data
self.X_svd = U @ Σ @ VT

def diag_sign(A):
"Compute the signs of the diagonal of matrix A"

D = np.diag(np.sign(np.diag(A)))

return D

We also define a function that prints out information so that we can compare decompositions obtained by different algo-
rithms.

def compare_pca_svd(da):
"""
Compare the outcomes of PCA and SVD.
"""

da.pca()
(continues on next page)
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(continued from previous page)

da.svd()

print('Eigenvalues and Singular values\n')
print(f'λ = {da.λ}\n')
print(f'σ^2 = {da.σ**2}\n')
print('\n')

# loading matrices
fig, axs = plt.subplots(1, 2, figsize=(14, 5))
plt.suptitle('loadings')
axs[0].plot(da.P.T)
axs[0].set_title('P')
axs[0].set_xlabel('m')
axs[1].plot(da.U.T)
axs[1].set_title('U')
axs[1].set_xlabel('m')
plt.show()

# principal components
fig, axs = plt.subplots(1, 2, figsize=(14, 5))
plt.suptitle('principal components')
axs[0].plot(da.ε.T)
axs[0].set_title('ε')
axs[0].set_xlabel('n')
axs[1].plot(da.VT[:da.r, :].T * np.sqrt(da.λ))
axs[1].set_title(r'$V^\top *\sqrt{\lambda}$')
axs[1].set_xlabel('n')
plt.show()

5.12 Exercises

Exercise 5.12.1

In Ordinary Least Squares (OLS), we learn to compute ̂𝛽 = (𝑋⊤𝑋)−1𝑋⊤𝑦, but there are cases such as when we
have colinearity or an underdetermined system: short fat matrix.

In these cases, the (𝑋⊤𝑋) matrix is not not invertible (its determinant is zero) or ill-conditioned (its determinant is
very close to zero).

What we can do instead is to create what is called a pseudoinverse, a full rank approximation of the inverted matrix
so we can compute ̂𝛽 with it.

Thinking in terms of the Eckart-Young theorem, build the pseudoinverse matrix 𝑋+ and use it to compute ̂𝛽.

Solution to Exercise 5.12.1

We can use SVD to compute the pseudoinverse:

𝑋 = 𝑈Σ𝑉 ⊤
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inverting 𝑋, we have:

𝑋+ = 𝑉 Σ+𝑈⊤

where:

Σ+ =
⎡
⎢⎢⎢⎢
⎣

1
𝜎1

0 ⋯ 0 0
0 1

𝜎2
⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1

𝜎𝑝
0

0 0 ⋯ 0 0

⎤
⎥⎥⎥⎥
⎦

and finally:

̂𝛽 = 𝑋+𝑦 = 𝑉 Σ+𝑈⊤𝑦

For an example PCA applied to analyzing the structure of intelligence tests see this lecture Multivariable Normal Distri-
bution.

Look at parts of that lecture that describe and illustrate the classic factor analysis model.

As mentioned earlier, in a sequel to this lecture about Dynamic Mode Decompositions, we’ll describe how SVD’s provide
ways rapidly to compute reduced-order approximations to first-order Vector Autoregressions (VARs).
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CHAPTER

SIX

VARS AND DMDS

This lecture applies computational methods that we learned about in this lecture Singular Value Decomposition to

• first-order vector autoregressions (VARs)

• dynamic mode decompositions (DMDs)

• connections between DMDs and first-order VARs

6.1 First-Order Vector Autoregressions

We want to fit a first-order vector autoregression

𝑋𝑡+1 = 𝐴𝑋𝑡 + 𝐶𝜖𝑡+1, 𝜖𝑡+1 ⟂ 𝑋𝑡 (6.1)

where 𝜖𝑡+1 is the time 𝑡 + 1 component of a sequence of i.i.d. 𝑚 × 1 random vectors with mean vector zero and identity
covariance matrix and where the 𝑚 × 1 vector 𝑋𝑡 is

𝑋𝑡 = [𝑋1,𝑡 𝑋2,𝑡 ⋯ 𝑋𝑚,𝑡]
⊤ (6.2)

and where ⋅⊤ again denotes complex transposition and 𝑋𝑖,𝑡 is variable 𝑖 at time 𝑡.
We want to fit equation (6.1).

Our data are organized in an 𝑚 × (𝑛 + 1) matrix 𝑋̃

𝑋̃ = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛 ∣ 𝑋𝑛+1]

where for 𝑡 = 1, … , 𝑛 + 1, the 𝑚 × 1 vector 𝑋𝑡 is given by (6.2).

Thus, we want to estimate a system (6.1) that consists of 𝑚 least squares regressions of everything on one lagged value
of everything.

The 𝑖’th equation of (6.1) is a regression of 𝑋𝑖,𝑡+1 on the vector 𝑋𝑡.

We proceed as follows.

From 𝑋̃, we form two 𝑚 × 𝑛 matrices

𝑋 = [𝑋1 ∣ 𝑋2 ∣ ⋯ ∣ 𝑋𝑛]

and

𝑋′ = [𝑋2 ∣ 𝑋3 ∣ ⋯ ∣ 𝑋𝑛+1]

Here ′ is part of the name of the matrix 𝑋′ and does not indicate matrix transposition.
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We use ⋅⊤ to denote matrix transposition or its extension to complex matrices.

In forming 𝑋 and 𝑋′, we have in each case dropped a column from 𝑋̃, the last column in the case of 𝑋, and the first
column in the case of 𝑋′.

Evidently, 𝑋 and 𝑋′ are both 𝑚 × 𝑛 matrices.

We denote the rank of 𝑋 as 𝑝 ≤ min(𝑚, 𝑛).
Two cases that interest us are

• 𝑛 >> 𝑚, so that we have many more time series observations 𝑛 than variables 𝑚
• 𝑚 >> 𝑛, so that we have many more variables 𝑚 than time series observations 𝑛

At a general level that includes both of these special cases, a common formula describes the least squares estimator ̂𝐴 of
𝐴.
But important details differ.

The common formula is

̂𝐴 = 𝑋′𝑋+ (6.3)

where 𝑋+ is the pseudo-inverse of 𝑋.

To read about theMoore-Penrose pseudo-inverse please see Moore-Penrose pseudo-inverse

Applicable formulas for the pseudo-inverse differ for our two cases.

Short-Fat Case:

When 𝑛 >> 𝑚, so that we have many more time series observations 𝑛 than variables 𝑚 and when 𝑋 has linearly
independent rows, 𝑋𝑋⊤ has an inverse and the pseudo-inverse 𝑋+ is

𝑋+ = 𝑋⊤(𝑋𝑋⊤)−1

Here 𝑋+ is a right-inverse that verifies 𝑋𝑋+ = 𝐼𝑚×𝑚.

In this case, our formula (6.3) for the least-squares estimator of the populationmatrix of regression coefficients𝐴 becomes

̂𝐴 = 𝑋′𝑋⊤(𝑋𝑋⊤)−1 (6.4)

This formula for least-squares regression coefficients is widely used in econometrics.

It is used to estimate vector autorgressions.

The right side of formula (6.4) is proportional to the empirical cross second moment matrix of 𝑋𝑡+1 and 𝑋𝑡 times the
inverse of the second moment matrix of 𝑋𝑡.

Tall-Skinny Case:

When 𝑚 >> 𝑛, so that we have many more attributes 𝑚 than time series observations 𝑛 and when 𝑋 has linearly
independent columns, 𝑋⊤𝑋 has an inverse and the pseudo-inverse 𝑋+ is

𝑋+ = (𝑋⊤𝑋)−1𝑋⊤

Here 𝑋+ is a left-inverse that verifies 𝑋+𝑋 = 𝐼𝑛×𝑛.

In this case, our formula (6.3) for a least-squares estimator of 𝐴 becomes

̂𝐴 = 𝑋′(𝑋⊤𝑋)−1𝑋⊤ (6.5)

Please compare formulas (6.4) and (6.5) for ̂𝐴.
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Here we are especially interested in formula (6.5).

The 𝑖th row of ̂𝐴 is an 𝑚 × 1 vector of regression coefficients of 𝑋𝑖,𝑡+1 on 𝑋𝑗,𝑡, 𝑗 = 1, … , 𝑚.

If we use formula (6.5) to calculate ̂𝐴𝑋 we find that

̂𝐴𝑋 = 𝑋′

so that the regression equation fits perfectly.

This is a typical outcome in an underdetermined least-squares model.

To reiterate, in the tall-skinny case (described in Singular Value Decomposition) in which we have a number 𝑛 of obser-
vations that is small relative to the number 𝑚 of attributes that appear in the vector 𝑋𝑡, we want to fit equation (6.1).

We confront the facts that the least squares estimator is underdetermined and that the regression equation fits perfectly.

To proceed, we’ll want efficiently to calculate the pseudo-inverse 𝑋+.

The pseudo-inverse 𝑋+ will be a component of our estimator of 𝐴.
As our estimator ̂𝐴 of 𝐴 we want to form an 𝑚 × 𝑚 matrix that solves the least-squares best-fit problem

̂𝐴 = argmin ̌𝐴||𝑋′ − ̌𝐴𝑋||𝐹 (6.6)

where || ⋅ ||𝐹 denotes the Frobenius (or Euclidean) norm of a matrix.

The Frobenius norm is defined as

||𝐴||𝐹 =
√√√
⎷

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

|𝐴𝑖𝑗|2

The minimizer of the right side of equation (6.6) is

̂𝐴 = 𝑋′𝑋+ (6.7)

where the (possibly huge) 𝑛 × 𝑚 matrix 𝑋+ = (𝑋⊤𝑋)−1𝑋⊤ is again a pseudo-inverse of 𝑋.

For some situations that we are interested in, 𝑋⊤𝑋 can be close to singular, a situation that makes some numerical
algorithms be inaccurate.

To acknowledge that possibility, we’ll use efficient algorithms to constructing a reduced-rank approximation of ̂𝐴 in
formula (6.5).

Such an approximation to our vector autoregression will no longer fit perfectly.

The 𝑖th row of ̂𝐴 is an 𝑚 × 1 vector of regression coefficients of 𝑋𝑖,𝑡+1 on 𝑋𝑗,𝑡, 𝑗 = 1, … , 𝑚.

An efficient way to compute the pseudo-inverse 𝑋+ is to start with a singular value decomposition

𝑋 = 𝑈Σ𝑉 ⊤ (6.8)

where we remind ourselves that for a reduced SVD, 𝑋 is an 𝑚 × 𝑛 matrix of data, 𝑈 is an 𝑚 × 𝑝 matrix, Σ is a 𝑝 × 𝑝
matrix, and 𝑉 is an 𝑛 × 𝑝 matrix.
We can efficiently construct the pertinent pseudo-inverse 𝑋+ by recognizing the following string of equalities.

𝑋+ = (𝑋⊤𝑋)−1𝑋⊤

= (𝑉 Σ𝑈⊤𝑈Σ𝑉 ⊤)−1𝑉 Σ𝑈⊤

= (𝑉 ΣΣ𝑉 ⊤)−1𝑉 Σ𝑈⊤

= 𝑉 Σ−1Σ−1𝑉 ⊤𝑉 Σ𝑈⊤

= 𝑉 Σ−1𝑈⊤

(6.9)
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(Since we are in the𝑚 >> 𝑛 case in which 𝑉 ⊤𝑉 = 𝐼𝑝×𝑝 in a reduced SVD, we can use the preceding string of equalities
for a reduced SVD as well as for a full SVD.)

Thus, we shall construct a pseudo-inverse 𝑋+ of 𝑋 by using a singular value decomposition of 𝑋 in equation (6.8) to
compute

𝑋+ = 𝑉 Σ−1𝑈⊤ (6.10)

where the matrix Σ−1 is constructed by replacing each non-zero element of Σ with 𝜎−1
𝑗 .

We can use formula (6.10) together with formula (6.7) to compute the matrix ̂𝐴 of regression coefficients.

Thus, our estimator ̂𝐴 = 𝑋′𝑋+ of the 𝑚 × 𝑚 matrix of coefficients 𝐴 is

̂𝐴 = 𝑋′𝑉 Σ−1𝑈⊤ (6.11)

6.2 Dynamic Mode Decomposition (DMD)

We turn to the 𝑚 >> 𝑛 tall and skinny case associated with Dynamic Mode Decomposition.

Here an 𝑚 × 𝑛 + 1 data matrix 𝑋̃ contains many more attributes (or variables) 𝑚 than time periods 𝑛 + 1.
Dynamic mode decomposition was introduced by [Schmid, 2010],

You can read about Dynamic Mode Decomposition [Kutz et al., 2016] and [Brunton and Kutz, 2019] (section 7.2).

DynamicModeDecomposition (DMD) computes a rank 𝑟 < 𝑝 approximation to the least squares regression coefficients
̂𝐴 described by formula (6.11).

We’ll build up gradually to a formulation that is useful in applications.

We’ll do this by describing three alternative representations of our first-order linear dynamic system, i.e., our vector
autoregression.

Guide to three representations: In practice, we’ll mainly be interested in Representation 3.

We use the first two representations to present some useful intermediate steps that help us to appreciate what is under the
hood of Representation 3.

In applications, we’ll use only a small subset of DMD modes to approximate dynamics.

We use such a small subset of DMD modes to construct a reduced-rank approximation to 𝐴.
To do that, we’ll want to use the reduced SVD’s affiliated with representation 3, not the full SVD’s affiliated with repre-
sentations 1 and 2.

Guide to impatient reader: In our applications, we’ll be using Representation 3.

You might want to skip the stage-setting representations 1 and 2 on first reading.

6.3 Representation 1

In this representation, we shall use a full SVD of 𝑋.

We use the 𝑚 columns of 𝑈 , and thus the 𝑚 rows of 𝑈⊤, to define a 𝑚 × 1 vector ̃𝑏𝑡 as

̃𝑏𝑡 = 𝑈⊤𝑋𝑡. (6.12)
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The original data 𝑋𝑡 can be represented as

𝑋𝑡 = 𝑈 ̃𝑏𝑡 (6.13)

(Here we use 𝑏 to remind ourselves that we are creating a basis vector.)
Since we are now using a full SVD, 𝑈𝑈⊤ = 𝐼𝑚×𝑚.

So it follows from equation (6.12) that we can reconstruct 𝑋𝑡 from ̃𝑏𝑡.

In particular,

• Equation (6.12) serves as an encoder that rotates the 𝑚 × 1 vector 𝑋𝑡 to become an 𝑚 × 1 vector 𝑏̃𝑡

• Equation (6.13) serves as a decoder that reconstructs the 𝑚 × 1 vector 𝑋𝑡 by rotating the 𝑚 × 1 vector ̃𝑏𝑡

Define a transition matrix for an 𝑚 × 1 basis vector ̃𝑏𝑡 by

̃𝐴 = 𝑈⊤ ̂𝐴𝑈 (6.14)

We can recover ̂𝐴 from

̂𝐴 = 𝑈 ̃𝐴𝑈⊤

Dynamics of the 𝑚 × 1 basis vector ̃𝑏𝑡 are governed by

̃𝑏𝑡+1 = ̃𝐴 ̃𝑏𝑡

To construct forecasts 𝑋𝑡 of future values of 𝑋𝑡 conditional on 𝑋1, we can apply decoders (i.e., rotators) to both sides
of this equation and deduce

𝑋𝑡+1 = 𝑈 ̃𝐴𝑡𝑈⊤𝑋1

where we use 𝑋𝑡+1, 𝑡 ≥ 1 to denote a forecast.

6.4 Representation 2

This representation is related to one originally proposed by [Schmid, 2010].

It can be regarded as an intermediate step on the way to obtaining a related representation 3 to be presented later

As with Representation 1, we continue to

• use a full SVD and not a reduced SVD

As we observed and illustrated in a lecture about the Singular Value Decomposition

• (a) for a full SVD 𝑈𝑈⊤ = 𝐼𝑚×𝑚 and 𝑈⊤𝑈 = 𝐼𝑝×𝑝 are both identity matrices

• (b) for a reduced SVD of 𝑋, 𝑈⊤𝑈 is not an identity matrix.

As we shall see later, a full SVD is too confining for what we ultimately want to do, namely, cope with situations in which
𝑈⊤𝑈 is not an identity matrix because we use a reduced SVD of 𝑋.

But for now, let’s proceed under the assumption that we are using a full SVD so that requirements (a) and (b) are both
satisfied.

Form an eigendecomposition of the 𝑚 × 𝑚 matrix ̃𝐴 = 𝑈⊤ ̂𝐴𝑈 defined in equation (6.14):

̃𝐴 = 𝑊Λ𝑊 −1 (6.15)
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where Λ is a diagonal matrix of eigenvalues and 𝑊 is an 𝑚 × 𝑚 matrix whose columns are eigenvectors corresponding
to rows (eigenvalues) in Λ.
When 𝑈𝑈⊤ = 𝐼𝑚×𝑚, as is true with a full SVD of 𝑋, it follows that

̂𝐴 = 𝑈 ̃𝐴𝑈⊤ = 𝑈𝑊Λ𝑊 −1𝑈⊤ (6.16)

According to equation (6.16), the diagonal matrix Λ contains eigenvalues of ̂𝐴 and corresponding eigenvectors of ̂𝐴 are
columns of the matrix 𝑈𝑊 .

It follows that the systematic (i.e., not random) parts of the𝑋𝑡 dynamics captured by our first-order vector autoregressions
are described by

𝑋𝑡+1 = 𝑈𝑊Λ𝑊 −1𝑈⊤𝑋𝑡

Multiplying both sides of the above equation by 𝑊 −1𝑈⊤ gives

𝑊 −1𝑈⊤𝑋𝑡+1 = Λ𝑊 −1𝑈⊤𝑋𝑡

or

̂𝑏𝑡+1 = Λ ̂𝑏𝑡

where our encoder is

𝑏̂𝑡 = 𝑊 −1𝑈⊤𝑋𝑡

and our decoder is

𝑋𝑡 = 𝑈𝑊 ̂𝑏𝑡

We can use this representation to construct a predictor 𝑋𝑡+1 of 𝑋𝑡+1 conditional on 𝑋1 via:

𝑋𝑡+1 = 𝑈𝑊Λ𝑡𝑊 −1𝑈⊤𝑋1 (6.17)

In effect, [Schmid, 2010] defined an 𝑚 × 𝑚 matrix Φ𝑠 as

Φ𝑠 = 𝑈𝑊 (6.18)

and a generalized inverse

Φ+
𝑠 = 𝑊 −1𝑈⊤ (6.19)

[Schmid, 2010] then represented equation (6.17) as

𝑋𝑡+1 = Φ𝑠Λ𝑡Φ+
𝑠 𝑋1 (6.20)

Components of the basis vector ̂𝑏𝑡 = 𝑊 −1𝑈⊤𝑋𝑡 ≡ Φ+
𝑠 𝑋𝑡 are

DMD projected modes.

To understand why they are called projected modes, notice that

Φ+
𝑠 = (Φ⊤

𝑠 Φ𝑠)−1Φ⊤
𝑠

so that the 𝑚 × 𝑝 matrix
̂𝑏 = Φ+

𝑠 𝑋
is a matrix of regression coefficients of the 𝑚 × 𝑛 matrix 𝑋 on the 𝑚 × 𝑝 matrix Φ𝑠.

We’ll say more about this interpretation in a related context when we discuss representation 3, which was suggested by
Tu et al. [Tu et al., 2014].

It is more appropriate to use representation 3 when, as is often the case in practice, we want to use a reduced SVD.
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6.5 Representation 3

Departing from the procedures used to construct Representations 1 and 2, each of which deployed a full SVD, we now
use a reduced SVD.

Again, we let 𝑝 ≤ min(𝑚, 𝑛) be the rank of 𝑋.

Construct a reduced SVD

𝑋 = ̃𝑈Σ̃ ̃𝑉 ⊤,

where now ̃𝑈 is 𝑚 × 𝑝, Σ̃ is 𝑝 × 𝑝, and ̃𝑉 ⊤ is 𝑝 × 𝑛.
Our minimum-norm least-squares approximator of 𝐴 now has representation

̂𝐴 = 𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ (6.21)

Computing Dominant Eigenvectors of ̂𝐴
We begin by paralleling a step used to construct Representation 1, define a transition matrix for a rotated 𝑝 × 1 state ̃𝑏𝑡
by

̃𝐴 = ̃𝑈⊤ ̂𝐴 ̃𝑈 (6.22)

Interpretation as projection coefficients

[Brunton and Kutz, 2022] remark that ̃𝐴 can be interpreted in terms of a projection of ̂𝐴 onto the 𝑝 modes in ̃𝑈 .

To verify this, first note that, because ̃𝑈⊤ ̃𝑈 = 𝐼 , it follows that

̃𝐴 = ̃𝑈⊤ ̂𝐴 ̃𝑈 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ ̃𝑈 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ (6.23)

Next, we’ll just compute the regression coefficients in a projection of ̂𝐴 on ̃𝑈 using a standard least-squares formula

( ̃𝑈⊤ ̃𝑈)−1 ̃𝑈⊤ ̂𝐴 = ( ̃𝑈⊤ ̃𝑈)−1 ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤ = ̃𝐴.

Thus, we have verified that ̃𝐴 is a least-squares projection of ̂𝐴 onto ̃𝑈 .

An Inverse Challenge

Because we are using a reduced SVD, ̃𝑈 ̃𝑈⊤ ≠ 𝐼 .
Consequently,

̂𝐴 ≠ ̃𝑈 ̃𝐴 ̃𝑈⊤,

so we can’t simply recover ̂𝐴 from ̃𝐴 and ̃𝑈 .

A Blind Alley

We can start by hoping for the best and proceeding to construct an eigendecomposition of the 𝑝 × 𝑝 matrix ̃𝐴:

̃𝐴 = 𝑊̃Λ𝑊̃ −1 (6.24)

where Λ is a diagonal matrix of 𝑝 eigenvalues and the columns of 𝑊̃ are corresponding eigenvectors.

Mimicking our procedure in Representation 2, we cross our fingers and compute an 𝑚 × 𝑝 matrix

Φ̃𝑠 = ̃𝑈𝑊̃ (6.25)

6.5. Representation 3 93



Intermediate Quantitative Economics with Python

that corresponds to (6.18) for a full SVD.

At this point, where ̂𝐴 is given by formula (6.21) it is interesting to compute ̂𝐴Φ̃𝑠:

̂𝐴Φ̃𝑠 = (𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤)( ̃𝑈𝑊̃ )
= 𝑋′ ̃𝑉 Σ̃−1𝑊̃
≠ ( ̃𝑈𝑊̃ )Λ
= Φ̃𝑠Λ

That ̂𝐴Φ̃𝑠 ≠ Φ̃𝑠Λ means that, unlike the corresponding situation in Representation 2, columns of Φ̃𝑠 = ̃𝑈𝑊̃ are not
eigenvectors of ̂𝐴 corresponding to eigenvalues on the diagonal of matix Λ.
An Approach That Works

Continuing our quest for eigenvectors of ̂𝐴 that we can compute with a reduced SVD, let’s define an 𝑚 × 𝑝 matrix Φ as

Φ ≡ ̂𝐴Φ̃𝑠 = 𝑋′ ̃𝑉 Σ̃−1𝑊̃ (6.26)

It turns out that columns of Φ are eigenvectors of ̂𝐴.
This is a consequence of a result established by Tu et al. [Tu et al., 2014] that we now present.

Proposition The 𝑝 columns of Φ are eigenvectors of ̂𝐴.
Proof: From formula (6.26) we have

̂𝐴Φ = (𝑋′ ̃𝑉 Σ̃−1 ̃𝑈⊤)(𝑋′ ̃𝑉 Σ−1𝑊̃ )
= 𝑋′ ̃𝑉 Σ̃−1 ̃𝐴𝑊̃
= 𝑋′ ̃𝑉 Σ̃−1𝑊̃Λ
= ΦΛ

so that

̂𝐴Φ = ΦΛ. (6.27)

Let 𝜙𝑖 be the 𝑖th column of Φ and 𝜆𝑖 be the corresponding 𝑖 eigenvalue of ̃𝐴 from decomposition (6.24).

Equating the 𝑚 × 1 vectors that appear on the two sides of equation (6.27) gives

̂𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖.

This equation confirms that 𝜙𝑖 is an eigenvector of ̂𝐴 that corresponds to eigenvalue 𝜆𝑖 of both ̃𝐴 and ̂𝐴.
This concludes the proof.

Also see [Brunton and Kutz, 2022] (p. 238)

6.5.1 Decoder of 𝑏̌ as a linear projection

From eigendecomposition (6.27) we can represent ̂𝐴 as

̂𝐴 = ΦΛΦ+. (6.28)

From formula (6.28) we can deduce dynamics of the 𝑝 × 1 vector ̌𝑏𝑡:

̌𝑏𝑡+1 = Λ ̌𝑏𝑡
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where

̌𝑏𝑡 = Φ+𝑋𝑡 (6.29)

Since the 𝑚 × 𝑝 matrix Φ has 𝑝 linearly independent columns, the generalized inverse of Φ is

Φ+ = (Φ⊤Φ)−1Φ⊤

and so

̌𝑏 = (Φ⊤Φ)−1Φ⊤𝑋 (6.30)

The 𝑝 × 𝑛 matrix ̌𝑏 is recognizable as a matrix of least squares regression coefficients of the 𝑚 × 𝑛 matrix 𝑋 on the
𝑚 × 𝑝 matrix Φ and consequently

𝑋̌ = Φ ̌𝑏 (6.31)

is an 𝑚 × 𝑛 matrix of least squares projections of 𝑋 on Φ.
Variance Decomposition of 𝑋
By virtue of the least-squares projection theory discussed in this quantecon lecture https://python-advanced.quantecon.
org/orth_proj.html, we can represent 𝑋 as the sum of the projection 𝑋̌ of 𝑋 on Φ plus a matrix of errors.

To verify this, note that the least squares projection 𝑋̌ is related to 𝑋 by

𝑋 = 𝑋̌ + 𝜖

or

𝑋 = Φ ̌𝑏 + 𝜖 (6.32)

where 𝜖 is an 𝑚 × 𝑛 matrix of least squares errors satisfying the least squares orthogonality conditions 𝜖⊤Φ = 0 or

(𝑋 − Φ ̌𝑏)⊤Φ = 0𝑚×𝑝 (6.33)

Rearranging the orthogonality conditions (6.33) gives 𝑋⊤Φ = ̌𝑏Φ⊤Φ, which implies formula (6.30).

6.5.2 An Approximation

We now describe a way to approximate the 𝑝 × 1 vector ̌𝑏𝑡 instead of using formula (6.29).

In particular, the following argument adapted from [Brunton and Kutz, 2022] (page 240) provides a computationally
efficient way to approximate ̌𝑏𝑡.

For convenience, we’ll apply the method at time 𝑡 = 1.
For 𝑡 = 1, from equation (6.32) we have

𝑋̌1 = Φ ̌𝑏1 (6.34)

where ̌𝑏1 is a 𝑝 × 1 vector.
Recall from representation 1 above that 𝑋1 = 𝑈 ̃𝑏1, where ̃𝑏1 is a time 1 basis vector for representation 1 and 𝑈 is from
the full SVD 𝑋 = 𝑈Σ𝑉 ⊤.

It then follows from equation (6.32) that

𝑈𝑏̃1 = 𝑋′ ̃𝑉 Σ̃−1𝑊̃ ̌𝑏1 + 𝜖1
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where 𝜖1 is a least-squares error vector from equation (6.32).

It follows that

̃𝑏1 = 𝑈⊤𝑋′𝑉 Σ̃−1𝑊̃ ̌𝑏1 + 𝑈⊤𝜖1

Replacing the error term 𝑈⊤𝜖1 by zero, and replacing 𝑈 from a full SVD of 𝑋 with ̃𝑈 from a reduced SVD, we obtain
an approximation ̂𝑏1 to ̃𝑏1:

̂𝑏1 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1𝑊̃ ̌𝑏1

Recall that from equation (6.23), ̃𝐴 = ̃𝑈⊤𝑋′ ̃𝑉 Σ̃−1.

It then follows that

̂𝑏1 = ̃𝐴𝑊̃ ̌𝑏1

and therefore, by the eigendecomposition (6.24) of ̃𝐴, we have
̂𝑏1 = 𝑊̃Λ ̌𝑏1

Consequently,

̂𝑏1 = (𝑊̃Λ)−1 ̃𝑏1

or

̂𝑏1 = (𝑊̃Λ)−1 ̃𝑈⊤𝑋1, (6.35)

which is a computationally efficient approximation to the following instance of equation (6.29) for the initial vector ̌𝑏1:

̌𝑏1 = Φ+𝑋1 (6.36)

(To highlight that (6.35) is an approximation, users of DMD sometimes call components of basis vector ̌𝑏𝑡 = Φ+𝑋𝑡 the
exact DMD modes and components of ̂𝑏𝑡 = (𝑊̃Λ)−1 ̃𝑈⊤𝑋𝑡 the approximate modes.)

Conditional on 𝑋𝑡, we can compute a decoded 𝑋̌𝑡+𝑗, 𝑗 = 1, 2, … from the exact modes via

𝑋̌𝑡+𝑗 = ΦΛ𝑗Φ+𝑋𝑡 (6.37)

or use compute a decoded 𝑋̂𝑡+𝑗 from approximate modes via

𝑋̂𝑡+𝑗 = ΦΛ𝑗(𝑊̃Λ)−1 ̃𝑈⊤𝑋𝑡. (6.38)

We can then use a decoded 𝑋̌𝑡+𝑗 or 𝑋̂𝑡+𝑗 to forecast 𝑋𝑡+𝑗.

6.5.3 Using Fewer Modes

In applications, we’ll actually use only a few modes, often three or less.

Some of the preceding formulas assume that we have retained all 𝑝 modes associated with singular values of 𝑋.

We can adjust our formulas to describe a situation in which we instead retain only the 𝑟 < 𝑝 largest singular values.
In that case, we simply replace Σ̃ with the appropriate 𝑟 × 𝑟 matrix of singular values, ̃𝑈 with the 𝑚 × 𝑟 matrix whose
columns correspond to the 𝑟 largest singular values, and ̃𝑉 with the 𝑛 × 𝑟 matrix whose columns correspond to the 𝑟
largest singular values.

Counterparts of all of the salient formulas above then apply.
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6.6 Source for Some Python Code

You can find a Python implementation of DMD here:

https://mathlab.sissa.it/pydmd
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SEVEN

USING NEWTON’S METHOD TO SOLVE ECONOMIC MODELS

Contents

• Using Newton’s Method to Solve Economic Models

– Overview

– Fixed point computation using Newton’s method

– Root-Finding in one dimension

– Multivariate Newton’s method

– Exercises

7.1 Overview

Many economic problems involve finding fixed points or zeros (also called “roots”) of functions.

For example, in a simple supply and demand model, an equilibrium price is one that makes excess demand zero.

In other words, an equilibrium is a zero of the excess demand function.

There are various computational techniques for solving for fixed points and zeros.

In this lecture we study an important gradient-based technique called Newton’s method.

Newton’s method does not always work but, in situations where it does, convergence is often fast when compared to other
methods.

The lecture will apply Newton’s method in one-dimensional and multidimensional settings to solve fixed-point and zero-
finding problems.

• When finding the fixed point of a function 𝑓 , Newton’s method updates an existing guess of the fixed point by
solving for the fixed point of a linear approximation to the function 𝑓 .

• When finding the zero of a function 𝑓 , Newton’s method updates an existing guess by solving for the zero of a
linear approximation to the function 𝑓 .

To build intuition, we first consider an easy, one-dimensional fixed point problem where we know the solution and solve
it using both successive approximation and Newton’s method.

Then we apply Newton’s method to multidimensional settings to solve for market equilibria with multiple goods.
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At the end of the lecture, we leverage the power of automatic differentiation in jax to solve a very high-dimensional
equilibrium problem.

We use the following imports in this lecture

import matplotlib.pyplot as plt
from typing import NamedTuple
from scipy.optimize import root
import jax.numpy as jnp
import jax

# Enable 64-bit precision
jax.config.update("jax_enable_x64", True)

7.2 Fixed point computation using Newton’s method

In this section we solve the fixed point of the law of motion for capital in the setting of the Solow growth model.

We will inspect the fixed point visually, solve it by successive approximation, and then apply Newton’s method to achieve
faster convergence.

7.2.1 The Solow model

In the Solow growthmodel, assuming Cobb-Douglas production technology and zero population growth, the law ofmotion
for capital is

𝑘𝑡+1 = 𝑔(𝑘𝑡) where 𝑔(𝑘) ∶= 𝑠𝐴𝑘𝛼 + (1 − 𝛿)𝑘 (7.1)

Here

• 𝑘𝑡 is capital stock per worker,

• 𝐴, 𝛼 > 0 are production parameters with 𝛼 < 1
• 𝑠 > 0 is a savings rate, and
• 𝛿 ∈ (0, 1) is a rate of depreciation

In this example, we wish to calculate the unique strictly positive fixed point of 𝑔, the law of motion for capital.

In other words, we seek a 𝑘∗ > 0 such that 𝑔(𝑘∗) = 𝑘∗.

• Such a 𝑘∗ is called a steady state, since 𝑘𝑡 = 𝑘∗ implies 𝑘𝑡+1 = 𝑘∗.

Using pencil and paper to solve 𝑔(𝑘) = 𝑘, you will be able to confirm that

𝑘∗ = (𝑠𝐴
𝛿 )

1/(1−𝛼)
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7.2.2 Implementation

Let’s store our parameters in NamedTuple to help us keep our code clean and concise.

class SolowParameters(NamedTuple):
A: float
s: float
α: float
δ: float

This function creates a suitable SolowParameters with default parameter values.

def create_solow_params(A=2.0, s=0.3, α=0.3, δ=0.4):
"""Creates a Solow model parameterization with default values."""
return SolowParameters(A=A, s=s, α=α, δ=δ)

The next two functions implement the law of motion (7.2.1) and store the true fixed point 𝑘∗.

def g(k, params):
A, s, α, δ = params
return A * s * k**α + (1 - δ) * k

def exact_fixed_point(params):
A, s, α, δ = params
return ((s * A) / δ) ** (1 / (1 - α))

Here is a function to provide a 45 degree plot of the dynamics.

def plot_45(params, ax, fontsize=14):

k_min, k_max = 0.0, 3.0
k_grid = jnp.linspace(k_min, k_max, 1200)

# Plot the functions
lb = r"$g(k) = sAk^{\alpha} + (1 - \delta)k$"
ax.plot(k_grid, g(k_grid, params), lw=2, alpha=0.6, label=lb)
ax.plot(k_grid, k_grid, "k--", lw=1, alpha=0.7, label="45")

# Show and annotate the fixed point
kstar = exact_fixed_point(params)
fps = (kstar,)
ax.plot(fps, fps, "go", ms=10, alpha=0.6)
ax.annotate(

r"$k^* = (sA / \delta)^{\frac{1}{1-\alpha}}$",
xy=(kstar, kstar),
xycoords="data",
xytext=(20, -20),
textcoords="offset points",
fontsize=fontsize,

)

ax.legend(loc="upper left", frameon=False, fontsize=fontsize)

ax.set_yticks((0, 1, 2, 3))
ax.set_yticklabels((0.0, 1.0, 2.0, 3.0), fontsize=fontsize)
ax.set_ylim(0, 3)

(continues on next page)
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(continued from previous page)

ax.set_xlabel("$k_t$", fontsize=fontsize)
ax.set_ylabel("$k_{t+1}$", fontsize=fontsize)

Let’s look at the 45 degree diagram for two parameterizations.

params = create_solow_params()
fig, ax = plt.subplots(figsize=(8, 8))
plot_45(params, ax)
plt.show()

params = create_solow_params(α=0.05, δ=0.5)
fig, ax = plt.subplots(figsize=(8, 8))
plot_45(params, ax)
plt.show()
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We see that 𝑘∗ is indeed the unique positive fixed point.

Successive approximation

First let’s compute the fixed point using successive approximation.

In this case, successive approximation means repeatedly updating capital from some initial state 𝑘0 using the law of
motion.

Here’s a time series from a particular choice of 𝑘0.

def compute_iterates(k_0, f, params, n=25):
"""Compute time series of length n generated by function f."""
k = k_0
k_iterates = []
for t in range(n):

k_iterates.append(k)
(continues on next page)
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(continued from previous page)

k = f(k, params)
return k_iterates

params = create_solow_params()
k_0 = 0.25
k_series = compute_iterates(k_0, g, params)
k_star = exact_fixed_point(params)

fig, ax = plt.subplots()
ax.plot(k_series, "o")
ax.plot([k_star] * len(k_series), "k--")
ax.set_ylim(0, 3)
plt.show()

Let’s see the output for a long time series.

k_series = compute_iterates(k_0, g, params, n=10_000)
k_star_approx = k_series[-1]
k_star_approx

1.7846741842265788

This is close to the true value.

k_star

1.7846741842265788
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Newton’s method

In general, when applying Newton’s fixed point method to some function 𝑔, we start with a guess 𝑥0 of the fixed point
and then update by solving for the fixed point of a tangent line at 𝑥0.

To begin with, we recall that the first-order approximation of 𝑔 at 𝑥0 (i.e., the first order Taylor approximation of 𝑔 at
𝑥0) is the function

̂𝑔(𝑥) ≈ 𝑔(𝑥0) + 𝑔′(𝑥0)(𝑥 − 𝑥0) (7.2)

We solve for the fixed point of ̂𝑔 by calculating the 𝑥1 that solves

𝑥1 = 𝑔(𝑥0) − 𝑔′(𝑥0)𝑥0
1 − 𝑔′(𝑥0)

Generalising the process above, Newton’s fixed point method iterates on

𝑥𝑡+1 = 𝑔(𝑥𝑡) − 𝑔′(𝑥𝑡)𝑥𝑡
1 − 𝑔′(𝑥𝑡)

, 𝑥0 given (7.3)

To implement Newton’s method we observe that the derivative of the law of motion for capital (7.2.1) is

𝑔′(𝑘) = 𝛼𝑠𝐴𝑘𝛼−1 + (1 − 𝛿) (7.4)

Let’s define this:

def Dg(k, params):
A, s, α, δ = params
return α * A * s * k ** (α - 1) + (1 - δ)

Here’s a function 𝑞 representing (7.2.3).

def q(k, params):
return (g(k, params) - Dg(k, params) * k) / (1 - Dg(k, params))

Now let’s plot some trajectories.

def plot_trajectories(
params,
k0_a=0.8, # first initial condition
k0_b=3.1, # second initial condition
n=20, # length of time series
fs=14, # fontsize

):

fig, axes = plt.subplots(2, 1, figsize=(10, 6))
ax1, ax2 = axes

ks1 = compute_iterates(k0_a, g, params, n)
ax1.plot(ks1, "-o", label="successive approximation")

ks2 = compute_iterates(k0_b, g, params, n)
ax2.plot(ks2, "-o", label="successive approximation")

ks3 = compute_iterates(k0_a, q, params, n)
ax1.plot(ks3, "-o", label="newton steps")

ks4 = compute_iterates(k0_b, q, params, n)

(continues on next page)
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ax2.plot(ks4, "-o", label="newton steps")

for ax in axes:
ax.plot(k_star * jnp.ones(n), "k--")
ax.legend(fontsize=fs, frameon=False)
ax.set_ylim(0.6, 3.2)
ax.set_yticks((k_star,))
ax.set_yticklabels(("$k^*$",), fontsize=fs)
ax.set_xticks(jnp.linspace(0, 19, 20))

plt.show()

params = create_solow_params()
plot_trajectories(params)

We can see that Newton’s method converges faster than successive approximation.

7.3 Root-Finding in one dimension

In the previous section we computed fixed points.

In fact Newton’s method is more commonly associated with the problem of finding zeros of functions.

Let’s discuss this “root-finding” problem and then show how it is connected to the problem of finding fixed points.
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7.3.1 Newton’s method for zeros

Let’s suppose we want to find an 𝑥 such that 𝑓(𝑥) = 0 for some smooth function 𝑓 mapping real numbers to real numbers.

Suppose we have a guess 𝑥0 and we want to update it to a new point 𝑥1.

As a first step, we take the first-order approximation of 𝑓 around 𝑥0:

̂𝑓(𝑥) ≈ 𝑓 (𝑥0) + 𝑓 ′ (𝑥0) (𝑥 − 𝑥0)

Now we solve for the zero of ̂𝑓 .
In particular, we set ̂𝑓(𝑥1) = 0 and solve for 𝑥1 to get

𝑥1 = 𝑥0 − 𝑓(𝑥0)
𝑓 ′(𝑥0) , 𝑥0 given

Generalizing the formula above, for one-dimensional zero-finding problems, Newton’s method iterates on

𝑥𝑡+1 = 𝑥𝑡 − 𝑓(𝑥𝑡)
𝑓 ′(𝑥𝑡)

, 𝑥0 given (7.5)

The following code implements the iteration (7.3.1)

def newton(f, x_0, tol=1e-7, max_iter=100_000):
x = x_0
Df = jax.grad(f)

# Implement the zero-finding formula
@jax.jit
def q(x):

return x - f(x) / Df(x)

error = tol + 1
n = 0
while error > tol:

n += 1
if n > max_iter:

raise Exception("Max iteration reached without convergence")
y = q(x)
error = jnp.abs(x - y)
x = y
print(f"iteration {n}, error = {error:.5f}")

return x.item()

Numerous libraries implement Newton’s method in one dimension, including SciPy, so the code is just for illustrative
purposes.

(That said, when we want to apply Newton’s method using techniques such as automatic differentiation or GPU acceler-
ation, it will be helpful to know how to implement Newton’s method ourselves.)
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7.3.2 Application to finding fixed points

Now consider again the Solow fixed-point calculation, where we solve for 𝑘 satisfying 𝑔(𝑘) = 𝑘.
We can convert to this to a zero-finding problem by setting 𝑓(𝑥) ∶= 𝑔(𝑥) − 𝑥.
Any zero of 𝑓 is clearly a fixed point of 𝑔.
Let’s apply this idea to the Solow problem

params = create_solow_params()
k_star_approx_newton = newton(f = lambda x: g(x, params) - x, x_0=0.8)

iteration 1, error = 1.27209
iteration 2, error = 0.28180
iteration 3, error = 0.00561
iteration 4, error = 0.00000
iteration 5, error = 0.00000

k_star_approx_newton

1.7846741842265788

The result confirms convergence we saw in the graphs above: a very accurate result is reached with only 5 iterations.

7.4 Multivariate Newton’s method

In this section, we introduce a two-good problem, present a visualization of the problem, and solve for the equilibrium of
the two-good market using both a zero finder in SciPy and Newton’s method.

We then expand the idea to a larger market with 5,000 goods and compare the performance of the two methods again.

We will see a significant performance gain when using Newton’s method.

7.4.1 A two-goods market equilibrium

Let’s start by computing the market equilibrium of a two-good problem.

We consider a market for two related products, good 0 and good 1, with price vector 𝑝 = (𝑝0, 𝑝1)
Supply of good 𝑖 at price 𝑝 is

𝑞𝑠
𝑖 (𝑝) = 𝑏𝑖

√𝑝𝑖

Demand of good 𝑖 at price 𝑝 is

𝑞𝑑
𝑖 (𝑝) = exp(−(𝑎𝑖0𝑝0 + 𝑎𝑖1𝑝1)) + 𝑐𝑖

Here 𝑐𝑖, 𝑏𝑖 and 𝑎𝑖𝑗 are parameters.

For example, the two goods might be computer components that are typically used together, in which case they are
complements. Hence demand depends on the price of both components.

The excess demand function is

𝑒𝑖(𝑝) = 𝑞𝑑
𝑖 (𝑝) − 𝑞𝑠

𝑖 (𝑝), 𝑖 = 0, 1
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An equilibrium price vector 𝑝∗ satisfies 𝑒𝑖(𝑝∗) = 0.
We set

𝐴 = [𝑎00 𝑎01
𝑎10 𝑎11

] , 𝑏 = [𝑏0
𝑏1

] and 𝑐 = [𝑐0
𝑐1

]

for this particular question.

A graphical exploration

Since our problem is only two-dimensional, we can use graphical analysis to visualize and help understand the problem.

Our first step is to define the excess demand function

𝑒(𝑝) = [𝑒0(𝑝)
𝑒1(𝑝)]

The function below calculates the excess demand for given parameters

@jax.jit
def e(p, A, b, c):

return jnp.exp(-A @ p) + c - b * jnp.sqrt(p)

Our default parameter values will be

𝐴 = [0.5 0.4
0.8 0.2] , 𝑏 = [1

1] and 𝑐 = [1
1]

A = jnp.array([[0.5, 0.4], [0.8, 0.2]])
b = jnp.ones(2)
c = jnp.ones(2)

At a price level of 𝑝 = (1, 0.5), the excess demand is
p = jnp.array([1, 0.5])
ex_demand = e(p, A, b, c)

print(
f"The excess demand for good 0 is {ex_demand[0]:.3f} \n"
f"The excess demand for good 1 is {ex_demand[1]:.3f}"

)

The excess demand for good 0 is 0.497
The excess demand for good 1 is 0.699

To increase the efficiency of computation, we will use the power of vectorization using jax.vmap. This is much faster
than the python loops.

# Create vectorization on the first axis of p.
e_vectorized_p_1 = jax.vmap(e, in_axes=(0, None, None, None))

# Create vectorization on the second axis of p.
e_vectorized = jax.vmap(e_vectorized_p_1, in_axes=(0, None, None, None))

Next we plot the two functions 𝑒0 and 𝑒1 on a grid of (𝑝0, 𝑝1) values, using contour surfaces and lines.
We will use the following function to build the contour plots
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def plot_excess_demand(ax, good=0, grid_size=100, grid_max=4, surface=True):
p_grid = jnp.linspace(0, grid_max, grid_size)

# Create meshgrid for all combinations of p_1 and p_2
P1, P2 = jnp.meshgrid(p_grid, p_grid, indexing="ij")

# Stack to create array of shape (grid_size, grid_size, 2)
P = jnp.stack([P1, P2], axis=-1)

# Compute all values at once using vectorized function
z_full = e_vectorized(P, A, b, c)
z = z_full[:, :, good]

if surface:
cs1 = ax.contourf(p_grid, p_grid, z.T, alpha=0.5)
plt.colorbar(cs1, ax=ax, format="%.6f")

ctr1 = ax.contour(p_grid, p_grid, z.T, levels=[0.0])
ax.set_xlabel("$p_0$")
ax.set_ylabel("$p_1$")
ax.set_title(f"Excess demand for good {good}")
plt.clabel(ctr1, inline=1, fontsize=13)

Here’s our plot of 𝑒0:

fig, ax = plt.subplots()
plot_excess_demand(ax, good=0)
plt.show()
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Here’s our plot of 𝑒1:

fig, ax = plt.subplots()
plot_excess_demand(ax, good=1)
plt.show()
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We see the black contour line of zero, which tells us when 𝑒𝑖(𝑝) = 0.
For a price vector 𝑝 such that 𝑒𝑖(𝑝) = 0 we know that good 𝑖 is in equilibrium (demand equals supply).

If these two contour lines cross at some price vector 𝑝∗, then 𝑝∗ is an equilibrium price vector.

fig, ax = plt.subplots(figsize=(10, 5.7))
for good in (0, 1):

plot_excess_demand(ax, good=good, surface=False)
plt.show()
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It seems there is an equilibrium close to 𝑝 = (1.6, 1.5).

Using a multidimensional root finder

To solve for 𝑝∗ more precisely, we use a zero-finding algorithm from scipy.optimize.

We supply 𝑝 = (1, 1) as our initial guess.
init_p = jnp.ones(2)

This uses the modified Powell method to find the zero

%%time
solution = root(lambda p: e(p, A, b, c), init_p, method="hybr")

CPU times: user 4.81 ms, sys: 1.75 ms, total: 6.56 ms
Wall time: 3.54 ms

Here’s the resulting value:

p = solution.x
p

array([1.57080182, 1.46928838])

This looks close to our guess from observing the figure. We can plug it back into 𝑒 to test that 𝑒(𝑝) ≈ 0:
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()
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2.0383694732117874e-13

This is indeed a very small error.

Adding gradient information

In many cases, for zero-finding algorithms applied to smooth functions, supplying the Jacobian of the function leads to
better convergence properties.

Here, we manually calculate the elements of the Jacobian

𝐽(𝑝) = [
𝜕𝑒0
𝜕𝑝0

(𝑝) 𝜕𝑒0
𝜕𝑝1

(𝑝)
𝜕𝑒1
𝜕𝑝0

(𝑝) 𝜕𝑒1
𝜕𝑝1

(𝑝)]

def jacobian_e(p, A, b, c):
p_0, p_1 = p
a_00, a_01 = A[0, :]
a_10, a_11 = A[1, :]
j_00 = -a_00 * jnp.exp(-a_00 * p_0) - (b[0] / 2) * p_0 ** (-1 / 2)
j_01 = -a_01 * jnp.exp(-a_01 * p_1)
j_10 = -a_10 * jnp.exp(-a_10 * p_0)
j_11 = -a_11 * jnp.exp(-a_11 * p_1) - (b[1] / 2) * p_1 ** (-1 / 2)
J = [[j_00, j_01], [j_10, j_11]]
return jnp.array(J)

%%time
solution = root(

lambda p: e(p, A, b, c),
init_p,
jac = lambda p: jacobian_e(p, A, b, c),
method="hybr",

)

CPU times: user 271 ms, sys: 14.3 ms, total: 285 ms
Wall time: 398 ms

Now the solution is even more accurate (although, in this low-dimensional problem, the difference is quite small):

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.3322676295501878e-15

Using Newton’s method

Now let’s use Newton’s method to compute the equilibrium price using the multivariate version of Newton’s method

𝑝𝑛+1 = 𝑝𝑛 − 𝐽𝑒(𝑝𝑛)−1𝑒(𝑝𝑛) (7.6)

This is a multivariate version of (7.3.1)

(Here 𝐽𝑒(𝑝𝑛) is the Jacobian of 𝑒 evaluated at 𝑝𝑛.)
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The iteration starts from some initial guess of the price vector 𝑝0.

Here, instead of coding Jacobian by hand, we use the jacobian() function in the jax library to auto-differentiate and
calculate the Jacobian.

With only slight modification, we can generalize our previous attempt to multidimensional problems

def newton(f, x_0, tol=1e-5, max_iter=10):
x = x_0
f_jac = jax.jacobian(f)

@jax.jit
def q(x):

return x - jnp.linalg.solve(f_jac(x), f(x))

error = tol + 1
n = 0
while error > tol:

n += 1
if n > max_iter:

raise Exception("Max iteration reached without convergence")
y = q(x)
if any(jnp.isnan(y)):

raise Exception("Solution not found with NaN generated")
error = jnp.linalg.norm(x - y)
x = y
print(f"iteration {n}, error = {error:.5f}")

print("\n" + f"Result = {x} \n")
return x

We find the algorithm terminates in 4 steps

%%time
p = newton(lambda p: e(p, A, b, c), init_p)

iteration 1, error = 0.62515
iteration 2, error = 0.11152
iteration 3, error = 0.00258
iteration 4, error = 0.00000

Result = [1.57080182 1.46928838]

CPU times: user 280 ms, sys: 26.3 ms, total: 306 ms
Wall time: 389 ms

e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

1.4632739464559563e-13

The result is very accurate.

With the larger overhead, the speed is not better than the optimized scipy function.
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7.4.2 A high-dimensional problem

Our next step is to investigate a large market with 3,000 goods.

The excess demand function is essentially the same, but now the matrix 𝐴 is 3000 × 3000 and the parameter vectors 𝑏
and 𝑐 are 3000 × 1.
dim = 3000

# Create JAX random key
key = jax.random.PRNGKey(0)

# Create a random matrix A and normalize the columns to sum to one
A = jax.random.uniform(key, (dim, dim))
s = jnp.sum(A, axis=0)
A = A / s

# Set up b and c
b = jnp.ones(dim)
c = jnp.ones(dim)

Here’s our initial condition

init_p = jnp.ones(dim)

%%time
p = newton(lambda p: e(p, A, b, c), init_p)

iteration 1, error = 23.22262

iteration 2, error = 3.94537

iteration 3, error = 0.08500

iteration 4, error = 0.00004

iteration 5, error = 0.00000

Result = [1.50723773 1.51041603 1.50134795 ... 1.49941629 1.49033692 1.49666807]

CPU times: user 7.54 s, sys: 2.12 s, total: 9.66 s
Wall time: 8.85 s

e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

4.440892098500626e-16

With the same tolerance, we compare the runtime and accuracy of Newton’s method to SciPy’s root function

%%time
solution = root(

lambda p: e(p, A, b, c),
init_p,
jac = lambda p: jax.jacobian(e)(p, A, b, c),

(continues on next page)
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(continued from previous page)

method="hybr",
tol=1e-5,

)

CPU times: user 34.4 s, sys: 112 ms, total: 34.5 s
Wall time: 34.9 s

p = solution.x
e_p = jnp.max(jnp.abs(e(p, A, b, c)))
e_p.item()

9.209231102147442e-07

7.5 Exercises

Exercise 7.5.1

Consider a three-dimensional extension of the Solow fixed point problem with

𝐴 = ⎡⎢
⎣

2 3 3
2 4 2
1 5 1

⎤⎥
⎦

, 𝑠 = 0.2, 𝛼 = 0.5, 𝛿 = 0.8

As before the law of motion is

𝑘𝑡+1 = 𝑔(𝑘𝑡) where 𝑔(𝑘) ∶= 𝑠𝐴𝑘𝛼 + (1 − 𝛿)𝑘

However, 𝑘𝑡 is now a 3 × 1 vector.
Solve for the fixed point using Newton’s method with the following initial values:

𝑘10 = (1, 1, 1)
𝑘20 = (3, 5, 5)
𝑘30 = (50, 50, 50)

Hint

• The computation of the fixed point is equivalent to computing 𝑘∗ such that 𝑔(𝑘∗) − 𝑘∗ = 0.
• If you are unsure about your solution, you can start with the solved example:

𝐴 = ⎡⎢
⎣

2 0 0
0 2 0
0 0 2

⎤⎥
⎦

with 𝑠 = 0.3, 𝛼 = 0.3, and 𝛿 = 0.4 and starting value:

𝑘0 = (1, 1, 1)

The result should converge to the analytical solution.
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Solution to Exercise 7.5.1

Let’s first define the parameters for this problem

A = jnp.array([[2.0, 3.0, 3.0], [2.0, 4.0, 2.0], [1.0, 5.0, 1.0]])

s = 0.2
α = 0.5
δ = 0.8

initLs = [jnp.ones(3), jnp.array([3.0, 5.0, 5.0]), jnp.repeat(50.0, 3)]

Then define the multivariate version of the formula for the (7.2.1)

@jax.jit
def multivariate_solow(k, A=A, s=s, α=α, δ=δ):

return s * jnp.dot(A, k**α) + (1 - δ) * k

Let’s run through each starting value and see the output

attempt = 1
for init in initLs:

print(f'Attempt {attempt}: Starting value is {init} \n')
%time k = newton(lambda k: multivariate_solow(k) - k, \

init)
print('-'*64)
attempt += 1

Attempt 1: Starting value is [1. 1. 1.]

iteration 1, error = 50.49630
iteration 2, error = 41.10937
iteration 3, error = 4.29413
iteration 4, error = 0.38543
iteration 5, error = 0.00544
iteration 6, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 267 ms, sys: 17.2 ms, total: 284 ms
Wall time: 354 ms
----------------------------------------------------------------
Attempt 2: Starting value is [3. 5. 5.]

iteration 1, error = 2.07011
iteration 2, error = 0.12642
iteration 3, error = 0.00060
iteration 4, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 115 ms, sys: 8.75 ms, total: 124 ms
Wall time: 139 ms
----------------------------------------------------------------
Attempt 3: Starting value is [50. 50. 50.]
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iteration 1, error = 73.00943
iteration 2, error = 6.49379
iteration 3, error = 0.68070
iteration 4, error = 0.01620
iteration 5, error = 0.00001
iteration 6, error = 0.00000

Result = [3.84058108 3.87071771 3.41091933]

CPU times: user 264 ms, sys: 22.1 ms, total: 286 ms
Wall time: 331 ms
----------------------------------------------------------------

We find that the results are invariant to the starting values given the well-defined property of this question.

But the number of iterations it takes to converge is dependent on the starting values.

Let’s substitute the output back into the formula to check our last result

multivariate_solow(k) - k

Array([0., 0., 0.], dtype=float64)

Note the error is very small.

We can also test our results on the known solution

A = jnp.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]])

s = 0.3
α = 0.3
δ = 0.4

init = jnp.repeat(1.0, 3)

%%time

k = newton(lambda k: multivariate_solow(k, A=A, s=s, α=α, δ=δ) - k, init)

iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 243 ms, sys: 19.7 ms, total: 263 ms
Wall time: 295 ms

The result is very close to the ground truth but still slightly different.

%%time

k = newton(
lambda k: multivariate_solow(k, A=A, s=s, α=α, δ=δ) - k, init, tol=1e-7

)
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iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000
iteration 5, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 236 ms, sys: 9.87 ms, total: 246 ms
Wall time: 277 ms

We can see it steps towards a more accurate solution.

Exercise 7.5.2

In this exercise, let’s try different initial values and check how Newton’s method responds to different starting points.

Let’s define a three-good problem with the following default values:

𝐴 = ⎡⎢
⎣

0.2 0.1 0.7
0.3 0.2 0.5
0.1 0.8 0.1

⎤⎥
⎦

, 𝑏 = ⎡⎢
⎣

1
1
1
⎤⎥
⎦

and 𝑐 = ⎡⎢
⎣

1
1
1
⎤⎥
⎦

For this exercise, use the following extreme price vectors as initial values:

𝑝10 = (5, 5, 5)
𝑝20 = (1, 1, 1)
𝑝30 = (4.5, 0.1, 4)

Set the tolerance to 1𝑒 − 15 for more accurate output.

Solution to Exercise 7.5.2

Define parameters and initial values

A = jnp.array([[0.2, 0.1, 0.7], [0.3, 0.2, 0.5], [0.1, 0.8, 0.1]])
b = jnp.array([1.0, 1.0, 1.0])
c = jnp.array([1.0, 1.0, 1.0])

initLs = [jnp.repeat(5.0, 3), jnp.ones(3), jnp.array([4.5, 0.1, 4.0])]

Let’s run through each initial guess and check the output

attempt = 1
for init in initLs:

print(f"Attempt {attempt}: Starting value is {init} \n")
%time p = newton(lambda p: e(p, A, b, c), init, tol=1e-15, max_iter=15)
print("-" * 64)
attempt += 1

Attempt 1: Starting value is [5. 5. 5.]

iteration 1, error = 9.24381
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---------------------------------------------------------------------------
Exception Traceback (most recent call last)
File <timed exec>:1

Cell In[34], line 17, in newton(f, x_0, tol, max_iter)
15 y = q(x)
16 if any(jnp.isnan(y)):

---> 17 raise Exception("Solution not found with NaN generated")
18 error = jnp.linalg.norm(x - y)
19 x = y

Exception: Solution not found with NaN generated

----------------------------------------------------------------
Attempt 2: Starting value is [1. 1. 1.]

iteration 1, error = 0.73419
iteration 2, error = 0.12472
iteration 3, error = 0.00269
iteration 4, error = 0.00000
iteration 5, error = 0.00000
iteration 6, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 109 ms, sys: 7.99 ms, total: 117 ms
Wall time: 132 ms
----------------------------------------------------------------
Attempt 3: Starting value is [4.5 0.1 4. ]

iteration 1, error = 4.89202
iteration 2, error = 1.21206
iteration 3, error = 0.69421
iteration 4, error = 0.16895
iteration 5, error = 0.00521
iteration 6, error = 0.00000
iteration 7, error = 0.00000
iteration 8, error = 0.00000

Result = [1.49744442 1.49744442 1.49744442]

CPU times: user 113 ms, sys: 6.84 ms, total: 120 ms
Wall time: 133 ms
----------------------------------------------------------------

We can see that Newton’s method may fail for some starting values.

Sometimes it may take a few initial guesses to achieve convergence.

Substitute the result back to the formula to check our result
e(p, A, b, c)

Array([0., 0., 0.], dtype=float64)

We can see the result is very accurate.
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CHAPTER

EIGHT

ELEMENTARY PROBABILITY WITH MATRICES

This lecture uses matrix algebra to illustrate some basic ideas about probability theory.

After introducing underlying objects, we’ll use matrices and vectors to describe probability distributions.

Among concepts that we’ll be studying include

• a joint probability distribution

• marginal distributions associated with a given joint distribution

• conditional probability distributions

• statistical independence of two random variables

• joint distributions associated with a prescribed set of marginal distributions

– couplings

– copulas

• the probability distribution of a sum of two independent random variables

– convolution of marginal distributions

• parameters that define a probability distribution

• sufficient statistics as data summaries

We’ll use a matrix to represent a bivariate or multivariate probability distribution and a vector to represent a univariate
probability distribution

This companion lecture describes some popular probability distributions and describes how to use Python to sample from
them.

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install prettytable

As usual, we’ll start with some imports

import numpy as np
import matplotlib.pyplot as plt
import prettytable as pt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')
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8.1 Sketch of Basic Concepts

We’ll briefly define what we mean by a probability space, a probability measure, and a random variable.

For most of this lecture, we sweep these objects into the background

Note

Nevertheless, they’ll be lurking beneath induced distributions of random variables that we’ll focus on here. These
deeper objects are essential for defining and analysing the concepts of stationarity and ergodicity that underly laws of
large numbers. For a relatively nontechnical presentation of some of these results see this chapter from Lars Peter
Hansen and Thomas J. Sargent’s online monograph titled “Risk, Uncertainty, and Values”:https://lphansen.github.io/
QuantMFR/book/1_stochastic_processes.html.

Let Ω be a set of possible underlying outcomes and let 𝜔 ∈ Ω be a particular underlying outcomes.

Let 𝒢 ⊂ Ω be a subset of Ω.
Let ℱ be a collection of such subsets 𝒢 ⊂ Ω.
The pair Ω, ℱ forms our probability space on which we want to put a probability measure.

A probability measure 𝜇 maps a set of possible underlying outcomes 𝒢 ∈ ℱ into a scalar number between 0 and 1
• this is the “probability” that 𝑋 belongs to 𝐴, denoted by Prob{𝑋 ∈ 𝐴}.

A random variable 𝑋(𝜔) is a function of the underlying outcome 𝜔 ∈ Ω.
The random variable 𝑋(𝜔) has a probability distribution that is induced by the underlying probability measure 𝜇 and
the function 𝑋(𝜔):

Prob(𝑋 ∈ 𝐴) = ∫
𝒢

𝜇(𝜔)𝑑𝜔 (8.1)

where 𝒢 is the subset of Ω for which 𝑋(𝜔) ∈ 𝐴.
We call this the induced probability distribution of random variable 𝑋.

Instead of working explicitly with an underlying probability space Ω, ℱ and probability measure 𝜇, applied statisticians
often proceed simply by specifying a form for an induced distribution for a random variable 𝑋.

That is how we’ll proceed in this lecture and in many subsequent lectures.

8.2 What Does Probability Mean?

Before diving in, we’ll say a few words about what probability theory means and how it connects to statistics.

We also touch on these topics in the quantecon lectures https://python.quantecon.org/prob_meaning.html and https://
python.quantecon.org/navy_captain.html.

For much of this lecture we’ll be discussing fixed “population” probabilities.

These are purely mathematical objects.

To appreciate how statisticians connect probabilities to data, the key is to understand the following concepts:

• A single draw from a probability distribution

• Repeated independently and identically distributed (i.i.d.) draws of “samples” or “realizations” from the same
probability distribution

126 Chapter 8. Elementary Probability with Matrices

https://lphansen.github.io/QuantMFR/book/1_stochastic_processes.html
https://lphansen.github.io/QuantMFR/book/1_stochastic_processes.html
https://python.quantecon.org/prob_meaning.html
https://python.quantecon.org/navy_captain.html
https://python.quantecon.org/navy_captain.html


Intermediate Quantitative Economics with Python

• A statistic defined as a function of a sequence of samples

• An empirical distribution or histogram (a binned empirical distribution) that records observed relative fre-
quencies

• The idea that a population probability distribution is what we anticipate relative frequencies will be in a long
sequence of i.i.d. draws. Here the following mathematical machinery makes precise what is meant by anticipated
relative frequencies

– Law of Large Numbers (LLN)

– Central Limit Theorem (CLT)

Scalar example

Let 𝑋 be a scalar random variable that takes on the 𝐼 possible values 0, 1, 2, … , 𝐼 − 1 with probabilities
Prob(𝑋 = 𝑖) = 𝑓𝑖,

where

𝑓𝑖 ⩾ 0, ∑
𝑖

𝑓𝑖 = 1.

We sometimes write

𝑋 ∼ {𝑓𝑖}𝐼−1
𝑖=0

as a short-hand way of saying that the random variable 𝑋 is described by the probability distribution {𝑓𝑖}𝐼−1
𝑖=0 .

Consider drawing a sample 𝑥0, 𝑥1, … , 𝑥𝑁−1 of 𝑁 independent and identically distributoed draws of 𝑋.

What do the “identical” and “independent” mean in IID or iid (“identically and independently distributed”)?

• “identical” means that each draw is from the same distribution.

• “independent” means that joint distribution equal products of marginal distributions, i.e.,

Prob{𝑥0 = 𝑖0, 𝑥1 = 𝑖1, … , 𝑥𝑁−1 = 𝑖𝑁−1} = Prob{𝑥0 = 𝑖0} ⋅ ⋯ ⋅ Prob{𝑥𝐼−1 = 𝑖𝐼−1}
= 𝑓𝑖0

𝑓𝑖1
⋅ ⋯ ⋅ 𝑓𝑖𝑁−1

We define an empirical distribution as follows.

For each 𝑖 = 0, … , 𝐼 − 1, let
𝑁𝑖 = number of times 𝑋 = 𝑖,

𝑁 =
𝐼−1
∑
𝑖=0

𝑁𝑖 total number of draws,

̃𝑓𝑖 = 𝑁𝑖
𝑁 ∼ frequency of draws for which 𝑋 = 𝑖

Key concepts that connect probability theory with statistics are laws of large numbers and central limit theorems

LLN:

• A Law of Large Numbers (LLN) states that ̃𝑓𝑖 → 𝑓𝑖 as 𝑁 → ∞
CLT:

• A Central Limit Theorem (CLT) describes a rate at which ̃𝑓𝑖 → 𝑓𝑖

Remarks

• For “frequentist” statisticians, anticipated relative frequency is all that a probability distribution means.

• But for a Bayesian it means something else – something partly subjective and purely personal.

– we say “partly” because a Bayesian also pays attention to relative frequencies
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8.3 Representing Probability Distributions

A probability distribution Prob(𝑋 ∈ 𝐴) can be described by its cumulative distribution function (CDF)

𝐹𝑋(𝑥) = Prob{𝑋 ≤ 𝑥}.

Sometimes, but not always, a random variable can also be described by density function 𝑓(𝑥) that is related to its CDF
by

Prob{𝑋 ∈ 𝐵} = ∫
𝑡∈𝐵

𝑓(𝑡)𝑑𝑡

𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡

Here 𝐵 is a set of possible 𝑋’s whose probability of occurring we want to compute.

When a probability density exists, a probability distribution can be characterized either by its CDF or by its density.

For a discrete-valued random variable

• the number of possible values of 𝑋 is finite or countably infinite

• we replace a density with a probability mass function, a non-negative sequence that sums to one

• we replace integration with summation in the formula like (8.1) that relates a CDF to a probability mass function

In this lecture, we mostly discuss discrete random variables.

Doing this enables us to confine our tool set basically to linear algebra.

Later we’ll briefly discuss how to approximate a continuous random variable with a discrete random variable.

8.4 Univariate Probability Distributions

We’ll devote most of this lecture to discrete-valued random variables, but we’ll say a few things about continuous-valued
random variables.

8.4.1 Discrete random variable

Let 𝑋 be a discrete random variable that takes possible values: 𝑖 = 0, 1, … , 𝐼 − 1 = 𝑋̄.

Here, we choose the maximum index 𝐼 − 1 because of how this aligns nicely with Python’s index convention.

Define 𝑓𝑖 ≡ Prob{𝑋 = 𝑖} and assemble the non-negative vector

𝑓 =
⎡
⎢⎢
⎣

𝑓0
𝑓1
⋮

𝑓𝐼−1

⎤
⎥⎥
⎦

(8.2)

for which 𝑓𝑖 ∈ [0, 1] for each 𝑖 and ∑𝐼−1
𝑖=0 𝑓𝑖 = 1.

This vector defines a probability mass function.

The distribution (8.2) has parameters {𝑓𝑖}𝑖=0,1,⋯,𝐼−2 since 𝑓𝐼−1 = 1 − ∑𝐼−2
𝑖=0 𝑓𝑖.

These parameters pin down the shape of the distribution.
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(Sometimes 𝐼 = ∞.)

Such a “non-parametric” distribution has as many “parameters” as there are possible values of the random variable.

We often work with special distributions that are characterized by a small number parameters.

In these special parametric distributions,

𝑓𝑖 = 𝑔(𝑖; 𝜃)

where 𝜃 is a vector of parameters that is of much smaller dimension than 𝐼 .
Remarks:

• A statistical model is a joint probability distribution characterized by a list of parameters

• The concept of parameter is intimately related to the notion of sufficient statistic.

• A statistic is a nonlinear function of a data set.

• Sufficient statistics summarize all information that a data set contains about parameters of statistical model.

– Note that a sufficient statistic corresponds to a particular statistical model.

– Sufficient statistics are key tools that AI uses to summarize or compress a big data set.

• R. A. Fisher provided a rigorous definition of information – see https://en.wikipedia.org/wiki/Fisher_information

An example of a parametric probability distribution is a geometric distribution.

It is described by

𝑓𝑖 = Prob{𝑋 = 𝑖} = (1 − 𝜆)𝜆𝑖, 𝜆 ∈ [0, 1], 𝑖 = 0, 1, 2, …

Evidently, ∑∞
𝑖=0 𝑓𝑖 = 1.

Let 𝜃 be a vector of parameters of the distribution described by 𝑓 , then

𝑓𝑖(𝜃) ≥ 0,
∞

∑
𝑖=0

𝑓𝑖(𝜃) = 1

8.4.2 Continuous random variable

Let 𝑋 be a continous random variable that takes values 𝑋 ∈ 𝑋̃ ≡ [𝑋𝑈 , 𝑋𝐿] whose distributions have parameters 𝜃.

Prob{𝑋 ∈ 𝐴} = ∫
𝑥∈𝐴

𝑓(𝑥; 𝜃) 𝑑𝑥; 𝑓(𝑥; 𝜃) ≥ 0

where 𝐴 is a subset of 𝑋̃ and

Prob{𝑋 ∈ 𝑋̃} = 1

8.5 Bivariate Probability Distributions

We’ll now discuss a bivariate joint distribution.

To begin, we restrict ourselves to two discrete random variables.
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Let 𝑋, 𝑌 be two discrete random variables that take values:

𝑋 ∈ {0, … , 𝐼 − 1}

𝑌 ∈ {0, … , 𝐽 − 1}
Then their joint distribution is described by a matrix

𝐹𝐼×𝐽 = [𝑓𝑖𝑗]𝑖∈{0,…,𝐼−1},𝑗∈{0,…,𝐽−1}

whose elements are

𝑓𝑖𝑗 = Prob{𝑋 = 𝑖, 𝑌 = 𝑗} ≥ 0

where

∑
𝑖

∑
𝑗

𝑓𝑖𝑗 = 1

8.6 Marginal Probability Distributions

The joint distribution induce marginal distributions

Prob{𝑋 = 𝑖} =
𝐽−1
∑
𝑗=0

𝑓𝑖𝑗 = 𝜇𝑖, 𝑖 = 0, … , 𝐼 − 1

Prob{𝑌 = 𝑗} =
𝐼−1
∑
𝑖=0

𝑓𝑖𝑗 = 𝜈𝑗, 𝑗 = 0, … , 𝐽 − 1

For example, let a joint distribution over (𝑋, 𝑌 ) be

𝐹 = [.25 .1
.15 .5] (8.3)

The implied marginal distributions are:

Prob{𝑋 = 0} = .25 + .1 = .35
Prob{𝑋 = 1} = .15 + .5 = .65
Prob{𝑌 = 0} = .25 + .15 = .4
Prob{𝑌 = 1} = .1 + .5 = .6

Digression: If two random variables 𝑋, 𝑌 are continuous and have joint density 𝑓(𝑥, 𝑦), then marginal distributions can
be computed by

𝑓(𝑥) = ∫
ℝ

𝑓(𝑥, 𝑦)𝑑𝑦

𝑓(𝑦) = ∫
ℝ

𝑓(𝑥, 𝑦)𝑑𝑥

130 Chapter 8. Elementary Probability with Matrices



Intermediate Quantitative Economics with Python

8.7 Conditional Probability Distributions

Conditional probabilities are defined according to

Prob{𝐴 ∣ 𝐵} = Prob{𝐴 ∩ 𝐵}
Prob{𝐵}

where 𝐴, 𝐵 are two events.

For a pair of discrete random variables, we have the conditional distribution

Prob{𝑋 = 𝑖|𝑌 = 𝑗} = 𝑓𝑖𝑗
∑𝑖 𝑓𝑖𝑗

= Prob{𝑋 = 𝑖, 𝑌 = 𝑗}
Prob{𝑌 = 𝑗}

where 𝑖 = 0, … , 𝐼 − 1, 𝑗 = 0, … , 𝐽 − 1.
Note that

∑
𝑖
Prob{𝑋𝑖 = 𝑖|𝑌𝑗 = 𝑗} = ∑𝑖 𝑓𝑖𝑗

∑𝑖 𝑓𝑖𝑗
= 1

Remark: The mathematics of conditional probability implies:

Prob{𝑋 = 𝑖|𝑌 = 𝑗} = Prob{𝑋 = 𝑖, 𝑌 = 𝑗}
Prob{𝑌 = 𝑗} = Prob{𝑌 = 𝑗|𝑋 = 𝑖}Prob{𝑋 = 𝑖}

Prob{𝑌 = 𝑗} (8.4)

Note

Formula (8.4) is also what a Bayesian calls Bayes’ Law. A Bayesian statistician regards marginal probability distri-
bution Prob(𝑋 = 𝑖), 𝑖 = 1, … , 𝐽 as a prior distribution that describes his personal subjective beliefs about 𝑋. He
then interprets formula (8.4) as a procedure for constructing a posterior distribution that describes how he would
revise his subjective beliefs after observing that 𝑌 equals 𝑗.

For the joint distribution (8.3)

Prob{𝑋 = 0|𝑌 = 1} = .1
.1 + .5 = .1

.6

8.8 Transition Probability Matrix

Consider the following joint probability distribution of two random variables.

Let 𝑋, 𝑌 be discrete random variables with joint distribution

Prob{𝑋 = 𝑖, 𝑌 = 𝑗} = 𝜌𝑖𝑗

where 𝑖 = 0, … , 𝐼 − 1; 𝑗 = 0, … , 𝐽 − 1 and

∑
𝑖

∑
𝑗

𝜌𝑖𝑗 = 1, 𝜌𝑖𝑗 ⩾ 0.

An associated conditional distribution is

Prob{𝑌 = 𝑖|𝑋 = 𝑗} = 𝜌𝑖𝑗
∑𝑗 𝜌𝑖𝑗

= Prob{𝑌 = 𝑗, 𝑋 = 𝑖}
Prob{𝑋 = 𝑖}
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We can define a transition probability matrix 𝑃 with 𝑖, 𝑗 component

𝑝𝑖𝑗 = Prob{𝑌 = 𝑗|𝑋 = 𝑖} = 𝜌𝑖𝑗
∑𝑗 𝜌𝑖𝑗

where

[𝑝11 𝑝12
𝑝21 𝑝22

]

The first row is the probability that 𝑌 = 𝑗, 𝑗 = 0, 1 conditional on 𝑋 = 0.
The second row is the probability that 𝑌 = 𝑗, 𝑗 = 0, 1 conditional on 𝑋 = 1.
Note that

• ∑𝑗 𝜌𝑖𝑗 = ∑𝑗 𝜌𝑖𝑗
∑𝑗 𝜌𝑖𝑗

= 1, so each row of the transition matrix 𝑃 is a probability distribution (not so for each column).

8.9 Application: Forecasting a Time Series

Suppose that there are two time periods.

• 𝑡 = 0 “today”
• 𝑡 = 1 “tomorrow”

Let 𝑋(0) be a random variable to be realized at 𝑡 = 0, 𝑋(1) be a random variable to be realized at 𝑡 = 1.
Suppose that

Prob{𝑋(0) = 𝑖, 𝑋(1) = 𝑗} = 𝑓𝑖𝑗 ≥ 0�𝑖 = 0, ⋯ , 𝐼 − 1
∑

𝑖
∑

𝑗
𝑓𝑖𝑗 = 1

𝑓𝑖𝑗 is a joint distribution over [𝑋(0), 𝑋(1)].
A conditional distribution is

Prob{𝑋(1) = 𝑗|𝑋(0) = 𝑖} = 𝑓𝑖𝑗
∑𝑗 𝑓𝑖𝑗

Remark:

• This formula is a workhorse for applied economic forecasters.

8.10 Statistical Independence

Random variables X and Y are statistically independent if

Prob{𝑋 = 𝑖, 𝑌 = 𝑗} = 𝑓𝑖𝑔𝑗

where

Prob{𝑋 = 𝑖} = 𝑓𝑖 ≥ 0� ∑ 𝑓𝑖 = 1
Prob{𝑌 = 𝑗} = 𝑔𝑗 ≥ 0� ∑ 𝑔𝑗 = 1
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Conditional distributions are

Prob{𝑋 = 𝑖|𝑌 = 𝑗} = 𝑓𝑖𝑔𝑗
∑𝑖 𝑓𝑖𝑔𝑗

= 𝑓𝑖𝑔𝑗
𝑔𝑗

= 𝑓𝑖

Prob{𝑌 = 𝑗|𝑋 = 𝑖} = 𝑓𝑖𝑔𝑗
∑𝑗 𝑓𝑖𝑔𝑗

= 𝑓𝑖𝑔𝑗
𝑓𝑖

= 𝑔𝑗

8.11 Means and Variances

The mean and variance of a discrete random variable 𝑋 are

𝜇𝑋 ≡ 𝔼 [𝑋] = ∑
𝑘

𝑘Prob{𝑋 = 𝑘}

𝜎2
𝑋 ≡ 𝔻 [𝑋] = ∑

𝑘
(𝑘 − 𝔼 [𝑋])2 Prob{𝑋 = 𝑘}

A continuous random variable having density 𝑓𝑋(𝑥)) has mean and variance

𝜇𝑋 ≡ 𝔼 [𝑋] = ∫
∞

−∞
𝑥𝑓𝑋(𝑥)𝑑𝑥

𝜎2
𝑋 ≡ 𝔻 [𝑋] = E [(𝑋 − 𝜇𝑋)2] = ∫

∞

−∞
(𝑥 − 𝜇𝑋)2 𝑓𝑋(𝑥)𝑑𝑥

8.12 Matrix Representations of Some Bivariate Distributions

Let’s use matrices to represent a joint distribution, conditional distribution, marginal distribution, and the mean and
variance of a bivariate random variable.

The table below illustrates a probability distribution for a bivariate random variable.

𝐹 = [𝑓𝑖𝑗] = [ 0.3 0.2
0.1 0.4 ]

Marginal distributions are

Prob(𝑋 = 𝑖) = ∑
𝑗

𝑓𝑖𝑗 = 𝑢𝑖

Prob(𝑌 = 𝑗) = ∑
𝑖

𝑓𝑖𝑗 = 𝑣𝑗

Sampling:

Let’s write some Python code that let’s us draw some long samples and compute relative frequencies.

The code will let us check whether the “sampling” distribution agrees with the “population” distribution - confirming that
the population distribution correctly tells us the relative frequencies that we should expect in a large sample.

# specify parameters
xs = np.array([0, 1])
ys = np.array([10, 20])
f = np.array([[0.3, 0.2], [0.1, 0.4]])
f_cum = np.cumsum(f)

(continues on next page)
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(continued from previous page)

# draw random numbers
p = np.random.rand(1_000_000)
x = np.vstack([xs[1]*np.ones(p.shape), ys[1]*np.ones(p.shape)])
# map to the bivariate distribution

x[0, p < f_cum[2]] = xs[1]
x[1, p < f_cum[2]] = ys[0]

x[0, p < f_cum[1]] = xs[0]
x[1, p < f_cum[1]] = ys[1]

x[0, p < f_cum[0]] = xs[0]
x[1, p < f_cum[0]] = ys[0]
print(x)

[[ 0. 1. 1. ... 0. 1. 0.]
[10. 20. 20. ... 10. 20. 10.]]

Note

To generate random draws from the joint distribution 𝐹 , we use the inverse CDF technique described in this com-
panion lecture.

# marginal distribution
xp = np.sum(x[0, :] == xs[0])/1_000_000
yp = np.sum(x[1, :] == ys[0])/1_000_000

# print output
print("marginal distribution for x")
xmtb = pt.PrettyTable()
xmtb.field_names = ['x_value', 'x_prob']
xmtb.add_row([xs[0], xp])
xmtb.add_row([xs[1], 1-xp])
print(xmtb)

print("\nmarginal distribution for y")
ymtb = pt.PrettyTable()
ymtb.field_names = ['y_value', 'y_prob']
ymtb.add_row([ys[0], yp])
ymtb.add_row([ys[1], 1-yp])
print(ymtb)

marginal distribution for x
+---------+---------------------+
| x_value | x_prob |
+---------+---------------------+
| 0 | 0.500183 |
| 1 | 0.49981699999999996 |
+---------+---------------------+

marginal distribution for y
+---------+----------+
| y_value | y_prob |
+---------+----------+

(continues on next page)
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(continued from previous page)

| 10 | 0.399149 |
| 20 | 0.600851 |
+---------+----------+

# conditional distributions
xc1 = x[0, x[1, :] == ys[0]]
xc2 = x[0, x[1, :] == ys[1]]
yc1 = x[1, x[0, :] == xs[0]]
yc2 = x[1, x[0, :] == xs[1]]

xc1p = np.sum(xc1 == xs[0])/len(xc1)
xc2p = np.sum(xc2 == xs[0])/len(xc2)
yc1p = np.sum(yc1 == ys[0])/len(yc1)
yc2p = np.sum(yc2 == ys[0])/len(yc2)

# print output
print("conditional distribution for x")
xctb = pt.PrettyTable()
xctb.field_names = ['y_value', 'prob(x=0)', 'prob(x=1)']
xctb.add_row([ys[0], xc1p, 1-xc1p])
xctb.add_row([ys[1], xc2p, 1-xc2p])
print(xctb)

print("\nconditional distribution for y")
yctb = pt.PrettyTable()
yctb.field_names = ['x_value', 'prob(y=10)', 'prob(y=20)']
yctb.add_row([xs[0], yc1p, 1-yc1p])
yctb.add_row([xs[1], yc2p, 1-yc2p])
print(yctb)

conditional distribution for x
+---------+---------------------+---------------------+
| y_value | prob(x=0) | prob(x=1) |
+---------+---------------------+---------------------+
| 10 | 0.751343483260637 | 0.24865651673936295 |
| 20 | 0.33333555240816776 | 0.6666644475918322 |
+---------+---------------------+---------------------+

conditional distribution for y
+---------+--------------------+---------------------+
| x_value | prob(y=10) | prob(y=20) |
+---------+--------------------+---------------------+
| 0 | 0.599576554980877 | 0.40042344501912297 |
| 1 | 0.1985746783322696 | 0.8014253216677304 |
+---------+--------------------+---------------------+

Let’s calculate population marginal and conditional probabilities using matrix algebra.

⎡
⎢
⎢
⎢
⎢
⎣

⋮ 𝑦1 𝑦2 ⋮ 𝑥
⋯ ⋮ ⋯ ⋯ ⋮ ⋯
𝑥1 ⋮ 0.3 0.2 ⋮ 0.5
𝑥2 ⋮ 0.1 0.4 ⋮ 0.5
⋯ ⋮ ⋯ ⋯ ⋮ ⋯
𝑦 ⋮ 0.4 0.6 ⋮ 1

⎤
⎥
⎥
⎥
⎥
⎦

⟹
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(1) Marginal distribution:

⎡
⎢
⎢
⎢
⎣

𝑣𝑎𝑟 ⋮ 𝑣𝑎𝑟1 𝑣𝑎𝑟2
⋯ ⋮ ⋯ ⋯
𝑥 ⋮ 0.5 0.5
⋯ ⋮ ⋯ ⋯
𝑦 ⋮ 0.4 0.6

⎤
⎥
⎥
⎥
⎦

(2) Conditional distribution:

⎡
⎢
⎢
⎢
⎣

𝑥 ⋮ 𝑥1 𝑥2
⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑦 = 𝑦1 ⋮ 0.3

0.4 = 0.75 0.1
0.4 = 0.25

⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑦 = 𝑦2 ⋮ 0.2

0.6 ≈ 0.33 0.4
0.6 ≈ 0.67

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑦 ⋮ 𝑦1 𝑦2
⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑥 = 𝑥1 ⋮ 0.3

0.5 = 0.6 0.2
0.5 = 0.4

⋯ ⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑥 = 𝑥2 ⋮ 0.1

0.5 = 0.2 0.4
0.5 = 0.8

⎤
⎥
⎥
⎥
⎦

These population objects closely resemble the sample counterparts computed above.

Let’s wrap some of the functions we have used in a Python class that will let us generate and sample from a discrete
bivariate joint distribution.

class discrete_bijoint:

def __init__(self, f, xs, ys):
'''initialization
-----------------
parameters:
f: the bivariate joint probability matrix
xs: values of x vector
ys: values of y vector
'''
self.f, self.xs, self.ys = f, xs, ys

def joint_tb(self):
'''print the joint distribution table'''
xs = self.xs
ys = self.ys
f = self.f
jtb = pt.PrettyTable()
jtb.field_names = ['x_value/y_value', *ys, 'marginal sum for x']
for i in range(len(xs)):

jtb.add_row([xs[i], *f[i, :], np.sum(f[i, :])])
jtb.add_row(['marginal_sum for y', *np.sum(f, 0), np.sum(f)])
print("\nThe joint probability distribution for x and y\n", jtb)
self.jtb = jtb

def draw(self, n):
'''draw random numbers
----------------------
parameters:
n: number of random numbers to draw
'''

(continues on next page)
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xs = self.xs
ys = self.ys
f_cum = np.cumsum(self.f)
p = np.random.rand(n)
x = np.empty([2, p.shape[0]])
lf = len(f_cum)
lx = len(xs)-1
ly = len(ys)-1
for i in range(lf):

x[0, p < f_cum[lf-1-i]] = xs[lx]
x[1, p < f_cum[lf-1-i]] = ys[ly]
if ly == 0:

lx -= 1
ly = len(ys)-1

else:
ly -= 1

self.x = x
self.n = n

def marg_dist(self):
'''marginal distribution'''
x = self.x
xs = self.xs
ys = self.ys
n = self.n
xmp = [np.sum(x[0, :] == xs[i])/n for i in range(len(xs))]
ymp = [np.sum(x[1, :] == ys[i])/n for i in range(len(ys))]

# print output
xmtb = pt.PrettyTable()
ymtb = pt.PrettyTable()
xmtb.field_names = ['x_value', 'x_prob']
ymtb.field_names = ['y_value', 'y_prob']
for i in range(max(len(xs), len(ys))):

if i < len(xs):
xmtb.add_row([xs[i], xmp[i]])

if i < len(ys):
ymtb.add_row([ys[i], ymp[i]])

xmtb.add_row(['sum', np.sum(xmp)])
ymtb.add_row(['sum', np.sum(ymp)])
print("\nmarginal distribution for x\n", xmtb)
print("\nmarginal distribution for y\n", ymtb)

self.xmp = xmp
self.ymp = ymp

def cond_dist(self):
'''conditional distribution'''
x = self.x
xs = self.xs
ys = self.ys
n = self.n
xcp = np.empty([len(ys), len(xs)])
ycp = np.empty([len(xs), len(ys)])
for i in range(max(len(ys), len(xs))):

if i < len(ys):
xi = x[0, x[1, :] == ys[i]]

(continues on next page)
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idx = xi.reshape(len(xi), 1) == xs.reshape(1, len(xs))
xcp[i, :] = np.sum(idx, 0)/len(xi)

if i < len(xs):
yi = x[1, x[0, :] == xs[i]]
idy = yi.reshape(len(yi), 1) == ys.reshape(1, len(ys))
ycp[i, :] = np.sum(idy, 0)/len(yi)

# print output
xctb = pt.PrettyTable()
yctb = pt.PrettyTable()
xctb.field_names = ['x_value', *xs, 'sum']
yctb.field_names = ['y_value', *ys, 'sum']
for i in range(max(len(xs), len(ys))):

if i < len(ys):
xctb.add_row([ys[i], *xcp[i], np.sum(xcp[i])])

if i < len(xs):
yctb.add_row([xs[i], *ycp[i], np.sum(ycp[i])])

print("\nconditional distribution for x\n", xctb)
print("\nconditional distribution for y\n", yctb)

self.xcp = xcp
self.xyp = ycp

Let’s apply our code to some examples.

Example 1

# joint
d = discrete_bijoint(f, xs, ys)
d.joint_tb()

The joint probability distribution for x and y
+--------------------+-----+--------------------+--------------------+

| x_value/y_value | 10 | 20 | marginal sum for x |
+--------------------+-----+--------------------+--------------------+
| 0 | 0.3 | 0.2 | 0.5 |
| 1 | 0.1 | 0.4 | 0.5 |
| marginal_sum for y | 0.4 | 0.6000000000000001 | 1.0 |
+--------------------+-----+--------------------+--------------------+

# sample marginal
d.draw(1_000_000)
d.marg_dist()

marginal distribution for x
+---------+----------+

| x_value | x_prob |
+---------+----------+
| 0 | 0.500372 |
| 1 | 0.499628 |
| sum | 1.0 |
+---------+----------+

marginal distribution for y
+---------+---------+

| y_value | y_prob |

(continues on next page)
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+---------+---------+
| 10 | 0.40071 |
| 20 | 0.59929 |
| sum | 1.0 |
+---------+---------+

# sample conditional
d.cond_dist()

conditional distribution for x
+---------+---------------------+--------------------+-----+

| x_value | 0 | 1 | sum |
+---------+---------------------+--------------------+-----+
| 10 | 0.749958823089017 | 0.250041176910983 | 1.0 |
| 20 | 0.33348796075355835 | 0.6665120392464416 | 1.0 |
+---------+---------------------+--------------------+-----+

conditional distribution for y
+---------+---------------------+--------------------+-----+

| y_value | 10 | 20 | sum |
+---------+---------------------+--------------------+-----+
| 0 | 0.6005851646375097 | 0.3994148353624903 | 1.0 |
| 1 | 0.20053719967655936 | 0.7994628003234406 | 1.0 |
+---------+---------------------+--------------------+-----+

Example 2

xs_new = np.array([10, 20, 30])
ys_new = np.array([1, 2])
f_new = np.array([[0.2, 0.1], [0.1, 0.3], [0.15, 0.15]])
d_new = discrete_bijoint(f_new, xs_new, ys_new)
d_new.joint_tb()

The joint probability distribution for x and y
+--------------------+---------------------+------+---------------------+

| x_value/y_value | 1 | 2 | marginal sum for x |
+--------------------+---------------------+------+---------------------+
| 10 | 0.2 | 0.1 | 0.30000000000000004 |
| 20 | 0.1 | 0.3 | 0.4 |
| 30 | 0.15 | 0.15 | 0.3 |
| marginal_sum for y | 0.45000000000000007 | 0.55 | 1.0 |
+--------------------+---------------------+------+---------------------+

d_new.draw(1_000_000)
d_new.marg_dist()

marginal distribution for x
+---------+----------+

| x_value | x_prob |
+---------+----------+
| 10 | 0.299719 |
| 20 | 0.399886 |
| 30 | 0.300395 |
| sum | 1.0 |
+---------+----------+

(continues on next page)
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marginal distribution for y
+---------+----------+

| y_value | y_prob |
+---------+----------+
| 1 | 0.450052 |
| 2 | 0.549948 |
| sum | 1.0 |
+---------+----------+

d_new.cond_dist()

conditional distribution for x
+---------+---------------------+---------------------+---------------------+-----
↪+

| x_value | 10 | 20 | 30 | sum |
+---------+---------------------+---------------------+---------------------+-----+
| 1 | 0.44373094664616536 | 0.22163661088052047 | 0.3346324424733142 | 1.0 |
| 2 | 0.18186628553972375 | 0.545757053394139 | 0.27237666106613717 | 1.0 |
+---------+---------------------+---------------------+---------------------+-----+

conditional distribution for y
+---------+--------------------+--------------------+-----+

| y_value | 1 | 2 | sum |
+---------+--------------------+--------------------+-----+
| 10 | 0.6662974319279058 | 0.3337025680720942 | 1.0 |
| 20 | 0.2494410907108526 | 0.7505589092891474 | 1.0 |
| 30 | 0.5013465603621898 | 0.4986534396378102 | 1.0 |
+---------+--------------------+--------------------+-----+

8.13 A Continuous Bivariate Random Vector

A two-dimensional Gaussian distribution has joint density

𝑓(𝑥, 𝑦) = (2𝜋𝜎1𝜎2√1 − 𝜌2)−1 exp [− 1
2(1 − 𝜌2) ((𝑥 − 𝜇1)2

𝜎2
1

− 2𝜌(𝑥 − 𝜇1)(𝑦 − 𝜇2)
𝜎1𝜎2

+ (𝑦 − 𝜇2)2

𝜎2
2

)]

1
2𝜋𝜎1𝜎2√1 − 𝜌2 exp [− 1

2(1 − 𝜌2) ((𝑥 − 𝜇1)2

𝜎2
1

− 2𝜌(𝑥 − 𝜇1)(𝑦 − 𝜇2)
𝜎1𝜎2

+ (𝑦 − 𝜇2)2

𝜎2
2

)]

We start with a bivariate normal distribution pinned down by

𝜇 = [ 0
5 ] , Σ = [ 5 .2

.2 1 ]

# define the joint probability density function
def func(x, y, μ1=0, μ2=5, σ1=np.sqrt(5), σ2=np.sqrt(1), ρ=.2/np.sqrt(5*1)):

A = (2 * np.pi * σ1 * σ2 * np.sqrt(1 - ρ**2))**(-1)
B = -1 / 2 / (1 - ρ**2)
C1 = (x - μ1)**2 / σ1**2
C2 = 2 * ρ * (x - μ1) * (y - μ2) / σ1 / σ2
C3 = (y - μ2)**2 / σ2**2
return A * np.exp(B * (C1 - C2 + C3))
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μ1 = 0
μ2 = 5
σ1 = np.sqrt(5)
σ2 = np.sqrt(1)
ρ = .2 / np.sqrt(5 * 1)

x = np.linspace(-10, 10, 1_000)
y = np.linspace(-10, 10, 1_000)
x_mesh, y_mesh = np.meshgrid(x, y, indexing="ij")

Joint Distribution

Let’s plot the population joint density.

# %matplotlib notebook

fig = plt.figure()
ax = plt.axes(projection='3d')

surf = ax.plot_surface(x_mesh, y_mesh, func(x_mesh, y_mesh), cmap='viridis')
plt.show()

# %matplotlib notebook

fig = plt.figure()
ax = plt.axes(projection='3d')

curve = ax.contour(x_mesh, y_mesh, func(x_mesh, y_mesh), zdir='x')
plt.ylabel('y')

(continues on next page)
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ax.set_zlabel('f')
ax.set_xticks([])
plt.show()

Next we can use a built-in numpy function to draw random samples, then calculate a sample marginal distribution from
the sample mean and variance.

μ= np.array([0, 5])
σ= np.array([[5, .2], [.2, 1]])
n = 1_000_000
data = np.random.multivariate_normal(μ, σ, n)
x = data[:, 0]
y = data[:, 1]

Marginal distribution

plt.hist(x, bins=1_000, alpha=0.6)
μx_hat, σx_hat = np.mean(x), np.std(x)
print(μx_hat, σx_hat)
x_sim = np.random.normal(μx_hat, σx_hat, 1_000_000)
plt.hist(x_sim, bins=1_000, alpha=0.4, histtype="step")
plt.show()

-0.002820225094279458 2.235741794380018
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plt.hist(y, bins=1_000, density=True, alpha=0.6)
μy_hat, σy_hat = np.mean(y), np.std(y)
print(μy_hat, σy_hat)
y_sim = np.random.normal(μy_hat, σy_hat, 1_000_000)
plt.hist(y_sim, bins=1_000, density=True, alpha=0.4, histtype="step")
plt.show()

5.000575927756814 1.0006473299999006
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Conditional distribution

For a bivariate normal population distribution, the conditional distributions are also normal:

[𝑋|𝑌 = 𝑦] ∼ ℕ[𝜇𝑋 + 𝜌𝜎𝑋
𝑦 − 𝜇𝑌

𝜎𝑌
, 𝜎2

𝑋(1 − 𝜌2)]

[𝑌 |𝑋 = 𝑥] ∼ ℕ[𝜇𝑌 + 𝜌𝜎𝑌
𝑥 − 𝜇𝑋

𝜎𝑋
, 𝜎2

𝑌 (1 − 𝜌2)]

Note

Please see this quantecon lecture for more details.

Let’s approximate the joint density by discretizing and mapping the approximating joint density into a matrix.

We can compute the discretized marginal density by just using matrix algebra and noting that

Prob{𝑋 = 𝑖|𝑌 = 𝑗} = 𝑓𝑖𝑗
∑𝑖 𝑓𝑖𝑗

Fix 𝑦 = 0.
# discretized marginal density
x = np.linspace(-10, 10, 1_000_000)
z = func(x, y=0) / np.sum(func(x, y=0))
plt.plot(x, z)
plt.show()
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The mean and variance are computed by

𝔼 [𝑋|𝑌 = 𝑗] = ∑
𝑖

𝑖𝑃𝑟𝑜𝑏{𝑋 = 𝑖|𝑌 = 𝑗} = ∑
𝑖

𝑖 𝑓𝑖𝑗
∑𝑖 𝑓𝑖𝑗

𝔻 [𝑋|𝑌 = 𝑗] = ∑
𝑖

(𝑖 − 𝜇𝑋|𝑌 =𝑗)
2 𝑓𝑖𝑗

∑𝑖 𝑓𝑖𝑗

Let’s draw from a normal distribution with above mean and variance and check how accurate our approximation is.

# discretized mean
μx = np.dot(x, z)

# discretized standard deviation
σx = np.sqrt(np.dot((x - μx)**2, z))

# sample
zz = np.random.normal(μx, σx, 1_000_000)
plt.hist(zz, bins=300, density=True, alpha=0.3, range=[-10, 10])
plt.show()
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Fix 𝑥 = 1.
y = np.linspace(0, 10, 1_000_000)
z = func(x=1, y=y) / np.sum(func(x=1, y=y))
plt.plot(y,z)
plt.show()
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# discretized mean and standard deviation
μy = np.dot(y,z)
σy = np.sqrt(np.dot((y - μy)**2, z))

# sample
zz = np.random.normal(μy,σy,1_000_000)
plt.hist(zz, bins=100, density=True, alpha=0.3)
plt.show()
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We compare with the analytically computed parameters and note that they are close.

print(μx, σx)
print(μ1 + ρ * σ1 * (0 - μ2) / σ2, np.sqrt(σ1**2 * (1 - ρ**2)))

print(μy, σy)
print(μ2 + ρ * σ2 * (1 - μ1) / σ1, np.sqrt(σ2**2 * (1 - ρ**2)))

-0.9997518414498444 2.2265841331697698
-1.0 2.227105745132009
5.039999456960768 0.9959851265795593
5.04 0.9959919678390986

8.14 Sum of Two Independently Distributed Random Variables

Let 𝑋, 𝑌 be two independent discrete random variables that take values in 𝑋̄, ̄𝑌 , respectively.

Define a new random variable 𝑍 = 𝑋 + 𝑌 .

Evidently, 𝑍 takes values from ̄𝑍 defined as follows:

𝑋̄ = {0, 1, … , 𝐼 − 1}; 𝑓𝑖 = Prob{𝑋 = 𝑖}
̄𝑌 = {0, 1, … , 𝐽 − 1}; 𝑔𝑗 = Prob{𝑌 = 𝑗}
̄𝑍 = {0, 1, … , 𝐼 + 𝐽 − 2}; ℎ𝑘 = Prob{𝑋 + 𝑌 = 𝑘}
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Independence of 𝑋 and 𝑌 implies that

ℎ𝑘 = Prob{𝑋 = 0, 𝑌 = 𝑘} + Prob{𝑋 = 1, 𝑌 = 𝑘 − 1} + … + Prob{𝑋 = 𝑘, 𝑌 = 0}
ℎ𝑘 = 𝑓0𝑔𝑘 + 𝑓1𝑔𝑘−1 + … + 𝑓𝑘−1𝑔1 + 𝑓𝑘𝑔0 for 𝑘 = 0, 1, … , 𝐼 + 𝐽 − 2

Thus, we have:

ℎ𝑘 =
𝑘

∑
𝑖=0

𝑓𝑖𝑔𝑘−𝑖 ≡ 𝑓 ∗ 𝑔

where 𝑓 ∗ 𝑔 denotes the convolution of the 𝑓 and 𝑔 sequences.
Similarly, for two random variables 𝑋, 𝑌 with densities 𝑓𝑋, 𝑔𝑌 , the density of 𝑍 = 𝑋 + 𝑌 is

𝑓𝑍(𝑧) = ∫
∞

−∞
𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥)𝑑𝑥 ≡ 𝑓𝑋 ∗ 𝑔𝑌

where 𝑓𝑋 ∗ 𝑔𝑌 denotes the convolution of the 𝑓𝑋 and 𝑔𝑌 functions.

8.15 Coupling

Start with a joint distribution

𝑓𝑖𝑗 = Prob{𝑋 = 𝑖, 𝑌 = 𝑗}
𝑖 = 0, ⋯ �𝐼 − 1
𝑗 = 0, ⋯ �𝐽 − 1
stacked to an 𝐼 × 𝐽 matrix
𝑒.𝑔. 𝐼 = 1, 𝐽 = 1

where

[𝑓11 𝑓12
𝑓21 𝑓22

]

From the joint distribution, we have shown above that we obtain unique marginal distributions.

Now we’ll try to go in a reverse direction.

We’ll find that from two marginal distributions, can we usually construct more than one joint distribution that verifies
these marginals.

Each of these joint distributions is called a coupling of the two marginal distributions.

Let’s start with marginal distributions

Prob{𝑋 = 𝑖} = ∑
𝑗

𝑓𝑖𝑗 = 𝜇𝑖, 𝑖 = 0, ⋯ , 𝐼 − 1

Prob{𝑌 = 𝑗} = ∑
𝑖

𝑓𝑖𝑗 = 𝜈𝑗, 𝑗 = 0, ⋯ , 𝐽 − 1

Given two marginal distribution, 𝜇 for 𝑋 and 𝜈 for 𝑌 , a joint distribution 𝑓𝑖𝑗 is said to be a coupling of 𝜇 and 𝜈.
Example:
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Consider the following bivariate example.

Prob{𝑋 = 0} =1 − 𝑞 = 𝜇0
Prob{𝑋 = 1} =𝑞 = 𝜇1
Prob{𝑌 = 0} =1 − 𝑟 = 𝜈0
Prob{𝑌 = 1} =𝑟 = 𝜈1

where 0 ≤ 𝑞 < 𝑟 ≤ 1

We construct two couplings.

The first coupling if our two marginal distributions is the joint distribution

𝑓𝑖𝑗 = [(1 − 𝑞)(1 − 𝑟) (1 − 𝑞)𝑟
𝑞(1 − 𝑟) 𝑞𝑟 ]

To verify that it is a coupling, we check that

(1 − 𝑞)(1 − 𝑟) + (1 − 𝑞)𝑟 + 𝑞(1 − 𝑟) + 𝑞𝑟 = 1
𝜇0 = (1 − 𝑞)(1 − 𝑟) + (1 − 𝑞)𝑟 = 1 − 𝑞

𝜇1 = 𝑞(1 − 𝑟) + 𝑞𝑟 = 𝑞
𝜈0 = (1 − 𝑞)(1 − 𝑟) + (1 − 𝑟)𝑞 = 1 − 𝑟

𝜇1 = 𝑟(1 − 𝑞) + 𝑞𝑟 = 𝑟

A second coupling of our two marginal distributions is the joint distribution

𝑓𝑖𝑗 = [(1 − 𝑟) 𝑟 − 𝑞
0 𝑞 ]

The verify that this is a coupling, note that

1 − 𝑟 + 𝑟 − 𝑞 + 𝑞 = 1
𝜇0 = 1 − 𝑞
𝜇1 = 𝑞
𝜈0 = 1 − 𝑟
𝜈1 = 𝑟

Thus, our two proposed joint distributions have the same marginal distributions.

But the joint distributions differ.

Thus, multiple joint distributions [𝑓𝑖𝑗] can have the same marginals.
Remark:

• Couplings are important in optimal transport problems and in Markov processes. Please see this lecture about
optimal transport

8.16 Copula Functions

Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑁 random variables and that

• their marginal distributions are 𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁), and
• their joint distribution is 𝐻(𝑥1, 𝑥2, … , 𝑥𝑁)
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Then there exists a copula function 𝐶(⋅) that verifies

𝐻(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁)).

We can obtain

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐻[𝐹 −1
1 (𝑢1), 𝐹 −1

2 (𝑢2), … , 𝐹 −1
𝑁 (𝑢𝑁)]

In a reverse direction of logic, given univariate marginal distributions 𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁) and a
copula function 𝐶(⋅), the function 𝐻(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁)) is a coupling of
𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑁(𝑥𝑁).
Thus, for given marginal distributions, we can use a copula function to determine a joint distribution when the associated
univariate random variables are not independent.

Copula functions are often used to characterize dependence of random variables.

Discrete marginal distribution

As mentioned above, for two given marginal distributions there can be more than one coupling.

For example, consider two random variables 𝑋, 𝑌 with distributions

Prob(𝑋 = 0) = 0.6,
Prob(𝑋 = 1) = 0.4,
Prob(𝑌 = 0) = 0.3,
Prob(𝑌 = 1) = 0.7,

For these two random variables there can be more than one coupling.

Let’s first generate X and Y.

# define parameters
mu = np.array([0.6, 0.4])
nu = np.array([0.3, 0.7])

# number of draws
draws = 1_000_000

# generate draws from uniform distribution
p = np.random.rand(draws)

# generate draws of X and Y via uniform distribution
x = np.ones(draws)
y = np.ones(draws)
x[p <= mu[0]] = 0
x[p > mu[0]] = 1
y[p <= nu[0]] = 0
y[p > nu[0]] = 1

# calculate parameters from draws
q_hat = sum(x[x == 1])/draws
r_hat = sum(y[y == 1])/draws

# print output
print("distribution for x")
xmtb = pt.PrettyTable()
xmtb.field_names = ['x_value', 'x_prob']

(continues on next page)
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xmtb.add_row([0, 1-q_hat])
xmtb.add_row([1, q_hat])
print(xmtb)

print("distribution for y")
ymtb = pt.PrettyTable()
ymtb.field_names = ['y_value', 'y_prob']
ymtb.add_row([0, 1-r_hat])
ymtb.add_row([1, r_hat])
print(ymtb)

distribution for x
+---------+----------+
| x_value | x_prob |
+---------+----------+
| 0 | 0.599628 |
| 1 | 0.400372 |
+---------+----------+
distribution for y
+---------+----------+
| y_value | y_prob |
+---------+----------+
| 0 | 0.299156 |
| 1 | 0.700844 |
+---------+----------+

Let’s now take our two marginal distributions, one for 𝑋, the other for 𝑌 , and construct two distinct couplings.

For the first joint distribution:

Prob(𝑋 = 𝑖, 𝑌 = 𝑗) = 𝑓𝑖𝑗

where

[𝑓𝑖𝑗] = [ 0.18 0.42
0.12 0.28 ]

Let’s use Python to construct this joint distribution and then verify that its marginal distributions are what we want.

# define parameters
f1 = np.array([[0.18, 0.42], [0.12, 0.28]])
f1_cum = np.cumsum(f1)

# number of draws
draws1 = 1_000_000

# generate draws from uniform distribution
p = np.random.rand(draws1)

# generate draws of first copuling via uniform distribution
c1 = np.vstack([np.ones(draws1), np.ones(draws1)])
# X=0, Y=0
c1[0, p <= f1_cum[0]] = 0
c1[1, p <= f1_cum[0]] = 0
# X=0, Y=1
c1[0, (p > f1_cum[0])*(p <= f1_cum[1])] = 0
c1[1, (p > f1_cum[0])*(p <= f1_cum[1])] = 1

(continues on next page)
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# X=1, Y=0
c1[0, (p > f1_cum[1])*(p <= f1_cum[2])] = 1
c1[1, (p > f1_cum[1])*(p <= f1_cum[2])] = 0
# X=1, Y=1
c1[0, (p > f1_cum[2])*(p <= f1_cum[3])] = 1
c1[1, (p > f1_cum[2])*(p <= f1_cum[3])] = 1

# calculate parameters from draws
f1_00 = sum((c1[0, :] == 0)*(c1[1, :] == 0))/draws1
f1_01 = sum((c1[0, :] == 0)*(c1[1, :] == 1))/draws1
f1_10 = sum((c1[0, :] == 1)*(c1[1, :] == 0))/draws1
f1_11 = sum((c1[0, :] == 1)*(c1[1, :] == 1))/draws1

# print output of first joint distribution
print("first joint distribution for c1")
c1_mtb = pt.PrettyTable()
c1_mtb.field_names = ['c1_x_value', 'c1_y_value', 'c1_prob']
c1_mtb.add_row([0, 0, f1_00])
c1_mtb.add_row([0, 1, f1_01])
c1_mtb.add_row([1, 0, f1_10])
c1_mtb.add_row([1, 1, f1_11])
print(c1_mtb)

first joint distribution for c1
+------------+------------+----------+
| c1_x_value | c1_y_value | c1_prob |
+------------+------------+----------+
| 0 | 0 | 0.180115 |
| 0 | 1 | 0.41967 |
| 1 | 0 | 0.119986 |
| 1 | 1 | 0.280229 |
+------------+------------+----------+

# calculate parameters from draws
c1_q_hat = sum(c1[0, :] == 1)/draws1
c1_r_hat = sum(c1[1, :] == 1)/draws1

# print output
print("marginal distribution for x")
c1_x_mtb = pt.PrettyTable()
c1_x_mtb.field_names = ['c1_x_value', 'c1_x_prob']
c1_x_mtb.add_row([0, 1-c1_q_hat])
c1_x_mtb.add_row([1, c1_q_hat])
print(c1_x_mtb)

print("marginal distribution for y")
c1_ymtb = pt.PrettyTable()
c1_ymtb.field_names = ['c1_y_value', 'c1_y_prob']
c1_ymtb.add_row([0, 1-c1_r_hat])
c1_ymtb.add_row([1, c1_r_hat])
print(c1_ymtb)

marginal distribution for x
+------------+-----------+
| c1_x_value | c1_x_prob |

(continues on next page)
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+------------+-----------+
| 0 | 0.599785 |
| 1 | 0.400215 |
+------------+-----------+
marginal distribution for y
+------------+---------------------+
| c1_y_value | c1_y_prob |
+------------+---------------------+
| 0 | 0.30010099999999995 |
| 1 | 0.699899 |
+------------+---------------------+

Now, let’s construct another joint distribution that is also a coupling of 𝑋 and 𝑌

[𝑓𝑖𝑗] = [ 0.3 0.3
0 0.4 ]

# define parameters
f2 = np.array([[0.3, 0.3], [0, 0.4]])
f2_cum = np.cumsum(f2)

# number of draws
draws2 = 1_000_000

# generate draws from uniform distribution
p = np.random.rand(draws2)

# generate draws of first coupling via uniform distribution
c2 = np.vstack([np.ones(draws2), np.ones(draws2)])
# X=0, Y=0
c2[0, p <= f2_cum[0]] = 0
c2[1, p <= f2_cum[0]] = 0
# X=0, Y=1
c2[0, (p > f2_cum[0])*(p <= f2_cum[1])] = 0
c2[1, (p > f2_cum[0])*(p <= f2_cum[1])] = 1
# X=1, Y=0
c2[0, (p > f2_cum[1])*(p <= f2_cum[2])] = 1
c2[1, (p > f2_cum[1])*(p <= f2_cum[2])] = 0
# X=1, Y=1
c2[0, (p > f2_cum[2])*(p <= f2_cum[3])] = 1
c2[1, (p > f2_cum[2])*(p <= f2_cum[3])] = 1

# calculate parameters from draws
f2_00 = sum((c2[0, :] == 0)*(c2[1, :] == 0))/draws2
f2_01 = sum((c2[0, :] == 0)*(c2[1, :] == 1))/draws2
f2_10 = sum((c2[0, :] == 1)*(c2[1, :] == 0))/draws2
f2_11 = sum((c2[0, :] == 1)*(c2[1, :] == 1))/draws2

# print output of second joint distribution
print("first joint distribution for c2")
c2_mtb = pt.PrettyTable()
c2_mtb.field_names = ['c2_x_value', 'c2_y_value', 'c2_prob']
c2_mtb.add_row([0, 0, f2_00])
c2_mtb.add_row([0, 1, f2_01])
c2_mtb.add_row([1, 0, f2_10])
c2_mtb.add_row([1, 1, f2_11])
print(c2_mtb)
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first joint distribution for c2
+------------+------------+----------+
| c2_x_value | c2_y_value | c2_prob |
+------------+------------+----------+
| 0 | 0 | 0.300118 |
| 0 | 1 | 0.300208 |
| 1 | 0 | 0.0 |
| 1 | 1 | 0.399674 |
+------------+------------+----------+

# calculate parameters from draws
c2_q_hat = sum(c2[0, :] == 1)/draws2
c2_r_hat = sum(c2[1, :] == 1)/draws2

# print output
print("marginal distribution for x")
c2_x_mtb = pt.PrettyTable()
c2_x_mtb.field_names = ['c2_x_value', 'c2_x_prob']
c2_x_mtb.add_row([0, 1-c2_q_hat])
c2_x_mtb.add_row([1, c2_q_hat])
print(c2_x_mtb)

print("marginal distribution for y")
c2_ymtb = pt.PrettyTable()
c2_ymtb.field_names = ['c2_y_value', 'c2_y_prob']
c2_ymtb.add_row([0, 1-c2_r_hat])
c2_ymtb.add_row([1, c2_r_hat])
print(c2_ymtb)

marginal distribution for x
+------------+-----------+
| c2_x_value | c2_x_prob |
+------------+-----------+
| 0 | 0.600326 |
| 1 | 0.399674 |
+------------+-----------+
marginal distribution for y
+------------+-----------+
| c2_y_value | c2_y_prob |
+------------+-----------+
| 0 | 0.300118 |
| 1 | 0.699882 |
+------------+-----------+

We have verified that both joint distributions, 𝑐1 and 𝑐2, have identical marginal distributions of 𝑋 and 𝑌 , respectively.

So they are both couplings of 𝑋 and 𝑌 .
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CHAPTER

NINE

SOME PROBABILITY DISTRIBUTIONS

This lecture is a supplement to this lecture on statistics with matrices.

It describes some popular distributions and uses Python to sample from them.

It also describes a way to sample from an arbitrary probability distribution that you make up by transforming a sample
from a uniform probability distribution.

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install prettytable

As usual, we’ll start with some imports

import numpy as np
import matplotlib.pyplot as plt
import prettytable as pt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib_inline.backend_inline import set_matplotlib_formats
set_matplotlib_formats('retina')

9.1 Some Discrete Probability Distributions

Let’s write some Python code to compute means and variances of some univariate random variables.

We’ll use our code to

• compute population means and variances from the probability distribution

• generate a sample of 𝑁 independently and identically distributed draws and compute sample means and variances

• compare population and sample means and variances

9.2 Geometric distribution

A discrete geometric distribution has probability mass function

Prob(𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝, 𝑘 = 1, 2, … , 𝑝 ∈ (0, 1)

where 𝑘 = 1, 2, … is the number of trials before the first success.
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The mean and variance of this one-parameter probability distribution are

𝔼(𝑋) = 1
𝑝

𝕍𝕒𝕣(𝑋) = 1 − 𝑝
𝑝2

Let’s use Python draw observations from the distribution and compare the sample mean and variance with the theoretical
results.

# specify parameters
p, n = 0.3, 1_000_000

# draw observations from the distribution
x = np.random.geometric(p, n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, "\nThe sample variance is: ", σ2_hat)

# compare with theoretical results
print("\nThe population mean is: ", 1/p)
print("The population variance is: ", (1-p)/(p**2))

The sample mean is: 3.333217
The sample variance is: 7.780021430911002

The population mean is: 3.3333333333333335
The population variance is: 7.777777777777778

9.3 Pascal (negative binomial) distribution

Consider a sequence of independent Bernoulli trials.

Let 𝑝 be the probability of success.
Let 𝑋 be a random variable that represents the number of failures before we get 𝑟 successes.
Its distribution is

𝑋 ∼ 𝑁𝐵(𝑟, 𝑝)

Prob(𝑋 = 𝑘; 𝑟, 𝑝) = [𝑘 + 𝑟 − 1
𝑟 − 1 ] 𝑝𝑟(1 − 𝑝)𝑘

Here, we choose from among 𝑘 + 𝑟 − 1 possible outcomes because the last draw is by definition a success.

We compute the mean and variance to be

𝔼(𝑋) = 𝑘(1 − 𝑝)
𝑝

𝕍(𝑋) = 𝑘(1 − 𝑝)
𝑝2
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# specify parameters
r, p, n = 10, 0.3, 1_000_000

# draw observations from the distribution
x = np.random.negative_binomial(r, p, n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, "\nThe sample variance is: ", σ2_hat)
print("\nThe population mean is: ", r*(1-p)/p)
print("The population variance is: ", r*(1-p)/p**2)

The sample mean is: 23.324423
The sample variance is: 77.80231071707101

The population mean is: 23.333333333333336
The population variance is: 77.77777777777779

9.4 Newcomb–Benford distribution

The Newcomb–Benford law fits many data sets, e.g., reports of incomes to tax authorities, in which the leading digit is
more likely to be small than large.

See https://en.wikipedia.org/wiki/Benford’s_law

A Benford probability distribution is

Prob{𝑋 = 𝑑} = log10(𝑑 + 1) − log10(𝑑) = log10 (1 + 1
𝑑 )

where 𝑑 ∈ {1, 2, ⋯ , 9} can be thought of as a first digit in a sequence of digits.
This is a well defined discrete distribution since we can verify that probabilities are nonnegative and sum to 1.

log10 (1 + 1
𝑑 ) ≥ 0,

9
∑
𝑑=1

log10 (1 + 1
𝑑 ) = 1

The mean and variance of a Benford distribution are

𝔼 [𝑋] =
9

∑
𝑑=1

𝑑 log10 (1 + 1
𝑑 ) ≃ 3.4402

𝕍 [𝑋] =
9

∑
𝑑=1

(𝑑 − 𝔼 [𝑋])2 log10 (1 + 1
𝑑 ) ≃ 6.0565

We verify the above and compute the mean and variance using numpy.

Benford_pmf = np.array([np.log10(1+1/d) for d in range(1,10)])
k = np.arange(1, 10)

# mean
mean = k @ Benford_pmf

(continues on next page)
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# variance
var = ((k - mean) ** 2) @ Benford_pmf

# verify sum to 1
print(np.sum(Benford_pmf))
print(mean)
print(var)

0.9999999999999999
3.4402369671232065
6.056512631375667

# plot distribution
plt.plot(range(1,10), Benford_pmf, 'o')
plt.title('Benford\'s distribution')
plt.show()

Now let’s turn to some continuous random variables.
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9.5 Univariate Gaussian distribution

We write

𝑋 ∼ 𝑁(𝜇, 𝜎2)

to indicate the probability distribution

𝑓(𝑥|𝑢, 𝜎2) = 1√
2𝜋𝜎2 𝑒[− 1

2𝜎2 (𝑥−𝑢)2]

In the below example, we set 𝜇 = 0, 𝜎 = 0.1.
# specify parameters
μ, σ = 0, 0.1

# specify number of draws
n = 1_000_000

# draw observations from the distribution
x = np.random.normal(μ, σ, n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ_hat = np.std(x)

print("The sample mean is: ", μ_hat)
print("The sample standard deviation is: ", σ_hat)

The sample mean is: 6.869339970384018e-05
The sample standard deviation is: 0.10015682927569956

# compare
print(μ-μ_hat < 1e-3)
print(σ-σ_hat < 1e-3)

True
True

9.6 Uniform Distribution

𝑋 ∼ 𝑈[𝑎, 𝑏]

𝑓(𝑥) = {
1

𝑏−𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏
0, otherwise

The population mean and variance are

𝔼(𝑋) = 𝑎 + 𝑏
2

𝕍(𝑋) = (𝑏 − 𝑎)2

12
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# specify parameters
a, b = 10, 20

# specify number of draws
n = 1_000_000

# draw observations from the distribution
x = a + (b-a)*np.random.rand(n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, "\nThe sample variance is: ", σ2_hat)
print("\nThe population mean is: ", (a+b)/2)
print("The population variance is: ", (b-a)**2/12)

The sample mean is: 15.000811123050934
The sample variance is: 8.331127766768551

The population mean is: 15.0
The population variance is: 8.333333333333334

9.7 A Mixed Discrete-Continuous Distribution

We’ll motivate this example with a little story.

Suppose that to apply for a job you take an interview and either pass or fail it.

You have 5% chance to pass an interview and you know your salary will uniformly distributed in the interval 300~400 a
day only if you pass.

We can describe your daily salary as a discrete-continuous variable with the following probabilities:

𝑃(𝑋 = 0) = 0.95

𝑃(300 ≤ 𝑋 ≤ 400) = ∫
400

300
𝑓(𝑥) 𝑑𝑥 = 0.05

𝑓(𝑥) = 0.0005
Let’s start by generating a random sample and computing sample moments.

x = np.random.rand(1_000_000)
# x[x > 0.95] = 100*x[x > 0.95]+300
x[x > 0.95] = 100*np.random.rand(len(x[x > 0.95]))+300
x[x <= 0.95] = 0

μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, "\nThe sample variance is: ", σ2_hat)

The sample mean is: 17.44856963619694
The sample variance is: 5844.218362290354
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The analytical mean and variance can be computed:

𝜇 = ∫
400

300
𝑥𝑓(𝑥)𝑑𝑥

= 0.0005 ∫
400

300
𝑥𝑑𝑥

= 0.0005 × 1
2𝑥2∣

400

300

𝜎2 = 0.95 × (0 − 17.5)2 + ∫
400

300
(𝑥 − 17.5)2𝑓(𝑥)𝑑𝑥

= 0.95 × 17.52 + 0.0005 ∫
400

300
(𝑥 − 17.5)2𝑑𝑥

= 0.95 × 17.52 + 0.0005 × 1
3(𝑥 − 17.5)3∣

400

300

mean = 0.0005*0.5*(400**2 - 300**2)
var = 0.95*17.5**2+0.0005/3*((400-17.5)**3-(300-17.5)**3)
print("mean: ", mean)
print("variance: ", var)

mean: 17.5
variance: 5860.416666666666

9.8 Drawing a Random Number from a Particular Distribution

Suppose we have at our disposal a pseudo random number that draws a uniform random variable, i.e., one with probability
distribution

Prob{𝑋̃ = 𝑖} = 1
𝐼 , 𝑖 = 0, … , 𝐼 − 1

How can we transform 𝑋̃ to get a random variable 𝑋 for which Prob{𝑋 = 𝑖} = 𝑓𝑖, 𝑖 = 0, … , 𝐼 − 1, where 𝑓𝑖 is an
arbitary discrete probability distribution on 𝑖 = 0, 1, … , 𝐼 − 1?
The key tool is the inverse of a cumulative distribution function (CDF).

Observe that the CDF of a distribution is monotone and non-decreasing, taking values between 0 and 1.
We can draw a sample of a random variable 𝑋 with a known CDF as follows:

• draw a random variable 𝑢 from a uniform distribution on [0, 1]
• pass the sample value of 𝑢 into the “inverse” target CDF for 𝑋
• 𝑋 has the target CDF

Thus, knowing the “inverse” CDF of a distribution is enough to simulate from this distribution.

Note

The “inverse” CDF needs to exist for this method to work.
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The inverse CDF is

𝐹 −1(𝑢) ≡ inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝑢} (0 < 𝑢 < 1)

Here we use infimum because a CDF is a non-decreasing and right-continuous function.

Thus, suppose that

• 𝑈 is a uniform random variable 𝑈 ∈ [0, 1]
• We want to sample a random variable 𝑋 whose CDF is 𝐹 .

It turns out that if we use draw uniform random numbers 𝑈 and then compute 𝑋 from

𝑋 = 𝐹 −1(𝑈),

then 𝑋 is a random variable with CDF 𝐹𝑋(𝑥) = 𝐹(𝑥) = Prob{𝑋 ≤ 𝑥}.
We’ll verify this in the special case in which 𝐹 is continuous and bijective so that its inverse function exists and can be
denoted by 𝐹 −1.

Note that

𝐹𝑋 (𝑥) = Prob {𝑋 ≤ 𝑥}
= Prob {𝐹 −1 (𝑈) ≤ 𝑥}
= Prob {𝑈 ≤ 𝐹 (𝑥)}
= 𝐹 (𝑥)

where the last equality occurs because 𝑈 is distributed uniformly on [0, 1] while 𝐹(𝑥) is a constant given 𝑥 that also lies
on [0, 1].
Let’s use numpy to compute some examples.

Example: A continuous geometric (exponential) distribution

Let 𝑋 follow a geometric distribution, with parameter 𝜆 > 0.
Its density function is

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥

Its CDF is

𝐹(𝑥) = ∫
∞

0
𝜆𝑒−𝜆𝑥 = 1 − 𝑒−𝜆𝑥

Let 𝑈 follow a uniform distribution on [0, 1].
𝑋 is a random variable such that 𝑈 = 𝐹(𝑋).
The distribution 𝑋 can be deduced from

𝑈 = 𝐹(𝑋) = 1 − 𝑒−𝜆𝑋

⟹ − 𝑈 = 𝑒−𝜆𝑋

⟹ log(1 − 𝑈) = −𝜆𝑋

⟹ 𝑋 = (1 − 𝑈)
−𝜆

Let’s draw 𝑢 from 𝑈[0, 1] and calculate 𝑥 = 𝑙𝑜𝑔(1−𝑈)
−𝜆 .

We’ll check whether 𝑋 seems to follow a continuous geometric (exponential) distribution.

Let’s check with numpy.
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n, λ = 1_000_000, 0.3

# draw uniform numbers
u = np.random.rand(n)

# transform
x = -np.log(1-u)/λ

# draw geometric distributions
x_g = np.random.exponential(1 / λ, n)

# plot and compare
plt.hist(x, bins=100, density=True)
plt.show()

plt.hist(x_g, bins=100, density=True, alpha=0.6)
plt.show()
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Geometric distribution

Let 𝑋 distributed geometrically, that is

Prob(𝑋 = 𝑖) = (1 − 𝜆)𝜆𝑖, 𝜆 ∈ (0, 1), 𝑖 = 0, 1, …
∞

∑
𝑖=0

Prob(𝑋 = 𝑖) = 1 ⟷ (1 − 𝜆)
∞

∑
𝑖=0

𝜆𝑖 = 1 − 𝜆
1 − 𝜆 = 1

Its CDF is given by

Prob(𝑋 ≤ 𝑖) = (1 − 𝜆)
𝑖

∑
𝑗=0

𝜆𝑖

= (1 − 𝜆)[1 − 𝜆𝑖+1

1 − 𝜆 ]
= 1 − 𝜆𝑖+1

= 𝐹(𝑋) = 𝐹𝑖

Again, let ̃𝑈 follow a uniform distribution and we want to find 𝑋 such that 𝐹(𝑋) = ̃𝑈 .

Let’s deduce the distribution of 𝑋 from
̃𝑈 = 𝐹(𝑋) = 1 − 𝜆𝑥+1

1 − ̃𝑈 = 𝜆𝑥+1

log(1 − ̃𝑈) = (𝑥 + 1) log𝜆
log(1 − ̃𝑈)

log𝜆 = 𝑥 + 1

log(1 − ̃𝑈)
log𝜆 − 1 = 𝑥
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However, ̃𝑈 = 𝐹 −1(𝑋) may not be an integer for any 𝑥 ≥ 0.
So let

𝑥 = ⌈ log(1 − ̃𝑈)
log𝜆 − 1⌉

where ⌈.⌉ is the ceiling function.
Thus 𝑥 is the smallest integer such that the discrete geometric CDF is greater than or equal to ̃𝑈 .

We can verify that 𝑥 is indeed geometrically distributed by the following numpy program.

Note

The exponential distribution is the continuous analog of geometric distribution.

n, λ = 1_000_000, 0.8

# draw uniform numbers
u = np.random.rand(n)

# transform
x = np.ceil(np.log(1-u)/np.log(λ) - 1)

# draw geometric distributions
x_g = np.random.geometric(1-λ, n)

# plot and compare
plt.hist(x, bins=150, density=True)
plt.show()
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np.random.geometric(1-λ, n).max()

np.int64(64)

np.log(0.4)/np.log(0.3)

np.float64(0.7610560044063083)

plt.hist(x_g, bins=150, density=True, alpha=0.6)
plt.show()
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10.1 Overview

This lecture illustrates two of the most important theorems of probability and statistics: The law of large numbers (LLN)
and the central limit theorem (CLT).

These beautiful theorems lie behind many of the most fundamental results in econometrics and quantitative economic
modeling.

The lecture is based around simulations that show the LLN and CLT in action.

We also demonstrate how the LLN and CLT break down when the assumptions they are based on do not hold.

In addition, we examine several useful extensions of the classical theorems, such as

• The delta method, for smooth functions of random variables, and

• the multivariate case.

Some of these extensions are presented as exercises.

We’ll need the following imports:

import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats import t, beta, lognorm, expon, gamma, uniform
from scipy.stats import gaussian_kde, poisson, binom, norm, chi2
from mpl_toolkits.mplot3d import Axes3D

(continues on next page)
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(continued from previous page)

from matplotlib.collections import PolyCollection
from scipy.linalg import inv, sqrtm

10.2 Relationships

The CLT refines the LLN.

The LLN gives conditions under which sample moments converge to population moments as sample size increases.

The CLT provides information about the rate at which sample moments converge to population moments as sample size
increases.

10.3 LLN

We begin with the law of large numbers, which tells us when sample averages will converge to their population means.

10.3.1 The Classical LLN

The classical law of large numbers concerns independent and identically distributed (IID) random variables.

Here is the strongest version of the classical LLN, known as Kolmogorov’s strong law.

Let 𝑋1, … , 𝑋𝑛 be independent and identically distributed scalar random variables, with common distribution 𝐹 .

When it exists, let 𝜇 denote the common mean of this sample:

𝜇 ∶= 𝔼𝑋 = ∫ 𝑥𝐹(𝑑𝑥)

In addition, let

𝑋̄𝑛 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

Kolmogorov’s strong law states that, if 𝔼|𝑋| is finite, then

ℙ {𝑋̄𝑛 → 𝜇 as 𝑛 → ∞} = 1 (10.1)

What does this last expression mean?

Let’s think about it from a simulation perspective, imagining for a moment that our computer can generate perfect random
samples (which of course it can’t).

Let’s also imagine that we can generate infinite sequences so that the statement 𝑋̄𝑛 → 𝜇 can be evaluated.

In this setting, (10.1) should be interpreted as meaning that the probability of the computer producing a sequence where
𝑋̄𝑛 → 𝜇 fails to occur is zero.
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10.3.2 Proof

The proof of Kolmogorov’s strong law is nontrivial – see, for example, theorem 8.3.5 of [Dudley, 2002].

On the other hand, we can prove a weaker version of the LLN very easily and still get most of the intuition.

The version we prove is as follows: If 𝑋1, … , 𝑋𝑛 is IID with 𝔼𝑋2
𝑖 < ∞, then, for any 𝜖 > 0, we have

ℙ {|𝑋̄𝑛 − 𝜇| ≥ 𝜖} → 0 as 𝑛 → ∞ (10.2)

(This version is weaker because we claim only convergence in probability rather than almost sure convergence, and assume
a finite second moment)

To see that this is so, fix 𝜖 > 0, and let 𝜎2 be the variance of each 𝑋𝑖.

Recall the Chebyshev inequality, which tells us that

ℙ {|𝑋̄𝑛 − 𝜇| ≥ 𝜖} ≤ 𝔼[(𝑋̄𝑛 − 𝜇)2]
𝜖2

(10.3)

Now observe that

𝔼[(𝑋̄𝑛 − 𝜇)2] = 𝔼
⎧{
⎨{⎩

[ 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)]
2⎫}
⎬}⎭

= 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝔼(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇)

= 1
𝑛2

𝑛
∑
𝑖=1

𝔼(𝑋𝑖 − 𝜇)2

= 𝜎2

𝑛
Here the crucial step is at the third equality, which follows from independence.

Independence means that if 𝑖 ≠ 𝑗, then the covariance term 𝔼(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇) drops out.
As a result, 𝑛2 − 𝑛 terms vanish, leading us to a final expression that goes to zero in 𝑛.
Combining our last result with (10.3), we come to the estimate

ℙ {|𝑋̄𝑛 − 𝜇| ≥ 𝜖} ≤ 𝜎2

𝑛𝜖2 (10.4)

The claim in (10.2) is now clear.

Of course, if the sequence 𝑋1, … , 𝑋𝑛 is correlated, then the cross-product terms 𝔼(𝑋𝑖 −𝜇)(𝑋𝑗 −𝜇) are not necessarily
zero.

While this doesn’t mean that the same line of argument is impossible, it does mean that if we want a similar result then
the covariances should be “almost zero” for “most” of these terms.

In a long sequence, this would be true if, for example, 𝔼(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇) approached zero when the difference between
𝑖 and 𝑗 became large.
In other words, the LLN can still work if the sequence 𝑋1, … , 𝑋𝑛 has a kind of “asymptotic independence”, in the sense
that correlation falls to zero as variables become further apart in the sequence.

This idea is very important in time series analysis, and we’ll come across it again soon enough.
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10.3.3 Illustration

Let’s now illustrate the classical IID law of large numbers using simulation.

In particular, we aim to generate some sequences of IID random variables and plot the evolution of 𝑋̄𝑛 as 𝑛 increases.

Below is a figure that does just this (as usual, you can click on it to expand it).

It shows IID observations from three different distributions and plots 𝑋̄𝑛 against 𝑛 in each case.

The dots represent the underlying observations 𝑋𝑖 for 𝑖 = 1, … , 100.
In each of the three cases, convergence of 𝑋̄𝑛 to 𝜇 occurs as predicted

n = 100

# Arbitrary collection of distributions
distributions = {"student's t with 10 degrees of freedom": t(10),

"β(2, 2)": beta(2, 2),
"lognormal LN(0, 1/2)": lognorm(0.5),
"γ(5, 1/2)": gamma(5, scale=2),
"poisson(4)": poisson(4),
"exponential with λ = 1": expon(1)}

# Create a figure and some axes
num_plots = 3
fig, axes = plt.subplots(num_plots, 1, figsize=(10, 20))

# Set some plotting parameters to improve layout
bbox = (0., 1.02, 1., .102)
legend_args = {'ncol': 2,

'bbox_to_anchor': bbox,
'loc': 3,
'mode': 'expand'}

plt.subplots_adjust(hspace=0.5)

for ax in axes:
# Choose a randomly selected distribution
name = random.choice(list(distributions.keys()))
distribution = distributions.pop(name)

# Generate n draws from the distribution
data = distribution.rvs(n)

# Compute sample mean at each n
sample_mean = np.empty(n)
for i in range(n):

sample_mean[i] = np.mean(data[:i+1])

# Plot
ax.plot(list(range(n)), data, 'o', color='grey', alpha=0.5)
axlabel = r'$\bar{X}_n$ for $X_i \sim$' + name
ax.plot(list(range(n)), sample_mean, 'g-', lw=3, alpha=0.6, label=axlabel)
m = distribution.mean()
ax.plot(list(range(n)), [m] * n, 'k--', lw=1.5, label=r'$\mu$')
ax.vlines(list(range(n)), m, data, lw=0.2)
ax.legend(**legend_args, fontsize=12)

plt.show()
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The three distributions are chosen at random from a selection stored in the dictionary distributions.

10.4 CLT

Next, we turn to the central limit theorem, which tells us about the distribution of the deviation between sample averages
and population means.

10.4.1 Statement of the Theorem

The central limit theorem is one of the most remarkable results in all of mathematics.

In the classical IID setting, it tells us the following:

If the sequence 𝑋1, … , 𝑋𝑛 is IID, with common mean 𝜇 and common variance 𝜎2 ∈ (0, ∞), then
√𝑛(𝑋̄𝑛 − 𝜇) 𝑑→ 𝑁(0, 𝜎2) as 𝑛 → ∞ (10.5)

Here
𝑑→ 𝑁(0, 𝜎2) indicates convergence in distribution to a centered (i.e, zero mean) normal with standard deviation 𝜎.

10.4.2 Intuition

The striking implication of the CLT is that for any distribution with finite second moment, the simple operation of adding
independent copies always leads to a Gaussian curve.

A relatively simple proof of the central limit theorem can be obtained by working with characteristic functions (see, e.g.,
theorem 9.5.6 of [Dudley, 2002]).

The proof is elegant but almost anticlimactic, and it provides surprisingly little intuition.

In fact, all of the proofs of the CLT that we know are similar in this respect.

Why does adding independent copies produce a bell-shaped distribution?

Part of the answer can be obtained by investigating the addition of independent Bernoulli random variables.

In particular, let 𝑋𝑖 be binary, with ℙ{𝑋𝑖 = 0} = ℙ{𝑋𝑖 = 1} = 0.5, and let 𝑋1, … , 𝑋𝑛 be independent.

Think of 𝑋𝑖 = 1 as a “success”, so that 𝑌𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 is the number of successes in 𝑛 trials.

The next figure plots the probability mass function of 𝑌𝑛 for 𝑛 = 1, 2, 4, 8
fig, axes = plt.subplots(2, 2, figsize=(10, 6))
plt.subplots_adjust(hspace=0.4)
axes = axes.flatten()
ns = [1, 2, 4, 8]
dom = list(range(9))

for ax, n in zip(axes, ns):
b = binom(n, 0.5)
ax.bar(dom, b.pmf(dom), alpha=0.6, align='center')
ax.set(xlim=(-0.5, 8.5), ylim=(0, 0.55),

xticks=list(range(9)), yticks=(0, 0.2, 0.4),
title=f'$n = {n}$')

plt.show()
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When 𝑛 = 1, the distribution is flat — one success or no successes have the same probability.

When 𝑛 = 2 we can either have 0, 1 or 2 successes.
Notice the peak in probability mass at the mid-point 𝑘 = 1.
The reason is that there are more ways to get 1 success (“fail then succeed” or “succeed then fail”) than to get zero or two
successes.

Moreover, the two trials are independent, so the outcomes “fail then succeed” and “succeed then fail” are just as likely as
the outcomes “fail then fail” and “succeed then succeed”.

(If there was positive correlation, say, then “succeed then fail” would be less likely than “succeed then succeed”)

Here, already we have the essence of the CLT: addition under independence leads probability mass to pile up in the
middle and thin out at the tails.

For 𝑛 = 4 and 𝑛 = 8 we again get a peak at the “middle” value (halfway between the minimum and the maximum
possible value).

The intuition is the same — there are simply more ways to get these middle outcomes.

If we continue, the bell-shaped curve becomes even more pronounced.

We are witnessing the binomial approximation of the normal distribution.
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10.4.3 Simulation 1

Since the CLT seems almost magical, running simulations that verify its implications is one good way to build intuition.

To this end, we now perform the following simulation

1. Choose an arbitrary distribution 𝐹 for the underlying observations 𝑋𝑖.

2. Generate independent draws of 𝑌𝑛 ∶= √𝑛(𝑋̄𝑛 − 𝜇).
3. Use these draws to compute some measure of their distribution — such as a histogram.

4. Compare the latter to 𝑁(0, 𝜎2).
Here’s some code that does exactly this for the exponential distribution 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥.

(Please experiment with other choices of 𝐹 , but remember that, to conform with the conditions of the CLT, the distri-
bution must have a finite second moment.)

# Set parameters
n = 250 # Choice of n
k = 100000 # Number of draws of Y_n
distribution = expon(2) # Exponential distribution, λ = 1/2
μ, s = distribution.mean(), distribution.std()

# Draw underlying RVs. Each row contains a draw of X_1,..,X_n
data = distribution.rvs((k, n))
# Compute mean of each row, producing k draws of \bar X_n
sample_means = data.mean(axis=1)
# Generate observations of Y_n
Y = np.sqrt(n) * (sample_means - μ)

# Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmin, xmax = -3 * s, 3 * s
ax.set_xlim(xmin, xmax)
ax.hist(Y, bins=60, alpha=0.5, density=True)
xgrid = np.linspace(xmin, xmax, 200)
ax.plot(xgrid, norm.pdf(xgrid, scale=s), 'k-', lw=2, label=r'$N(0, \sigma^2)$')
ax.legend()

plt.show()
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Notice the absence of for loops — every operation is vectorized, meaning that the major calculations are all shifted to
highly optimized C code.

The fit to the normal density is already tight and can be further improved by increasing n.

You can also experiment with other specifications of 𝐹 .

10.4.4 Simulation 2

Our next simulation is somewhat like the first, except that we aim to track the distribution of 𝑌𝑛 ∶= √𝑛(𝑋̄𝑛 − 𝜇) as 𝑛
increases.

In the simulation, we’ll be working with random variables having 𝜇 = 0.
Thus, when 𝑛 = 1, we have 𝑌1 = 𝑋1, so the first distribution is just the distribution of the underlying random variable.

For 𝑛 = 2, the distribution of 𝑌2 is that of (𝑋1 + 𝑋2)/
√

2, and so on.
What we expect is that, regardless of the distribution of the underlying random variable, the distribution of 𝑌𝑛 will smooth
out into a bell-shaped curve.

The next figure shows this process for 𝑋𝑖 ∼ 𝑓 , where 𝑓 was specified as the convex combination of three different beta
densities.

(Taking a convex combination is an easy way to produce an irregular shape for 𝑓 .)
In the figure, the closest density is that of 𝑌1, while the furthest is that of 𝑌5

beta_dist = beta(2, 2)

def gen_x_draws(k):
"""
Returns a flat array containing k independent draws from the
distribution of X, the underlying random variable. This distribution

(continues on next page)
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(continued from previous page)

is itself a convex combination of three beta distributions.
"""
bdraws = beta_dist.rvs((3, k))
# Transform rows, so each represents a different distribution
bdraws[0, :] -= 0.5
bdraws[1, :] += 0.6
bdraws[2, :] -= 1.1
# Set X[i] = bdraws[j, i], where j is a random draw from {0, 1, 2}
js = np.random.randint(0, 2, size=k)
X = bdraws[js, np.arange(k)]
# Rescale, so that the random variable is zero mean
m, sigma = X.mean(), X.std()
return (X - m) / sigma

nmax = 5
reps = 100000
ns = list(range(1, nmax + 1))

# Form a matrix Z such that each column is reps independent draws of X
Z = np.empty((reps, nmax))
for i in range(nmax):

Z[:, i] = gen_x_draws(reps)
# Take cumulative sum across columns
S = Z.cumsum(axis=1)
# Multiply j-th column by sqrt j
Y = (1 / np.sqrt(ns)) * S

# Plot
ax = plt.figure(figsize = (10, 6)).add_subplot(projection='3d')

a, b = -3, 3
gs = 100
xs = np.linspace(a, b, gs)

# Build verts
greys = np.linspace(0.3, 0.7, nmax)
verts = []
for n in ns:

density = gaussian_kde(Y[:, n-1])
ys = density(xs)
verts.append(list(zip(xs, ys)))

poly = PolyCollection(verts, facecolors=[str(g) for g in greys])
poly.set_alpha(0.85)
ax.add_collection3d(poly, zs=ns, zdir='x')

ax.set(xlim3d=(1, nmax), xticks=(ns), ylabel='$Y_n$', zlabel='$p(y_n)$',
xlabel=("n"), yticks=((-3, 0, 3)), ylim3d=(a, b),
zlim3d=(0, 0.4), zticks=((0.2, 0.4)))

ax.invert_xaxis()
# Rotates the plot 30 deg on z axis and 45 deg on x axis
ax.view_init(30, 45)
plt.show()
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As expected, the distribution smooths out into a bell curve as 𝑛 increases.

We leave you to investigate its contents if you wish to know more.

If you run the file from the ordinary IPython shell, the figure should pop up in a window that you can rotate with your
mouse, giving different views on the density sequence.

10.4.5 The Multivariate Case

The law of large numbers and central limit theorem work just as nicely in multidimensional settings.

To state the results, let’s recall some elementary facts about random vectors.

A random vector X is just a sequence of 𝑘 random variables (𝑋1, … , 𝑋𝑘).
Each realization of X is an element of ℝ𝑘.

A collection of random vectors X1, … ,X𝑛 is called independent if, given any 𝑛 vectors x1, … , x𝑛 in ℝ𝑘, we have

ℙ{X1 ≤ x1, … ,X𝑛 ≤ x𝑛} = ℙ{X1 ≤ x1} × ⋯ × ℙ{X𝑛 ≤ x𝑛}

(The vector inequality X ≤ x means that 𝑋𝑗 ≤ 𝑥𝑗 for 𝑗 = 1, … , 𝑘)
Let 𝜇𝑗 ∶= 𝔼[𝑋𝑗] for all 𝑗 = 1, … , 𝑘.
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The expectation 𝔼[X] of X is defined to be the vector of expectations:

𝔼[X] ∶=
⎛⎜⎜⎜
⎝

𝔼[𝑋1]
𝔼[𝑋2]

⋮
𝔼[𝑋𝑘]

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝜇1
𝜇2
⋮

𝜇𝑘

⎞⎟⎟⎟
⎠

=∶ 𝜇

The variance-covariance matrix of random vector X is defined as

Var[X] ∶= 𝔼[(X − 𝜇)(X − 𝜇)′]

Expanding this out, we get

Var[X] =
⎛⎜⎜⎜
⎝

𝔼[(𝑋1 − 𝜇1)(𝑋1 − 𝜇1)] ⋯ 𝔼[(𝑋1 − 𝜇1)(𝑋𝑘 − 𝜇𝑘)]
𝔼[(𝑋2 − 𝜇2)(𝑋1 − 𝜇1)] ⋯ 𝔼[(𝑋2 − 𝜇2)(𝑋𝑘 − 𝜇𝑘)]

⋮ ⋮ ⋮
𝔼[(𝑋𝑘 − 𝜇𝑘)(𝑋1 − 𝜇1)] ⋯ 𝔼[(𝑋𝑘 − 𝜇𝑘)(𝑋𝑘 − 𝜇𝑘)]

⎞⎟⎟⎟
⎠

The 𝑗, 𝑘-th term is the scalar covariance between 𝑋𝑗 and 𝑋𝑘.

With this notation, we can proceed to the multivariate LLN and CLT.

Let X1, … ,X𝑛 be a sequence of independent and identically distributed random vectors, each one taking values in ℝ𝑘.

Let 𝜇 be the vector 𝔼[X𝑖], and let Σ be the variance-covariance matrix of X𝑖.

Interpreting vector addition and scalar multiplication in the usual way (i.e., pointwise), let

X̄𝑛 ∶= 1
𝑛

𝑛
∑
𝑖=1

X𝑖

In this setting, the LLN tells us that

ℙ {X̄𝑛 → 𝜇 as 𝑛 → ∞} = 1 (10.6)

Here X̄𝑛 → 𝜇 means that ‖X̄𝑛 − 𝜇‖ → 0, where ‖ ⋅ ‖ is the standard Euclidean norm.
The CLT tells us that, provided Σ is finite,

√𝑛(X̄𝑛 − 𝜇) 𝑑→ 𝑁(0, Σ) as 𝑛 → ∞ (10.7)

10.5 Exercises

Exercise 10.5.1

One very useful consequence of the central limit theorem is as follows.

Assume the conditions of the CLT as stated above.

If 𝑔 ∶ ℝ → ℝ is differentiable at 𝜇 and 𝑔′(𝜇) ≠ 0, then
√𝑛{𝑔(𝑋̄𝑛) − 𝑔(𝜇)} 𝑑→ 𝑁(0, 𝑔′(𝜇)2𝜎2) as 𝑛 → ∞ (10.8)

This theorem is used frequently in statistics to obtain the asymptotic distribution of estimators — many of which can
be expressed as functions of sample means.

(These kinds of results are often said to use the “delta method”.)
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The proof is based on a Taylor expansion of 𝑔 around the point 𝜇.
Taking the result as given, let the distribution 𝐹 of each 𝑋𝑖 be uniform on [0, 𝜋/2] and let 𝑔(𝑥) = sin(𝑥).
Derive the asymptotic distribution of

√𝑛{𝑔(𝑋̄𝑛)−𝑔(𝜇)} and illustrate convergence in the same spirit as the program
discussed above.

What happens when you replace [0, 𝜋/2] with [0, 𝜋]?
What is the source of the problem?

Solution to Exercise 10.5.1

Here is one solution

"""
Illustrates the delta method, a consequence of the central limit theorem.
"""

# Set parameters
n = 250
replications = 100000
distribution = uniform(loc=0, scale=(np.pi / 2))
μ, s = distribution.mean(), distribution.std()

g = np.sin
g_prime = np.cos

# Generate obs of sqrt{n} (g(X_n) - g(μ))
data = distribution.rvs((replications, n))
sample_means = data.mean(axis=1) # Compute mean of each row
error_obs = np.sqrt(n) * (g(sample_means) - g(μ))

# Plot
asymptotic_sd = g_prime(μ) * s
fig, ax = plt.subplots(figsize=(10, 6))
xmin = -3 * g_prime(μ) * s
xmax = -xmin
ax.set_xlim(xmin, xmax)
ax.hist(error_obs, bins=60, alpha=0.5, density=True)
xgrid = np.linspace(xmin, xmax, 200)
lb = r"$N(0, g'(\mu)^2 \sigma^2)$"
ax.plot(xgrid, norm.pdf(xgrid, scale=asymptotic_sd), 'k-', lw=2, label=lb)
ax.legend()
plt.show()
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What happens when you replace [0, 𝜋/2] with [0, 𝜋]?
In this case, the mean 𝜇 of this distribution is 𝜋/2, and since 𝑔′ = cos, we have 𝑔′(𝜇) = 0.
Hence the conditions of the delta theorem are not satisfied.

Exercise 10.5.2

Here’s a result that’s often used in developing statistical tests, and is connected to themultivariate central limit theorem.

If you study econometric theory, you will see this result used again and again.

Assume the setting of the multivariate CLT discussed above, so that

1. X1, … ,X𝑛 is a sequence of IID random vectors, each taking values in ℝ𝑘.

2. 𝜇 ∶= 𝔼[X𝑖], and Σ is the variance-covariance matrix of X𝑖.

3. The convergence
√𝑛(X̄𝑛 − 𝜇) 𝑑→ 𝑁(0, Σ) (10.9)

is valid.

In a statistical setting, one often wants the right-hand side to be standard normal so that confidence intervals are
easily computed.

This normalization can be achieved on the basis of three observations.

First, if X is a random vector in ℝ𝑘 and A is constant and 𝑘 × 𝑘, then

Var[AX] = AVar[X]A′
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Second, by the continuous mapping theorem, if Z𝑛
𝑑→ Z in ℝ𝑘 and A is constant and 𝑘 × 𝑘, then

AZ𝑛
𝑑→ AZ

Third, if S is a 𝑘 × 𝑘 symmetric positive definite matrix, then there exists a symmetric positive definite matrix Q,
called the inverse square root of S, such that

QSQ′ = I

Here I is the 𝑘 × 𝑘 identity matrix.

Putting these things together, your first exercise is to show that if Q is the inverse square root of �, then

Z𝑛 ∶= √𝑛Q(X̄𝑛 − 𝜇) 𝑑→ Z ∼ 𝑁(0, I)

Applying the continuous mapping theorem one more time tells us that

‖Z𝑛‖2 𝑑→ ‖Z‖2

Given the distribution of Z, we conclude that

𝑛‖Q(X̄𝑛 − 𝜇)‖2 𝑑→ 𝜒2(𝑘) (10.10)

where 𝜒2(𝑘) is the chi-squared distribution with 𝑘 degrees of freedom.

(Recall that 𝑘 is the dimension of X𝑖, the underlying random vectors.)

Your second exercise is to illustrate the convergence in (10.10) with a simulation.

In doing so, let

X𝑖 ∶= ( 𝑊𝑖
𝑈𝑖 + 𝑊𝑖

)

where

• each 𝑊𝑖 is an IID draw from the uniform distribution on [−1, 1].
• each 𝑈𝑖 is an IID draw from the uniform distribution on [−2, 2].
• 𝑈𝑖 and 𝑊𝑖 are independent of each other.

Hint

1. scipy.linalg.sqrtm(A) computes the square root of A. You still need to invert it.
2. You should be able to work out Σ from the preceding information.

Solution to Exercise 10.5.2

First we want to verify the claim that

√𝑛Q(X̄𝑛 − 𝜇) 𝑑→ 𝑁(0, I)

This is straightforward given the facts presented in the exercise.
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Let

Y𝑛 ∶= √𝑛(X̄𝑛 − 𝜇) and Y ∼ 𝑁(0, Σ)

By the multivariate CLT and the continuous mapping theorem, we have

QY𝑛
𝑑→ QY

Since linear combinations of normal random variables are normal, the vector QY is also normal.

Its mean is clearly 0, and its variance-covariance matrix is

Var[QY] = QVar[Y]Q′ = QΣQ′ = I

In conclusion, QY𝑛
𝑑→ QY ∼ 𝑁(0, I), which is what we aimed to show.

Now we turn to the simulation exercise.

Our solution is as follows
# Set parameters
n = 250
replications = 50000
dw = uniform(loc=-1, scale=2) # Uniform(-1, 1)
du = uniform(loc=-2, scale=4) # Uniform(-2, 2)
sw, su = dw.std(), du.std()
vw, vu = sw**2, su**2
Σ = ((vw, vw), (vw, vw + vu))
Σ = np.array(Σ)

# Compute Σ^{-1/2}
Q = inv(sqrtm(Σ))

# Generate observations of the normalized sample mean
error_obs = np.empty((2, replications))
for i in range(replications):

# Generate one sequence of bivariate shocks
X = np.empty((2, n))
W = dw.rvs(n)
U = du.rvs(n)
# Construct the n observations of the random vector
X[0, :] = W
X[1, :] = W + U
# Construct the i-th observation of Y_n
error_obs[:, i] = np.sqrt(n) * X.mean(axis=1)

# Premultiply by Q and then take the squared norm
temp = Q @ error_obs
chisq_obs = np.sum(temp**2, axis=0)

# Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmax = 8
ax.set_xlim(0, xmax)
xgrid = np.linspace(0, xmax, 200)
lb = "Chi-squared with 2 degrees of freedom"
ax.plot(xgrid, chi2.pdf(xgrid, 2), 'k-', lw=2, label=lb)
ax.legend()
ax.hist(chisq_obs, bins=50, density=True)
plt.show()
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CHAPTER

ELEVEN

TWO MEANINGS OF PROBABILITY

11.1 Overview

This lecture illustrates two distinct interpretations of a probability distribution

• A frequentist interpretation as relative frequencies anticipated to occur in a large i.i.d. sample

• A Bayesian interpretation as a personal opinion (about a parameter or list of parameters) after seeing a collection
of observations

We recommend watching this video about hypothesis testing within the frequentist approach

https://youtu.be/8JIe_cz6qGA

After you watch that video, please watch the following video on the Bayesian approach to constructing coverage intervals

https://youtu.be/Pahyv9i_X2k

After you are familiar with the material in these videos, this lecture uses the Socratic method to to help consolidate your
understanding of the different questions that are answered by

• a frequentist confidence interval

• a Bayesian coverage interval

We do this by inviting you to write some Python code.

It would be especially useful if you tried doing this after each question that we pose for you, before proceeding to read
the rest of the lecture.

We provide our own answers as the lecture unfolds, but you’ll learn more if you try writing your own code before reading
and running ours.

Code for answering questions:

In addition to what’s in Anaconda, this lecture will deploy the following library:

pip install prettytable

To answer our coding questions, we’ll start with some imports

import numpy as np
import pandas as pd
import prettytable as pt
import matplotlib.pyplot as plt
from scipy.stats import binom
import scipy.stats as st
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Empowered with these Python tools, we’ll now explore the two meanings described above.

11.2 Frequentist Interpretation

Consider the following classic example.

The random variable 𝑋 takes on possible values 𝑘 = 0, 1, 2, … , 𝑛 with probabilties

Prob(𝑋 = 𝑘|𝜃) = ( 𝑛!
𝑘!(𝑛 − 𝑘)!) 𝜃𝑘(1 − 𝜃)𝑛−𝑘

where the fixed parameter 𝜃 ∈ (0, 1).
This is called the binomial distribution.

Here

• 𝜃 is the probability that one toss of a coin will be a head, an outcome that we encode as 𝑌 = 1.
• 1 − 𝜃 is the probability that one toss of the coin will be a tail, an outcome that we denote 𝑌 = 0.
• 𝑋 is the total number of heads that came up after flipping the coin 𝑛 times.

Consider the following experiment:

Take 𝐼 independent sequences of 𝑛 independent flips of the coin

Notice the repeated use of the adjective independent:

• we use it once to describe that we are drawing 𝑛 independent times from a Bernoulli distribution with parameter
𝜃 to arrive at one draw from a Binomial distribution with parameters 𝜃, 𝑛.

• we use it again to describe that we are then drawing 𝐼 sequences of 𝑛 coin draws.

Let 𝑦𝑖
ℎ ∈ {0, 1} be the realized value of 𝑌 on the ℎth flip during the 𝑖th sequence of flips.

Let ∑𝑛
ℎ=1 𝑦𝑖

ℎ denote the total number of times heads come up during the 𝑖th sequence of 𝑛 independent coin flips.

Let 𝑓𝑘 record the fraction of samples of length 𝑛 for which ∑𝑛
ℎ=1 𝑦𝑖

ℎ = 𝑘:

𝑓𝐼
𝑘 = number of samples of length n for which ∑𝑛

ℎ=1 𝑦𝑖
ℎ = 𝑘

𝐼
The probability Prob(𝑋 = 𝑘|𝜃) answers the following question:

• As 𝐼 becomes large, in what fraction of 𝐼 independent draws of 𝑛 coin flips should we anticipate 𝑘 heads to occur?
As usual, a law of large numbers justifies this answer.

Exercise 11.2.1

1. Please write a Python class to compute 𝑓𝐼
𝑘

2. Please use your code to compute 𝑓𝐼
𝑘 , 𝑘 = 0, … , 𝑛 and compare them to Prob(𝑋 = 𝑘|𝜃) for various values of

𝜃, 𝑛 and 𝐼
3. With the Law of Large numbers in mind, use your code to say something
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Solution to Exercise 11.2.1

Here is one solution:
class frequentist:

def __init__(self, θ, n, I):

'''
initialization
-----------------
parameters:
θ : probability that one toss of a coin will be a head with Y = 1
n : number of independent flips in each independent sequence of draws
I : number of independent sequence of draws

'''

self.θ, self.n, self.I = θ, n, I

def binomial(self, k):

'''compute the theoretical probability for specific input k'''

θ, n = self.θ, self.n
self.k = k
self.P = binom.pmf(k, n, θ)

def draw(self):

'''draw n independent flips for I independent sequences'''

θ, n, I = self.θ, self.n, self.I
sample = np.random.rand(I, n)
Y = (sample <= θ) * 1
self.Y = Y

def compute_fk(self, kk):

'''compute f_{k}^I for specific input k'''

Y, I = self.Y, self.I
K = np.sum(Y, 1)
f_kI = np.sum(K == kk) / I
self.f_kI = f_kI
self.kk = kk

def compare(self):

'''compute and print the comparison'''

n = self.n
comp = pt.PrettyTable()
comp.field_names = ['k', 'Theoretical', 'Frequentist']
self.draw()
for i in range(n):

self.binomial(i+1)
self.compute_fk(i+1)
comp.add_row([i+1, self.P, self.f_kI])
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print(comp)

θ, n, k, I = 0.7, 20, 10, 1_000_000

freq = frequentist(θ, n, I)

freq.compare()

+----+------------------------+-------------+
| k | Theoretical | Frequentist |
+----+------------------------+-------------+
| 1 | 1.6271660538000033e-09 | 0.0 |
| 2 | 3.606884752589999e-08 | 0.0 |
| 3 | 5.04963865362601e-07 | 1e-06 |
| 4 | 5.007558331512455e-06 | 5e-06 |
| 5 | 3.7389768875293014e-05 | 4.6e-05 |
| 6 | 0.00021810698510587546 | 0.000228 |
| 7 | 0.001017832597160754 | 0.001046 |
| 8 | 0.003859281930901185 | 0.003869 |
| 9 | 0.012006654896137007 | 0.01204 |
| 10 | 0.030817080900085007 | 0.030826 |
| 11 | 0.06536956554563476 | 0.064992 |
| 12 | 0.11439673970486108 | 0.114754 |
| 13 | 0.1642619852172365 | 0.164346 |
| 14 | 0.19163898275344252 | 0.191386 |
| 15 | 0.17886305056987967 | 0.179215 |
| 16 | 0.1304209743738704 | 0.130651 |
| 17 | 0.07160367220526209 | 0.071321 |
| 18 | 0.027845872524268643 | 0.027618 |
| 19 | 0.006839337111223895 | 0.006842 |
| 20 | 0.0007979226629761189 | 0.000814 |
+----+------------------------+-------------+

From the table above, can you see the law of large numbers at work?

Let’s do some more calculations.

Comparison with different 𝜃
Now we fix

𝑛 = 20, 𝑘 = 10, 𝐼 = 1, 000, 000
We’ll vary 𝜃 from 0.01 to 0.99 and plot outcomes against 𝜃.
θ_low, θ_high, npt = 0.01, 0.99, 50
thetas = np.linspace(θ_low, θ_high, npt)
P = []
f_kI = []
for i in range(npt):

freq = frequentist(thetas[i], n, I)
freq.binomial(k)
freq.draw()
freq.compute_fk(k)
P.append(freq.P)
f_kI.append(freq.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()

(continues on next page)
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(continued from previous page)

ax.plot(thetas, P, 'k-.', label='Theoretical')
ax.plot(thetas, f_kI, 'r--', label='Fraction')
plt.title(r'Comparison with different $\theta$', fontsize=16)
plt.xlabel(r'$\theta$', fontsize=15)
plt.ylabel('Fraction', fontsize=15)
plt.tick_params(labelsize=13)
plt.legend()
plt.show()

Comparison with different 𝑛
Now we fix 𝜃 = 0.7, 𝑘 = 10, 𝐼 = 1, 000, 000 and vary 𝑛 from 1 to 100.
Then we’ll plot outcomes.

n_low, n_high, nn = 1, 100, 50
ns = np.linspace(n_low, n_high, nn, dtype='int')
P = []
f_kI = []
for i in range(nn):

freq = frequentist(θ, ns[i], I)
freq.binomial(k)
freq.draw()
freq.compute_fk(k)
P.append(freq.P)

(continues on next page)
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(continued from previous page)

f_kI.append(freq.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()
ax.plot(ns, P, 'k-.', label='Theoretical')
ax.plot(ns, f_kI, 'r--', label='Frequentist')
plt.title(r'Comparison with different $n$', fontsize=16)
plt.xlabel(r'$n$', fontsize=15)
plt.ylabel('Fraction', fontsize=15)
plt.tick_params(labelsize=13)
plt.legend()
plt.show()

Comparison with different 𝐼
Now we fix 𝜃 = 0.7, 𝑛 = 20, 𝑘 = 10 and vary log(𝐼) from 2 to 7.
I_log_low, I_log_high, nI = 2, 6, 200
log_Is = np.linspace(I_log_low, I_log_high, nI)
Is = np.power(10, log_Is).astype(int)
P = []
f_kI = []
for i in range(nI):

freq = frequentist(θ, n, Is[i])

(continues on next page)
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(continued from previous page)

freq.binomial(k)
freq.draw()
freq.compute_fk(k)
P.append(freq.P)
f_kI.append(freq.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()
ax.plot(Is, P, 'k-.', label='Theoretical')
ax.plot(Is, f_kI, 'r--', label='Fraction')
plt.title(r'Comparison with different $I$', fontsize=16)
plt.xlabel(r'$I$', fontsize=15)
plt.ylabel('Fraction', fontsize=15)
plt.tick_params(labelsize=13)
plt.legend()
plt.show()

From the above graphs, we can see that 𝐼 , the number of independent sequences, plays an important role.
When 𝐼 becomes larger, the difference between theoretical probability and frequentist estimate becomes smaller.
Also, as long as 𝐼 is large enough, changing 𝜃 or 𝑛 does not substantially change the accuracy of the observed fraction as
an approximation of 𝜃.
The Law of Large Numbers is at work here.
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For each draw of an independent sequence, Prob(𝑋𝑖 = 𝑘|𝜃) is the same, so aggregating all draws forms an i.i.d sequence
of a binary random variable 𝜌𝑘,𝑖, 𝑖 = 1, 2, ...𝐼 , with a mean of Prob(𝑋 = 𝑘|𝜃) and a variance of

𝑛 ⋅ Prob(𝑋 = 𝑘|𝜃) ⋅ (1 − Prob(𝑋 = 𝑘|𝜃)).

So, by the LLN, the average of 𝑃𝑘,𝑖 converges to:

𝐸[𝜌𝑘,𝑖] = Prob(𝑋 = 𝑘|𝜃) = ( 𝑛!
𝑘!(𝑛 − 𝑘)!) 𝜃𝑘(1 − 𝜃)𝑛−𝑘

as 𝐼 goes to infinity.

11.3 Bayesian Interpretation

We again use a binomial distribution.

But now we don’t regard 𝜃 as being a fixed number.
Instead, we think of it as a random variable.

𝜃 is described by a probability distribution.
But now this probability distribution means something different than a relative frequency that we can anticipate to occur
in a large i.i.d. sample.

Instead, the probability distribution of 𝜃 is now a summary of our views about likely values of 𝜃 either
• before we have seen any data at all, or

• before we have seenmore data, after we have seen some data

Thus, suppose that, before seeing any data, you have a personal prior probability distribution saying that

𝑃(𝜃) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

where 𝐵(𝛼, 𝛽) is a beta function , so that 𝑃(𝜃) is a beta distribution with parameters 𝛼, 𝛽.

Exercise 11.3.1

a) Please write down the likelihood function for a sample of length 𝑛 from a binomial distribution with parameter
𝜃.
b) Please write down the posterior distribution for 𝜃 after observing one flip of the coin.
c) Now pretend that the true value of 𝜃 = .4 and that someone who doesn’t know this has a beta prior distribution
with parameters with 𝛽 = 𝛼 = .5. Please write a Python class to simulate this person’s personal posterior distribution
for 𝜃 for a single sequence of 𝑛 draws.

d) Please plot the posterior distribution for 𝜃 as a function of 𝜃 as 𝑛 grows as 1, 2, ….

e) For various 𝑛’s, please describe and compute a Bayesian coverage interval for the interval [.45, .55].
f) Please tell what question a Bayesian coverage interval answers.

g) Please compute the Posterior probabililty that 𝜃 ∈ [.45, .55] for various values of sample size 𝑛.
h) Please use your Python class to study what happens to the posterior distribution as 𝑛 → +∞, again assuming that
the true value of 𝜃 = .4, though it is unknown to the person doing the updating via Bayes’ Law.
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Solution to Exercise 11.3.1

a) Please write down the likelihood function and the posterior distribution for 𝜃 after observing one flip of our coin.
Suppose the outcome is Y.

The likelihood function is:

𝐿(𝑌 |𝜃) = Prob(𝑋 = 𝑌 |𝜃) = 𝜃𝑌 (1 − 𝜃)1−𝑌

b) Please write the posterior distribution for 𝜃 after observing one flip of our coin.
The prior distribution is

Prob(𝜃) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)
We can derive the posterior distribution for 𝜃 via

Prob(𝜃|𝑌 ) = Prob(𝑌 |𝜃)Prob(𝜃)
Prob(𝑌 )

= Prob(𝑌 |𝜃)Prob(𝜃)
∫1
0 Prob(𝑌 |𝜃)Prob(𝜃)𝑑𝜃

=
𝜃𝑌 (1 − 𝜃)1−𝑌 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽)

∫1
0 𝜃𝑌 (1 − 𝜃)1−𝑌 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽) 𝑑𝜃

= 𝜃𝑌 +𝛼−1(1 − 𝜃)1−𝑌 +𝛽−1

∫1
0 𝜃𝑌 +𝛼−1(1 − 𝜃)1−𝑌 +𝛽−1𝑑𝜃

which means that

Prob(𝜃|𝑌 ) ∼ Beta(𝛼 + 𝑌 , 𝛽 + (1 − 𝑌 ))

Now please pretend that the true value of 𝜃 = .4 and that someone who doesn’t know this has a beta prior with
𝛽 = 𝛼 = .5.
c) Now pretend that the true value of 𝜃 = .4 and that someone who doesn’t know this has a beta prior distribution
with parameters with 𝛽 = 𝛼 = .5. Please write a Python class to simulate this person’s personal posterior distribution
for 𝜃 for a single sequence of 𝑛 draws.
class Bayesian:

def __init__(self, θ=0.4, n=1_000_000, α=0.5, β=0.5):
"""
Parameters:
----------
θ : float, ranging from [0,1].

probability that one toss of a coin will be a head with Y = 1

n : int.
number of independent flips in an independent sequence of draws

α&β : int or float.
parameters of the prior distribution on θ

"""
self.θ, self.n, self.α, self.β = θ, n, α, β
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self.prior = st.beta(α, β)

def draw(self):
"""
simulate a single sequence of draws of length n, given probability θ

"""
array = np.random.rand(self.n)
self.draws = (array < self.θ).astype(int)

def form_single_posterior(self, step_num):
"""
form a posterior distribution after observing the first step_num elements␣

↪of the draws

Parameters
----------
step_num: int.

number of steps observed to form a posterior distribution

Returns
------
the posterior distribution for sake of plotting in the subsequent steps

"""
heads_num = self.draws[:step_num].sum()
tails_num = step_num - heads_num

return st.beta(self.α+heads_num, self.β+tails_num)

def form_posterior_series(self,num_obs_list):
"""
form a series of posterior distributions that form after observing␣

↪different number of draws.

Parameters
----------
num_obs_list: a list of int.

a list of the number of observations used to form a series of␣
↪posterior distributions.

"""
self.posterior_list = []
for num in num_obs_list:

self.posterior_list.append(self.form_single_posterior(num))

d) Please plot the posterior distribution for 𝜃 as a function of 𝜃 as 𝑛 grows from 1, 2, ….
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Bay_stat = Bayesian()
Bay_stat.draw()

num_list = [1, 2, 3, 4, 5, 10, 20, 30, 50, 70, 100, 300, 500, 1000, # this line␣
↪for finite n

5000, 10_000, 50_000, 100_000, 200_000, 300_000] # this line for␣
↪approximately infinite n

Bay_stat.form_posterior_series(num_list)

θ_values = np.linspace(0.01, 1, 100)

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(θ_values, Bay_stat.prior.pdf(θ_values), label='Prior Distribution', color=
↪'k', linestyle='--')

for ii, num in enumerate(num_list[:14]):
ax.plot(θ_values, Bay_stat.posterior_list[ii].pdf(θ_values), label='Posterior␣

↪with n = %d' % num)

ax.set_title('P.D.F of Posterior Distributions', fontsize=15)
ax.set_xlabel(r"$\theta$", fontsize=15)

ax.legend(fontsize=11)
plt.show()

e) For various 𝑛’s, please describe and compute .05 and .95 quantiles for posterior probabilities.
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upper_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list[:14]]
lower_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list[:14]]

interval_df = pd.DataFrame()
interval_df['upper'] = upper_bound
interval_df['lower'] = lower_bound
interval_df.index = num_list[:14]
interval_df = interval_df.T
interval_df

1 2 3 4 5 10 20 \
upper 0.001543 0.000868 0.000603 0.046007 0.036447 0.185116 0.324234
lower 0.771480 0.569259 0.444067 0.650707 0.562845 0.652678 0.675766

30 50 70 100 300 500 1000
upper 0.417707 0.444113 0.487543 0.457926 0.373839 0.360533 0.370806
lower 0.706513 0.670884 0.678744 0.620385 0.467296 0.432354 0.421638

As 𝑛 increases, we can see that Bayesian coverage intervals narrow and move toward 0.4.

f) Please tell what question a Bayesian coverage interval answers.

The Bayesian coverage interval tells the range of 𝜃 that corresponds to the [𝑝1, 𝑝2] quantiles of the cumulative prob-
ability distribution (CDF) of the posterior distribution.

To construct the coverage interval we first compute a posterior distribution of the unknown parameter 𝜃.

If the CDF is 𝐹(𝜃), then the Bayesian coverage interval [𝑎, 𝑏] for the interval [𝑝1, 𝑝2] is described by

𝐹(𝑎) = 𝑝1, 𝐹 (𝑏) = 𝑝2

g) Please compute the Posterior probabililty that 𝜃 ∈ [.45, .55] for various values of sample size 𝑛.

left_value, right_value = 0.45, 0.55

posterior_prob_list=[ii.cdf(right_value)-ii.cdf(left_value) for ii in Bay_stat.
↪posterior_list]

fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(posterior_prob_list)
ax.set_title('Posterior Probabililty that '+ r"$\theta$" +' Ranges from %.2f to %.

↪2f'%(left_value, right_value),
fontsize=13)

ax.set_xticks(np.arange(0, len(posterior_prob_list), 3))
ax.set_xticklabels(num_list[::3])
ax.set_xlabel('Number of Observations', fontsize=11)

plt.show()
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Notice that in the graph above the posterior probabililty that 𝜃 ∈ [.45, .55] typically exhibits a hump shape as 𝑛
increases.

Two opposing forces are at work.

The first force is that the individual adjusts his belief as he observes new outcomes, so his posterior probability
distribution becomes more and more realistic, which explains the rise of the posterior probabililty.

However, [.45, .55] actually excludes the true 𝜃 = .4 that generates the data.

As a result, the posterior probabililty drops as larger and larger samples refine his posterior probability distribution
of 𝜃.

The descent seems precipitous only because of the scale of the graph that has the number of observations increasing
disproportionately.

When the number of observations becomes large enough, our Bayesian becomes so confident about 𝜃 that he considers
𝜃 ∈ [.45, .55] very unlikely.

That is why we see a nearly horizontal line when the number of observations exceeds 500.

h) Please use your Python class to study what happens to the posterior distribution as 𝑛 → +∞, again assuming that
the true value of 𝜃 = .4, though it is unknown to the person doing the updating via Bayes’ Law.

Using the Python class we made above, we can see the evolution of posterior distributions as 𝑛 approaches infinity.
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fig, ax = plt.subplots(figsize=(10, 6))

for ii, num in enumerate(num_list[14:]):
ii += 14
ax.plot(θ_values, Bay_stat.posterior_list[ii].pdf(θ_values),

label='Posterior with n=%d thousand' % (num/1000))

ax.set_title('P.D.F of Posterior Distributions', fontsize=15)
ax.set_xlabel(r"$\theta$", fontsize=15)
ax.set_xlim(0.3, 0.5)

ax.legend(fontsize=11)
plt.show()

As 𝑛 increases, we can see that the probability density functions concentrate on 0.4, the true value of 𝜃.
Here the posterior means converges to 0.4 while the posterior standard deviations converges to 0 from above.

To show this, we compute the means and variances statistics of the posterior distributions.

mean_list = [ii.mean() for ii in Bay_stat.posterior_list]
std_list = [ii.std() for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(1, 2, figsize=(14, 5))

ax[0].plot(mean_list)
ax[0].set_title('Mean Values of Posterior Distribution', fontsize=13)
ax[0].set_xticks(np.arange(0, len(mean_list), 3))
ax[0].set_xticklabels(num_list[::3])
ax[0].set_xlabel('Number of Observations', fontsize=11)

ax[1].plot(std_list)
ax[1].set_title('Standard Deviations of Posterior Distribution', fontsize=13)
ax[1].set_xticks(np.arange(0, len(std_list), 3))
ax[1].set_xticklabels(num_list[::3])
ax[1].set_xlabel('Number of Observations', fontsize=11)

plt.show()
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How shall we interpret the patterns above?

The answer is encoded in the Bayesian updating formulas.

It is natural to extend the one-step Bayesian update to an 𝑛-step Bayesian update.

Prob(𝜃|𝑘) = Prob(𝜃, 𝑘)
Prob(𝑘) = Prob(𝑘|𝜃) ∗ Prob(𝜃)

Prob(𝑘) = Prob(𝑘|𝜃) ∗ Prob(𝜃)
∫1
0 Prob(𝑘|𝜃) ∗ Prob(𝜃)𝑑𝜃

=
(𝑁

𝑘 )(1 − 𝜃)𝑁−𝑘𝜃𝑘 ∗ 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽)

∫1
0 (𝑁

𝑘 )(1 − 𝜃)𝑁−𝑘𝜃𝑘 ∗ 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽) 𝑑𝜃

= (1 − 𝜃)𝛽+𝑁−𝑘−1 ∗ 𝜃𝛼+𝑘−1

∫1
0 (1 − 𝜃)𝛽+𝑁−𝑘−1 ∗ 𝜃𝛼+𝑘−1𝑑𝜃
= 𝐵𝑒𝑡𝑎(𝛼 + 𝑘, 𝛽 + 𝑁 − 𝑘)

A beta distribution with 𝛼 and 𝛽 has the following mean and variance.

The mean is 𝛼
𝛼+𝛽

The variance is 𝛼𝛽
(𝛼+𝛽)2(𝛼+𝛽+1)

• 𝛼 can be viewed as the number of successes

• 𝛽 can be viewed as the number of failures

The random variables 𝑘 and 𝑁 − 𝑘 are governed by Binomial Distribution with 𝜃 = 0.4.
Call this the true data generating process.

According to the Law of Large Numbers, for a large number of observations, observed frequencies of 𝑘 and 𝑁 − 𝑘
will be described by the true data generating process, i.e., the population probability distribution that we assumed when
generating the observations on the computer. (See Exercise 11.2.1).

Consequently, the mean of the posterior distribution converges to 0.4 and the variance withers to zero.
upper_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list]
lower_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(figsize=(10, 6))

(continues on next page)
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(continued from previous page)

ax.scatter(np.arange(len(upper_bound)), upper_bound, label='95 th Quantile')
ax.scatter(np.arange(len(lower_bound)), lower_bound, label='05 th Quantile')

ax.set_xticks(np.arange(0, len(upper_bound), 2))
ax.set_xticklabels(num_list[::2])
ax.set_xlabel('Number of Observations', fontsize=12)
ax.set_title('Bayesian Coverage Intervals of Posterior Distributions', fontsize=15)

ax.legend(fontsize=11)
plt.show()

After observing a large number of outcomes, the posterior distribution collapses around 0.4.
Thus, the Bayesian statististian comes to believe that 𝜃 is near .4.
As shown in the figure above, as the number of observations grows, the Bayesian coverage intervals (BCIs) become
narrower and narrower around 0.4.
However, if you take a closer look, you will find that the centers of the BCIs are not exactly 0.4, due to the persistent
influence of the prior distribution and the randomness of the simulation path.
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11.4 Role of a Conjugate Prior

We have made assumptions that link functional forms of our likelihood function and our prior in a way that has eased our
calculations considerably.

In particular, our assumptions that the likelihood function is binomial and that the prior distribution is a beta distribution
have the consequence that the posterior distribution implied by Bayes’ Law is also a beta distribution.

So posterior and prior are both beta distributions, albeit ones with different parameters.

When a likelihood function and prior fit together like hand and glove in this way, we can say that the prior and posterior
are conjugate distributions.

In this situation, we also sometimes say that we have conjugate prior for the likelihood function Prob(𝑋|𝜃).
Typically, the functional form of the likelihood function determines the functional form of a conjugate prior.

A natural question to ask is why should a person’s personal prior about a parameter 𝜃 be restricted to be described by a
conjugate prior?

Why not some other functional form that more sincerely describes the person’s beliefs?

To be argumentative, one could ask, why should the form of the likelihood function have anything to say about my personal
beliefs about 𝜃?
A dignified response to that question is, well, it shouldn’t, but if you want to compute a posterior easily you’ll just be
happier if your prior is conjugate to your likelihood.

Otherwise, your posterior won’t have a convenient analytical form and you’ll be in the situation of wanting to apply the
Markov chain Monte Carlo techniques deployed in this quantecon lecture.

We also apply these powerful methods to approximating Bayesian posteriors for non-conjugate priors in this quantecon
lecture and this quantecon lecture
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TWELVE

MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

Contents

• Multivariate Hypergeometric Distribution

– Overview

– The Administrator’s Problem

– Usage

12.1 Overview

This lecture describes how an administrator deployed a multivariate hypergeometric distribution in order to access
the fairness of a procedure for awarding research grants.

In the lecture we’ll learn about

• properties of the multivariate hypergeometric distribution

• first and second moments of a multivariate hypergeometric distribution

• using a Monte Carlo simulation of a multivariate normal distribution to evaluate the quality of a normal approxi-
mation

• the administrator’s problem and why the multivariate hypergeometric distribution is the right tool

12.2 The Administrator’s Problem

An administrator in charge of allocating research grants is in the following situation.

To help us forget details that are none of our business here and to protect the anonymity of the administrator and the
subjects, we call research proposals balls and continents of residence of authors of a proposal a color.

There are 𝐾𝑖 balls (proposals) of color 𝑖.
There are 𝑐 distinct colors (continents of residence).
Thus, 𝑖 = 1, 2, … , 𝑐
So there is a total of 𝑁 = ∑𝑐

𝑖=1 𝐾𝑖 balls.
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All 𝑁 of these balls are placed in an urn.

Then 𝑛 balls are drawn randomly.

The selection procedure is supposed to be color blind meaning that ball quality, a random variable that is supposed to
be independent of ball color, governs whether a ball is drawn.

Thus, the selection procedure is supposed randomly to draw 𝑛 balls from the urn.

The 𝑛 balls drawn represent successful proposals and are awarded research funds.

The remaining 𝑁 − 𝑛 balls receive no research funds.

12.2.1 Details of the Awards Procedure Under Study

Let 𝑘𝑖 be the number of balls of color 𝑖 that are drawn.
Things have to add up so ∑𝑐

𝑖=1 𝑘𝑖 = 𝑛.
Under the hypothesis that the selection process judges proposals on their quality and that quality is independent of conti-
nent of the author’s continent of residence, the administrator views the outcome of the selection procedure as a random
vector

𝑋 =
⎡
⎢⎢
⎣

𝑘1
𝑘2
⋮

𝑘𝑐

⎤
⎥⎥
⎦

.

To evaluate whether the selection procedure is color blind the administrator wants to study whether the particular re-
alization of 𝑋 drawn can plausibly be said to be a random draw from the probability distribution that is implied by the
color blind hypothesis.

The appropriate probability distribution is the one described here.

Let’s now instantiate the administrator’s problem, while continuing to use the colored balls metaphor.

The administrator has an urn with 𝑁 = 238 balls.
157 balls are blue, 11 balls are green, 46 balls are yellow, and 24 balls are black.

So (𝐾1, 𝐾2, 𝐾3, 𝐾4) = (157, 11, 46, 24) and 𝑐 = 4.
15 balls are drawn without replacement.

So 𝑛 = 15.
The administrator wants to know the probability distribution of outcomes

𝑋 =
⎡
⎢⎢
⎣

𝑘1
𝑘2
⋮

𝑘4

⎤
⎥⎥
⎦

.

In particular, he wants to know whether a particular outcome - in the form of a 4 × 1 vector of integers recording the
numbers of blue, green, yellow, and black balls, respectively, - contains evidence against the hypothesis that the selection
process is fair, which here means color blind and truly are random draws without replacement from the population of 𝑁
balls.

The right tool for the administrator’s job is themultivariate hypergeometric distribution.
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12.2.2 Multivariate Hypergeometric Distribution

Let’s start with some imports.

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import comb
from scipy.stats import normaltest
from numba import jit, prange

To recapitulate, we assume there are in total 𝑐 types of objects in an urn.
If there are 𝐾𝑖 type 𝑖 object in the urn and we take 𝑛 draws at random without replacement, then the numbers of type 𝑖
objects in the sample (𝑘1, 𝑘2, … , 𝑘𝑐) has the multivariate hypergeometric distribution.
Note again that 𝑁 = ∑𝑐

𝑖=1 𝐾𝑖 is the total number of objects in the urn and 𝑛 = ∑𝑐
𝑖=1 𝑘𝑖.

Notation

We use the following notation for binomial coefficients: (𝑚
𝑞 ) = 𝑚!

(𝑚−𝑞)! .

The multivariate hypergeometric distribution has the following properties:

Probability mass function:

Pr{𝑋𝑖 = 𝑘𝑖 ∀𝑖} =
∏𝑐

𝑖=1 (𝐾𝑖
𝑘𝑖

)
(𝑁

𝑛)

Mean:

E(𝑋𝑖) = 𝑛𝐾𝑖
𝑁

Variances and covariances:

Var(𝑋𝑖) = 𝑛𝑁 − 𝑛
𝑁 − 1

𝐾𝑖
𝑁 (1 − 𝐾𝑖

𝑁 )

Cov(𝑋𝑖, 𝑋𝑗) = −𝑛𝑁 − 𝑛
𝑁 − 1

𝐾𝑖
𝑁

𝐾𝑗
𝑁

To do our work for us, we’ll write an Urn class.

class Urn:

def __init__(self, K_arr):
"""
Initialization given the number of each type i object in the urn.

Parameters
----------
K_arr: ndarray(int)

number of each type i object.
"""

self.K_arr = np.array(K_arr)
self.N = np.sum(K_arr)
self.c = len(K_arr)

def pmf(self, k_arr):
"""

(continues on next page)
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(continued from previous page)

Probability mass function.

Parameters
----------
k_arr: ndarray(int)

number of observed successes of each object.
"""

K_arr, N = self.K_arr, self.N

k_arr = np.atleast_2d(k_arr)
n = np.sum(k_arr, 1)

num = np.prod(comb(K_arr, k_arr), 1)
denom = comb(N, n)

pr = num / denom

return pr

def moments(self, n):
"""
Compute the mean and variance-covariance matrix for
multivariate hypergeometric distribution.

Parameters
----------
n: int

number of draws.
"""

K_arr, N, c = self.K_arr, self.N, self.c

# mean
μ = n * K_arr / N

# variance-covariance matrix
Σ = np.full((c, c), n * (N - n) / (N - 1) / N ** 2)
for i in range(c-1):

Σ[i, i] *= K_arr[i] * (N - K_arr[i])
for j in range(i+1, c):

Σ[i, j] *= - K_arr[i] * K_arr[j]
Σ[j, i] = Σ[i, j]

Σ[-1, -1] *= K_arr[-1] * (N - K_arr[-1])

return μ, Σ

def simulate(self, n, size=1, seed=None):
"""
Simulate a sample from multivariate hypergeometric
distribution where at each draw we take n objects
from the urn without replacement.

Parameters
----------
n: int

(continues on next page)
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number of objects for each draw.
size: int(optional)

sample size.
seed: int(optional)

random seed.
"""

K_arr = self.K_arr

gen = np.random.Generator(np.random.PCG64(seed))
sample = gen.multivariate_hypergeometric(K_arr, n, size=size)

return sample

12.3 Usage

12.3.1 First example

Apply this to an example from wiki:

Suppose there are 5 black, 10 white, and 15 red marbles in an urn. If six marbles are chosen without replacement, the
probability that exactly two of each color are chosen is

𝑃(2 black, 2 white, 2 red) =
(5

2)(10
2 )(15

2 )
(30

6 )
= 0.079575596816976

# construct the urn
K_arr = [5, 10, 15]
urn = Urn(K_arr)

Now use the Urn Class method pmf to compute the probability of the outcome 𝑋 = [2 2 2]
k_arr = [2, 2, 2] # array of number of observed successes
urn.pmf(k_arr)

array([0.0795756])

We can use the code to compute probabilities of a list of possible outcomes by constructing a 2-dimensional array k_arr
and pmf will return an array of probabilities for observing each case.

k_arr = [[2, 2, 2], [1, 3, 2]]
urn.pmf(k_arr)

array([0.0795756, 0.1061008])

Now let’s compute the mean vector and variance-covariance matrix.

n = 6
μ, Σ = urn.moments(n)

μ
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array([1., 2., 3.])

Σ

array([[ 0.68965517, -0.27586207, -0.4137931 ],
[-0.27586207, 1.10344828, -0.82758621],
[-0.4137931 , -0.82758621, 1.24137931]])

12.3.2 Back to The Administrator’s Problem

Now let’s turn to the grant administrator’s problem.

Here the array of numbers of 𝑖 objects in the urn is (157, 11, 46, 24).
K_arr = [157, 11, 46, 24]
urn = Urn(K_arr)

Let’s compute the probability of the outcome (10, 1, 4, 0).
k_arr = [10, 1, 4, 0]
urn.pmf(k_arr)

array([0.01547738])

We can compute probabilities of three possible outcomes by constructing a 3-dimensional arrays k_arr and utilizing
the method pmf of the Urn class.

k_arr = [[5, 5, 4 ,1], [10, 1, 2, 2], [13, 0, 2, 0]]
urn.pmf(k_arr)

array([6.21412534e-06, 2.70935969e-02, 1.61839976e-02])

Now let’s compute the mean and variance-covariance matrix of 𝑋 when 𝑛 = 6.
n = 6 # number of draws
μ, Σ = urn.moments(n)

# mean
μ

array([3.95798319, 0.27731092, 1.15966387, 0.60504202])

# variance-covariance matrix
Σ

array([[ 1.31862604, -0.17907267, -0.74884935, -0.39070401],
[-0.17907267, 0.25891399, -0.05246715, -0.02737417],
[-0.74884935, -0.05246715, 0.91579029, -0.11447379],
[-0.39070401, -0.02737417, -0.11447379, 0.53255196]])

We can simulate a large sample and verify that sample means and covariances closely approximate the population means
and covariances.
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size = 10_000_000
sample = urn.simulate(n, size=size)

# mean
np.mean(sample, 0)

array([3.9572854, 0.2773929, 1.1601096, 0.6052121])

# variance covariance matrix
np.cov(sample.T)

array([[ 1.31848999, -0.17903919, -0.74871176, -0.39073905],
[-0.17903919, 0.2590443 , -0.05261297, -0.02739214],
[-0.74871176, -0.05261297, 0.91580001, -0.11447528],
[-0.39073905, -0.02739214, -0.11447528, 0.53260647]])

Evidently, the sample means and covariances approximate their population counterparts well.

12.3.3 Quality of Normal Approximation

To judge the quality of a multivariate normal approximation to the multivariate hypergeometric distribution, we draw
a large sample from a multivariate normal distribution with the mean vector and covariance matrix for the correspond-
ing multivariate hypergeometric distribution and compare the simulated distribution with the population multivariate
hypergeometric distribution.

sample_normal = np.random.multivariate_normal(μ, Σ, size=size)

def bivariate_normal(x, y, μ, Σ, i, j):

μ_x, μ_y = μ[i], μ[j]
σ_x, σ_y = np.sqrt(Σ[i, i]), np.sqrt(Σ[j, j])
σ_xy = Σ[i, j]

x_μ = x - μ_x
y_μ = y - μ_y

ρ = σ_xy / (σ_x * σ_y)
z = x_μ**2 / σ_x**2 + y_μ**2 / σ_y**2 - 2 * ρ * x_μ * y_μ / (σ_x * σ_y)
denom = 2 * np.pi * σ_x * σ_y * np.sqrt(1 - ρ**2)

return np.exp(-z / (2 * (1 - ρ**2))) / denom

@jit
def count(vec1, vec2, n):

size = sample.shape[0]

count_mat = np.zeros((n+1, n+1))
for i in prange(size):

count_mat[vec1[i], vec2[i]] += 1

return count_mat
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c = urn.c
fig, axs = plt.subplots(c, c, figsize=(14, 14))

# grids for ploting the bivariate Gaussian
x_grid = np.linspace(-2, n+1, 100)
y_grid = np.linspace(-2, n+1, 100)
X, Y = np.meshgrid(x_grid, y_grid)

for i in range(c):
axs[i, i].hist(sample[:, i], bins=np.arange(0, n, 1), alpha=0.5, density=True,␣

↪label='hypergeom')
axs[i, i].hist(sample_normal[:, i], bins=np.arange(0, n, 1), alpha=0.5,␣

↪density=True, label='normal')
axs[i, i].legend()
axs[i, i].set_title('$k_{' +str(i+1) +'}$')
for j in range(c):

if i == j:
continue

# bivariate Gaussian density function
Z = bivariate_normal(X, Y, μ, Σ, i, j)
cs = axs[i, j].contour(X, Y, Z, 4, colors="black", alpha=0.6)
axs[i, j].clabel(cs, inline=1, fontsize=10)

# empirical multivariate hypergeometric distrbution
count_mat = count(sample[:, i], sample[:, j], n)
axs[i, j].pcolor(count_mat.T/size, cmap='Blues')
axs[i, j].set_title('$(k_{' +str(i+1) +'}, k_{' + str(j+1) + '})$')

plt.show()

214 Chapter 12. Multivariate Hypergeometric Distribution



Intermediate Quantitative Economics with Python

The diagonal graphs plot the marginal distributions of 𝑘𝑖 for each 𝑖 using histograms.
Note the substantial differences between hypergeometric distribution and the approximating normal distribution.

The off-diagonal graphs plot the empirical joint distribution of 𝑘𝑖 and 𝑘𝑗 for each pair (𝑖, 𝑗).
The darker the blue, the more data points are contained in the corresponding cell. (Note that 𝑘𝑖 is on the x-axis and 𝑘𝑗 is
on the y-axis).

The contour maps plot the bivariate Gaussian density function of (𝑘𝑖, 𝑘𝑗) with the population mean and covariance given
by slices of 𝜇 and Σ that we computed above.

Let’s also test the normality for each 𝑘𝑖 using scipy.stats.normaltest that implements D’Agostino and Pearson’s
test that combines skew and kurtosis to form an omnibus test of normality.

The null hypothesis is that the sample follows normal distribution.

normaltest returns an array of p-values associated with tests for each 𝑘𝑖 sample.
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test_multihyper = normaltest(sample)
test_multihyper.pvalue

array([0., 0., 0., 0.])

As we can see, all the p-values are almost 0 and the null hypothesis is soundly rejected.
By contrast, the sample from normal distribution does not reject the null hypothesis.

test_normal = normaltest(sample_normal)
test_normal.pvalue

array([0.25431271, 0.05893158, 0.00718242, 0.60827988])

The lesson to take away from this is that the normal approximation is imperfect.

216 Chapter 12. Multivariate Hypergeometric Distribution



CHAPTER

THIRTEEN

MULTIVARIATE NORMAL DISTRIBUTION

Contents

• Multivariate Normal Distribution

– Overview

– The Multivariate Normal Distribution

– Bivariate Example

– Trivariate Example

– One Dimensional Intelligence (IQ)

– Information as Surprise

– Cholesky Factor Magic

– Math and Verbal Intelligence

– Univariate Time Series Analysis

– Stochastic Difference Equation

– Application to Stock Price Model

– Filtering Foundations

– Classic Factor Analysis Model

– PCA and Factor Analysis

13.1 Overview

This lecture describes a workhorse in probability theory, statistics, and economics, namely, the multivariate normal
distribution.

In this lecture, you will learn formulas for

• the joint distribution of a random vector 𝑥 of length 𝑁
• marginal distributions for all subvectors of 𝑥
• conditional distributions for subvectors of 𝑥 conditional on other subvectors of 𝑥

We will use the multivariate normal distribution to formulate some useful models:
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• a factor analytic model of an intelligence quotient, i.e., IQ

• a factor analytic model of two independent inherent abilities, say, mathematical and verbal.

• a more general factor analytic model

• Principal Components Analysis (PCA) as an approximation to a factor analytic model

• time series generated by linear stochastic difference equations

• optimal linear filtering theory

13.2 The Multivariate Normal Distribution

This lecture defines a Python class MultivariateNormal to be used to generate marginal and conditional distri-
butions associated with a multivariate normal distribution.

For a multivariate normal distribution it is very convenient that

• conditional expectations equal linear least squares projections

• conditional distributions are characterized by multivariate linear regressions

We apply our Python class to some examples.

We use the following imports:

import matplotlib.pyplot as plt
import numpy as np
from numba import jit
import statsmodels.api as sm

Assume that an 𝑁 × 1 random vector 𝑧 has a multivariate normal probability density.
This means that the probability density takes the form

𝑓 (𝑧; 𝜇, Σ) = (2𝜋)−( 𝑁
2 ) det (Σ)− 1

2 exp (−.5 (𝑧 − 𝜇)′ Σ−1 (𝑧 − 𝜇))

where 𝜇 = 𝐸𝑧 is the mean of the random vector 𝑧 and Σ = 𝐸 (𝑧 − 𝜇) (𝑧 − 𝜇)′ is the covariance matrix of 𝑧.
The covariance matrix Σ is symmetric and positive definite.

@jit
def f(z, μ, Σ):

"""
The density function of multivariate normal distribution.

Parameters
---------------
z: ndarray(float, dim=2)

random vector, N by 1
μ: ndarray(float, dim=1 or 2)

the mean of z, N by 1
Σ: ndarray(float, dim=2)

the covarianece matrix of z, N by 1
"""

z = np.atleast_2d(z)
μ = np.atleast_2d(μ)
Σ = np.atleast_2d(Σ)

(continues on next page)
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N = z.size

temp1 = np.linalg.det(Σ) ** (-1/2)
temp2 = np.exp(-.5 * (z - μ).T @ np.linalg.inv(Σ) @ (z - μ))

return (2 * np.pi) ** (-N/2) * temp1 * temp2

For some integer 𝑘 ∈ {1, … , 𝑁 − 1}, partition 𝑧 as

𝑧 = [ 𝑧1
𝑧2

] ,

where 𝑧1 is an (𝑁 − 𝑘) × 1 vector and 𝑧2 is a 𝑘 × 1 vector.
Let

𝜇 = [ 𝜇1
𝜇2

] , Σ = [ Σ11 Σ12
Σ21 Σ22

]

be corresponding partitions of 𝜇 and Σ.
Themarginal distribution of 𝑧1 is

• multivariate normal with mean 𝜇1 and covariance matrix Σ11.

Themarginal distribution of 𝑧2 is

• multivariate normal with mean 𝜇2 and covariance matrix Σ22.

The distribution of 𝑧1 conditional on 𝑧2 is

• multivariate normal with mean

̂𝜇1 = 𝜇1 + 𝛽 (𝑧2 − 𝜇2)
and covariance matrix

Σ̂11 = Σ11 − Σ12Σ−1
22 Σ21 = Σ11 − 𝛽Σ22𝛽′

where

𝛽 = Σ12Σ−1
22

is an (𝑁 − 𝑘) × 𝑘 matrix of population regression coefficients of the (𝑁 − 𝑘) × 1 random vector 𝑧1 − 𝜇1 on the 𝑘 × 1
random vector 𝑧2 − 𝜇2.

The following class constructs a multivariate normal distribution instance with two methods.

• a method partition computes 𝛽, taking 𝑘 as an input

• a method cond_dist computes either the distribution of 𝑧1 conditional on 𝑧2 or the distribution of 𝑧2 conditional
on 𝑧1

class MultivariateNormal:
"""
Class of multivariate normal distribution.

Parameters
----------
μ: ndarray(float, dim=1)

(continues on next page)
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the mean of z, N by 1
Σ: ndarray(float, dim=2)

the covarianece matrix of z, N by 1

Arguments
---------
μ, Σ:

see parameters
μs: list(ndarray(float, dim=1))

list of mean vectors μ1 and μ2 in order
Σs: list(list(ndarray(float, dim=2)))

2 dimensional list of covariance matrices
Σ11, Σ12, Σ21, Σ22 in order

βs: list(ndarray(float, dim=1))
list of regression coefficients β1 and β2 in order

"""

def __init__(self, μ, Σ):
"initialization"
self.μ = np.array(μ)
self.Σ = np.atleast_2d(Σ)

def partition(self, k):
"""
Given k, partition the random vector z into a size k vector z1
and a size N-k vector z2. Partition the mean vector μ into
μ1 and μ2, and the covariance matrix Σ into Σ11, Σ12, Σ21, Σ22
correspondingly. Compute the regression coefficients β1 and β2
using the partitioned arrays.
"""
μ = self.μ
Σ = self.Σ

self.μs = [μ[:k], μ[k:]]
self.Σs = [[Σ[:k, :k], Σ[:k, k:]],

[Σ[k:, :k], Σ[k:, k:]]]

self.βs = [self.Σs[0][1] @ np.linalg.inv(self.Σs[1][1]),
self.Σs[1][0] @ np.linalg.inv(self.Σs[0][0])]

def cond_dist(self, ind, z):
"""
Compute the conditional distribution of z1 given z2, or reversely.
Argument ind determines whether we compute the conditional
distribution of z1 (ind=0) or z2 (ind=1).

Returns
---------
μ_hat: ndarray(float, ndim=1)

The conditional mean of z1 or z2.
Σ_hat: ndarray(float, ndim=2)

The conditional covariance matrix of z1 or z2.
"""
β = self.βs[ind]
μs = self.μs
Σs = self.Σs

(continues on next page)
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μ_hat = μs[ind] + β @ (z - μs[1-ind])
Σ_hat = Σs[ind][ind] - β @ Σs[1-ind][1-ind] @ β.T

return μ_hat, Σ_hat

Let’s put this code to work on a suite of examples.

We begin with a simple bivariate example; after that we’ll turn to a trivariate example.

We’ll compute population moments of some conditional distributions using our MultivariateNormal class.

For fun we’ll also compute sample analogs of the associated population regressions by generating simulations and then
computing linear least squares regressions.

We’ll compare those linear least squares regressions for the simulated data to their population counterparts.

13.3 Bivariate Example

We start with a bivariate normal distribution pinned down by

𝜇 = [ .5
1.0 ] , Σ = [ 1 .5

.5 1 ]

μ = np.array([.5, 1.])
Σ = np.array([[1., .5], [.5 ,1.]])

# construction of the multivariate normal instance
multi_normal = MultivariateNormal(μ, Σ)

k = 1 # choose partition

# partition and compute regression coefficients
multi_normal.partition(k)
multi_normal.βs[0],multi_normal.βs[1]

(array([[0.5]]), array([[0.5]]))

Let’s illustrate the fact that you can regress anything on anything else.

We have computed everything we need to compute two regression lines, one of 𝑧2 on 𝑧1, the other of 𝑧1 on 𝑧2.

We’ll represent these regressions as

𝑧1 = 𝑎1 + 𝑏1𝑧2 + 𝜖1

and

𝑧2 = 𝑎2 + 𝑏2𝑧1 + 𝜖2

where we have the population least squares orthogonality conditions

𝐸𝜖1𝑧2 = 0

and

𝐸𝜖2𝑧1 = 0

Let’s compute 𝑎1, 𝑎2, 𝑏1, 𝑏2.
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beta = multi_normal.βs

a1 = μ[0] - beta[0]*μ[1]
b1 = beta[0]

a2 = μ[1] - beta[1]*μ[0]
b2 = beta[1]

Let’s print out the intercepts and slopes.

For the regression of 𝑧1 on 𝑧2 we have

print ("a1 = ", a1)
print ("b1 = ", b1)

a1 = [[0.]]
b1 = [[0.5]]

For the regression of 𝑧2 on 𝑧1 we have

print ("a2 = ", a2)
print ("b2 = ", b2)

a2 = [[0.75]]
b2 = [[0.5]]

Now let’s plot the two regression lines and stare at them.

z2 = np.linspace(-4,4,100)

a1 = np.squeeze(a1)
b1 = np.squeeze(b1)

a2 = np.squeeze(a2)
b2 = np.squeeze(b2)

z1 = b1*z2 + a1

z1h = z2/b2 - a2/b2

fig = plt.figure(figsize=(12,12))
ax = fig.add_subplot(1, 1, 1)
ax.set(xlim=(-4, 4), ylim=(-4, 4))
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
plt.ylabel('$z_1$', loc = 'top')
plt.xlabel('$z_2$,', loc = 'right')
plt.title('two regressions')
plt.plot(z2,z1, 'r', label = "$z_1$ on $z_2$")
plt.plot(z2,z1h, 'b', label = "$z_2$ on $z_1$")

(continues on next page)
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plt.legend()
plt.show()

The red line is the expectation of 𝑧1 conditional on 𝑧2.

The intercept and slope of the red line are

print("a1 = ", a1)
print("b1 = ", b1)

a1 = 0.0
b1 = 0.5

The blue line is the expectation of 𝑧2 conditional on 𝑧1.

The intercept and slope of the blue line are
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print("-a2/b2 = ", - a2/b2)
print("1/b2 = ", 1/b2)

-a2/b2 = -1.5
1/b2 = 2.0

We can use these regression lines or our code to compute conditional expectations.

Let’s compute the mean and variance of the distribution of 𝑧2 conditional on 𝑧1 = 5.
After that we’ll reverse what are on the left and right sides of the regression.

# compute the cond. dist. of z1
ind = 1
z1 = np.array([5.]) # given z1

μ2_hat, Σ2_hat = multi_normal.cond_dist(ind, z1)
print('μ2_hat, Σ2_hat = ', μ2_hat, Σ2_hat)

μ2_hat, Σ2_hat = [3.25] [[0.75]]

Now let’s compute the mean and variance of the distribution of 𝑧1 conditional on 𝑧2 = 5.
# compute the cond. dist. of z1
ind = 0
z2 = np.array([5.]) # given z2

μ1_hat, Σ1_hat = multi_normal.cond_dist(ind, z2)
print('μ1_hat, Σ1_hat = ', μ1_hat, Σ1_hat)

μ1_hat, Σ1_hat = [2.5] [[0.75]]

Let’s compare the preceding population mean and variance with outcomes from drawing a large sample and then regress-
ing 𝑧1 − 𝜇1 on 𝑧2 − 𝜇2.

We know that

𝐸𝑧1|𝑧2 = (𝜇1 − 𝛽𝜇2) + 𝛽𝑧2

which can be arranged to

𝑧1 − 𝜇1 = 𝛽 (𝑧2 − 𝜇2) + 𝜖,

We anticipate that for larger and larger sample sizes, estimated OLS coefficients will converge to 𝛽 and the estimated
variance of 𝜖 will converge to Σ̂1.

n = 1_000_000 # sample size

# simulate multivariate normal random vectors
data = np.random.multivariate_normal(μ, Σ, size=n)
z1_data = data[:, 0]
z2_data = data[:, 1]

# OLS regression
μ1, μ2 = multi_normal.μs
results = sm.OLS(z1_data - μ1, z2_data - μ2).fit()

Let’s compare the preceding population 𝛽 with the OLS sample estimate on 𝑧2 − 𝜇2

224 Chapter 13. Multivariate Normal Distribution



Intermediate Quantitative Economics with Python

multi_normal.βs[0], results.params

(array([[0.5]]), array([0.4983036]))

Let’s compare our population Σ̂1 with the degrees-of-freedom adjusted estimate of the variance of 𝜖
Σ1_hat, results.resid @ results.resid.T / (n - 1)

(array([[0.75]]), np.float64(0.7494314010072176))

Lastly, let’s compute the estimate of ̂𝐸𝑧1|𝑧2 and compare it with ̂𝜇1

μ1_hat, results.predict(z2 - μ2) + μ1

(array([2.5]), array([2.49321442]))

Thus, in each case, for our very large sample size, the sample analogues closely approximate their population counterparts.

A Law of Large Numbers explains why sample analogues approximate population objects.

13.4 Trivariate Example

Let’s apply our code to a trivariate example.

We’ll specify the mean vector and the covariance matrix as follows.

μ = np.random.random(3)
C = np.random.random((3, 3))
Σ = C @ C.T # positive semi-definite

multi_normal = MultivariateNormal(μ, Σ)

μ, Σ

(array([0.8504518 , 0.79435002, 0.72983204]),
array([[1.22056375, 0.99819608, 0.81183707],

[0.99819608, 1.12143887, 0.80534754],
[0.81183707, 0.80534754, 0.62086934]]))

k = 1
multi_normal.partition(k)

Let’s compute the distribution of 𝑧1 conditional on 𝑧2 = [ 2
5 ].

ind = 0
z2 = np.array([2., 5.])

μ1_hat, Σ1_hat = multi_normal.cond_dist(ind, z2)

n = 1_000_000
data = np.random.multivariate_normal(μ, Σ, size=n)
z1_data = data[:, :k]
z2_data = data[:, k:]
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μ1, μ2 = multi_normal.μs
results = sm.OLS(z1_data - μ1, z2_data - μ2).fit()

As above, we compare population and sample regression coefficients, the conditional covariance matrix, and the condi-
tional mean vector in that order.

multi_normal.βs[0], results.params

(array([[-0.71434512, 2.23417886]]), array([-0.71329435, 2.23239932]))

Σ1_hat, results.resid @ results.resid.T / (n - 1)

(array([[0.11983102]]), np.float64(0.11970208707534186))

μ1_hat, results.predict(z2 - μ2) + μ1

(array([9.52952062]), array([9.52318853]))

Once again, sample analogues do a good job of approximating their populations counterparts.

13.5 One Dimensional Intelligence (IQ)

Let’s move closer to a real-life example, namely, inferring a one-dimensional measure of intelligence called IQ from a list
of test scores.

The 𝑖th test score 𝑦𝑖 equals the sum of an unknown scalar IQ 𝜃 and a random variable 𝑤𝑖.

𝑦𝑖 = 𝜃 + 𝜎𝑦𝑤𝑖, 𝑖 = 1, … , 𝑛

The distribution of IQ’s for a cross-section of people is a normal random variable described by

𝜃 = 𝜇𝜃 + 𝜎𝜃𝑤𝑛+1.

We assume that the noises {𝑤𝑖}𝑁
𝑖=1 in the test scores are IID and not correlated with IQ.

We also assume that {𝑤𝑖}𝑛+1
𝑖=1 are i.i.d. standard normal:

𝑤 =
⎡
⎢
⎢
⎢
⎣

𝑤1
𝑤2
⋮

𝑤𝑛
𝑤𝑛+1

⎤
⎥
⎥
⎥
⎦

∼ 𝑁 (0, 𝐼𝑛+1)

The following system describes the (𝑛 + 1) × 1 random vector 𝑋 that interests us:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛
𝜃

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜇𝜃
𝜇𝜃
⋮

𝜇𝜃
𝜇𝜃

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝜎𝑦 0 ⋯ 0 𝜎𝜃
0 𝜎𝑦 ⋯ 0 𝜎𝜃
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝜎𝑦 𝜎𝜃
0 0 ⋯ 0 𝜎𝜃

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑤1
𝑤2
⋮

𝑤𝑛
𝑤𝑛+1

⎤
⎥
⎥
⎥
⎦

,

or equivalently,

𝑋 = 𝜇𝜃1𝑛+1 + 𝐷𝑤

226 Chapter 13. Multivariate Normal Distribution



Intermediate Quantitative Economics with Python

where 𝑋 = [𝑦
𝜃], 1𝑛+1 is a vector of 1s of size 𝑛 + 1, and 𝐷 is an 𝑛 + 1 by 𝑛 + 1 matrix.

Let’s define a Python function that constructs the mean 𝜇 and covariance matrix Σ of the random vector 𝑋 that we know
is governed by a multivariate normal distribution.

As arguments, the function takes the number of tests 𝑛, the mean 𝜇𝜃 and the standard deviation 𝜎𝜃 of the IQ distribution,
and the standard deviation of the randomness in test scores 𝜎𝑦.

def construct_moments_IQ(n, μθ, σθ, σy):

μ_IQ = np.full(n+1, μθ)

D_IQ = np.zeros((n+1, n+1))
D_IQ[range(n), range(n)] = σy
D_IQ[:, n] = σθ

Σ_IQ = D_IQ @ D_IQ.T

return μ_IQ, Σ_IQ, D_IQ

Now let’s consider a specific instance of this model.

Assume we have recorded 50 test scores and we know that 𝜇𝜃 = 100, 𝜎𝜃 = 10, and 𝜎𝑦 = 10.
We can compute the mean vector and covariance matrix of 𝑋 easily with our construct_moments_IQ function as
follows.

n = 50
μθ, σθ, σy = 100., 10., 10.

μ_IQ, Σ_IQ, D_IQ = construct_moments_IQ(n, μθ, σθ, σy)
μ_IQ, Σ_IQ, D_IQ

(array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
100., 100., 100., 100., 100., 100., 100.]),

array([[200., 100., 100., ..., 100., 100., 100.],
[100., 200., 100., ..., 100., 100., 100.],
[100., 100., 200., ..., 100., 100., 100.],
...,
[100., 100., 100., ..., 200., 100., 100.],
[100., 100., 100., ..., 100., 200., 100.],
[100., 100., 100., ..., 100., 100., 100.]]),

array([[10., 0., 0., ..., 0., 0., 10.],
[ 0., 10., 0., ..., 0., 0., 10.],
[ 0., 0., 10., ..., 0., 0., 10.],
...,
[ 0., 0., 0., ..., 10., 0., 10.],
[ 0., 0., 0., ..., 0., 10., 10.],
[ 0., 0., 0., ..., 0., 0., 10.]]))

We can now use our MultivariateNormal class to construct an instance, then partition the mean vector and co-
variance matrix as we wish.

We want to regress IQ, the random variable 𝜃 (what we don’t know), on the vector 𝑦 of test scores (what we do know).

We choose k=n so that 𝑧1 = 𝑦 and 𝑧2 = 𝜃.
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multi_normal_IQ = MultivariateNormal(μ_IQ, Σ_IQ)

k = n
multi_normal_IQ.partition(k)

Using the generator multivariate_normal, we can make one draw of the random vector from our distribution and
then compute the distribution of 𝜃 conditional on our test scores.
Let’s do that and then print out some pertinent quantities.

x = np.random.multivariate_normal(μ_IQ, Σ_IQ)
y = x[:-1] # test scores
θ = x[-1] # IQ

# the true value
θ

np.float64(101.30970265083872)

The method cond_dist takes test scores 𝑦 as input and returns the conditional normal distribution of the IQ 𝜃.
In the following code, ind sets the variables on the right side of the regression.

Given the way we have defined the vector 𝑋, we want to set ind=1 in order to make 𝜃 the left side variable in the
population regression.

ind = 1
multi_normal_IQ.cond_dist(ind, y)

(array([103.50650121]), array([[1.96078431]]))

The first number is the conditional mean ̂𝜇𝜃 and the second is the conditional variance Σ̂𝜃.

How do additional test scores affect our inferences?

To shed light on this, we compute a sequence of conditional distributions of 𝜃 by varying the number of test scores in the
conditioning set from 1 to 𝑛.
We’ll make a pretty graph showing how our judgment of the person’s IQ change as more test results come in.

# array for containing moments
μθ_hat_arr = np.empty(n)
Σθ_hat_arr = np.empty(n)

# loop over number of test scores
for i in range(1, n+1):

# construction of multivariate normal distribution instance
μ_IQ_i, Σ_IQ_i, D_IQ_i = construct_moments_IQ(i, μθ, σθ, σy)
multi_normal_IQ_i = MultivariateNormal(μ_IQ_i, Σ_IQ_i)

# partition and compute conditional distribution
multi_normal_IQ_i.partition(i)
scores_i = y[:i]
μθ_hat_i, Σθ_hat_i = multi_normal_IQ_i.cond_dist(1, scores_i)

# store the results
μθ_hat_arr[i-1] = μθ_hat_i[0]
Σθ_hat_arr[i-1] = Σθ_hat_i[0, 0]

(continues on next page)
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(continued from previous page)

# transform variance to standard deviation
σθ_hat_arr = np.sqrt(Σθ_hat_arr)

μθ_hat_lower = μθ_hat_arr - 1.96 * σθ_hat_arr
μθ_hat_higher = μθ_hat_arr + 1.96 * σθ_hat_arr

plt.hlines(θ, 1, n+1, ls='--', label='true $θ$')
plt.plot(range(1, n+1), μθ_hat_arr, color='b', label=r'$\hat{μ}_{θ}$')
plt.plot(range(1, n+1), μθ_hat_lower, color='b', ls='--')
plt.plot(range(1, n+1), μθ_hat_higher, color='b', ls='--')
plt.fill_between(range(1, n+1), μθ_hat_lower, μθ_hat_higher,

color='b', alpha=0.2, label='95%')

plt.xlabel('number of test scores')
plt.ylabel(r'$\hat{θ}$')
plt.legend()

plt.show()

The solid blue line in the plot above shows ̂𝜇𝜃 as a function of the number of test scores that we have recorded and
conditioned on.

The blue area shows the span that comes from adding or subtracting 1.96𝜎̂𝜃 from ̂𝜇𝜃.

Therefore, 95% of the probability mass of the conditional distribution falls in this range.

The value of the random 𝜃 that we drew is shown by the black dotted line.
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As more and more test scores come in, our estimate of the person’s 𝜃 become more and more reliable.
By staring at the changes in the conditional distributions, we see that adding more test scores makes ̂𝜃 settle down and
approach 𝜃.
Thus, each 𝑦𝑖 adds information about 𝜃.
If we were to drive the number of tests 𝑛 → +∞, the conditional standard deviation 𝜎̂𝜃 would converge to 0 at rate 1

𝑛.5 .

13.6 Information as Surprise

By using a different representation, let’s look at things from a different perspective.

We can represent the random vector 𝑋 defined above as

𝑋 = 𝜇𝜃1𝑛+1 + 𝐶𝜖, 𝜖 ∼ 𝑁 (0, 𝐼)

where 𝐶 is a lower triangular Cholesky factor of Σ so that

Σ ≡ 𝐷𝐷′ = 𝐶𝐶′

and

𝐸𝜖𝜖′ = 𝐼.

It follows that

𝜖 ∼ 𝑁(0, 𝐼).

Let 𝐺 = 𝐶−1

𝐺 is also lower triangular.

We can compute 𝜖 from the formula

𝜖 = 𝐺 (𝑋 − 𝜇𝜃1𝑛+1)

This formula confirms that the orthonormal vector 𝜖 contains the same information as the non-orthogonal vector
(𝑋 − 𝜇𝜃1𝑛+1).
We can say that 𝜖 is an orthogonal basis for (𝑋 − 𝜇𝜃1𝑛+1).
Let 𝑐𝑖 be the 𝑖th element in the last row of 𝐶.

Then we can write

𝜃 = 𝜇𝜃 + 𝑐1𝜖1 + 𝑐2𝜖2 + ⋯ + 𝑐𝑛𝜖𝑛 + 𝑐𝑛+1𝜖𝑛+1 (13.1)

The mutual orthogonality of the 𝜖𝑖’s provides us with an informative way to interpret them in light of equation (13.1).

Thus, relative to what is known from tests 𝑖 = 1, … , 𝑛 − 1, 𝑐𝑖𝜖𝑖 is the amount of new information about 𝜃 brought by
the test number 𝑖.
Here new information means surprise or what could not be predicted from earlier information.

Formula (13.1) also provides us with an enlightening way to express conditional means and conditional variances that we
computed earlier.

In particular,

𝐸 [𝜃 ∣ 𝑦1, … , 𝑦𝑘] = 𝜇𝜃 + 𝑐1𝜖1 + ⋯ + 𝑐𝑘𝜖𝑘
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and

𝑉 𝑎𝑟 (𝜃 ∣ 𝑦1, … , 𝑦𝑘) = 𝑐2
𝑘+1 + 𝑐2

𝑘+2 + ⋯ + 𝑐2
𝑛+1.

C = np.linalg.cholesky(Σ_IQ)
G = np.linalg.inv(C)

ε = G @ (x - μθ)

cε = C[n, :] * ε

# compute the sequence of μθ and Σθ conditional on y1, y2, ..., yk
μθ_hat_arr_C = np.array([np.sum(cε[:k+1]) for k in range(n)]) + μθ
Σθ_hat_arr_C = np.array([C[n, i+1:n+1] @ C[n, i+1:n+1] for i in range(n)])

To confirm that these formulas give the same answers that we computed earlier, we can compare the means and variances
of 𝜃 conditional on {𝑦𝑖}𝑘

𝑖=1 with what we obtained above using the formulas implemented in the class Multivari-
ateNormal built on our original representation of conditional distributions for multivariate normal distributions.

# conditional mean
np.max(np.abs(μθ_hat_arr - μθ_hat_arr_C)) < 1e-10

np.True_

# conditional variance
np.max(np.abs(Σθ_hat_arr - Σθ_hat_arr_C)) < 1e-10

np.True_

13.7 Cholesky Factor Magic

Evidently, the Cholesky factorizations automatically computes the population regression coefficients and associated
statistics that are produced by our MultivariateNormal class.

The Cholesky factorization computes these things recursively.

Indeed, in formula (13.1),

• the random variable 𝑐𝑖𝜖𝑖 is information about 𝜃 that is not contained by the information in 𝜖1, 𝜖2, … , 𝜖𝑖−1

• the coefficient 𝑐𝑖 is the simple population regression coefficient of 𝜃 − 𝜇𝜃 on 𝜖𝑖

13.8 Math and Verbal Intelligence

We can alter the preceding example to be more realistic.

There is ample evidence that IQ is not a scalar.

Some people are good in math skills but poor in language skills.

Other people are good in language skills but poor in math skills.

So now we shall assume that there are two dimensions of IQ, 𝜃 and 𝜂.
These determine average performances in math and language tests, respectively.
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We observe math scores {𝑦𝑖}𝑛
𝑖=1 and language scores {𝑦𝑖}2𝑛

𝑖=𝑛+1.

When 𝑛 = 2, we assume that outcomes are draws from a multivariate normal distribution with representation

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
𝑦4
𝜃
𝜂

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜇𝜃
𝜇𝜃
𝜇𝜂
𝜇𝜂
𝜇𝜃
𝜇𝜂

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

𝜎𝑦 0 0 0 𝜎𝜃 0
0 𝜎𝑦 0 0 𝜎𝜃 0
0 0 𝜎𝑦 0 0 𝜎𝜂
0 0 0 𝜎𝑦 0 𝜎𝜂
0 0 0 0 𝜎𝜃 0
0 0 0 0 0 𝜎𝜂

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑤1
𝑤2
𝑤3
𝑤4
𝑤5
𝑤6

⎤
⎥
⎥
⎥
⎥
⎦

where 𝑤
⎡
⎢⎢
⎣

𝑤1
𝑤2
⋮

𝑤6

⎤
⎥⎥
⎦
is a standard normal random vector.

We construct a Python function construct_moments_IQ2d to construct the mean vector and covariance matrix of
the joint normal distribution.

def construct_moments_IQ2d(n, μθ, σθ, μη, ση, σy):

μ_IQ2d = np.empty(2*(n+1))
μ_IQ2d[:n] = μθ
μ_IQ2d[2*n] = μθ
μ_IQ2d[n:2*n] = μη
μ_IQ2d[2*n+1] = μη

D_IQ2d = np.zeros((2*(n+1), 2*(n+1)))
D_IQ2d[range(2*n), range(2*n)] = σy
D_IQ2d[:n, 2*n] = σθ
D_IQ2d[2*n, 2*n] = σθ
D_IQ2d[n:2*n, 2*n+1] = ση
D_IQ2d[2*n+1, 2*n+1] = ση

Σ_IQ2d = D_IQ2d @ D_IQ2d.T

return μ_IQ2d, Σ_IQ2d, D_IQ2d

Let’s put the function to work.

n = 2
# mean and variance of θ, η, and y
μθ, σθ, μη, ση, σy = 100., 10., 100., 10, 10

μ_IQ2d, Σ_IQ2d, D_IQ2d = construct_moments_IQ2d(n, μθ, σθ, μη, ση, σy)
μ_IQ2d, Σ_IQ2d, D_IQ2d

(array([100., 100., 100., 100., 100., 100.]),
array([[200., 100., 0., 0., 100., 0.],

[100., 200., 0., 0., 100., 0.],
[ 0., 0., 200., 100., 0., 100.],
[ 0., 0., 100., 200., 0., 100.],
[100., 100., 0., 0., 100., 0.],
[ 0., 0., 100., 100., 0., 100.]]),

array([[10., 0., 0., 0., 10., 0.],
[ 0., 10., 0., 0., 10., 0.],
[ 0., 0., 10., 0., 0., 10.],

(continues on next page)
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(continued from previous page)

[ 0., 0., 0., 10., 0., 10.],
[ 0., 0., 0., 0., 10., 0.],
[ 0., 0., 0., 0., 0., 10.]]))

# take one draw
x = np.random.multivariate_normal(μ_IQ2d, Σ_IQ2d)
y1 = x[:n]
y2 = x[n:2*n]
θ = x[2*n]
η = x[2*n+1]

# the true values
θ, η

(np.float64(114.79317607147475), np.float64(112.72151223314884))

We first compute the joint normal distribution of (𝜃, 𝜂).
multi_normal_IQ2d = MultivariateNormal(μ_IQ2d, Σ_IQ2d)

k = 2*n # the length of data vector
multi_normal_IQ2d.partition(k)

multi_normal_IQ2d.cond_dist(1, [*y1, *y2])

(array([109.61790922, 107.06562257]),
array([[33.33333333, 0. ],

[ 0. , 33.33333333]]))

Now let’s compute distributions of 𝜃 and 𝜇 separately conditional on various subsets of test scores.

It will be fun to compare outcomes with the help of an auxiliary function cond_dist_IQ2d that we now construct.

def cond_dist_IQ2d(μ, Σ, data):

n = len(μ)

multi_normal = MultivariateNormal(μ, Σ)
multi_normal.partition(n-1)
μ_hat, Σ_hat = multi_normal.cond_dist(1, data)

return μ_hat, Σ_hat

Let’s see how things work for an example.

for indices, IQ, conditions in [([*range(2*n), 2*n], 'θ', 'y1, y2, y3, y4'),
([*range(n), 2*n], 'θ', 'y1, y2'),
([*range(n, 2*n), 2*n], 'θ', 'y3, y4'),
([*range(2*n), 2*n+1], 'η', 'y1, y2, y3, y4'),
([*range(n), 2*n+1], 'η', 'y1, y2'),
([*range(n, 2*n), 2*n+1], 'η', 'y3, y4')]:

μ_hat, Σ_hat = cond_dist_IQ2d(μ_IQ2d[indices], Σ_IQ2d[indices][:, indices],␣
↪x[indices[:-1]])

print(f'The mean and variance of {IQ} conditional on {conditions: <15} are ' +
f'{μ_hat[0]:1.2f} and {Σ_hat[0, 0]:1.2f} respectively')
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The mean and variance of θ conditional on y1, y2, y3, y4 are 109.62 and 33.33␣
↪respectively

The mean and variance of θ conditional on y1, y2 are 109.62 and 33.33␣
↪respectively

The mean and variance of θ conditional on y3, y4 are 100.00 and 100.00␣
↪respectively

The mean and variance of η conditional on y1, y2, y3, y4 are 107.07 and 33.33␣
↪respectively

The mean and variance of η conditional on y1, y2 are 100.00 and 100.00␣
↪respectively

The mean and variance of η conditional on y3, y4 are 107.07 and 33.33␣
↪respectively

Evidently, math tests provide no information about 𝜇 and language tests provide no information about 𝜂.

13.9 Univariate Time Series Analysis

We can use the multivariate normal distribution and a little matrix algebra to present foundations of univariate linear time
series analysis.

Let 𝑥𝑡, 𝑦𝑡, 𝑣𝑡, 𝑤𝑡+1 each be scalars for 𝑡 ≥ 0.
Consider the following model:

𝑥0 ∼ 𝑁 (0, 𝜎2
0)

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏𝑤𝑡+1, 𝑤𝑡+1 ∼ 𝑁 (0, 1) , 𝑡 ≥ 0
𝑦𝑡 = 𝑐𝑥𝑡 + 𝑑𝑣𝑡, 𝑣𝑡 ∼ 𝑁 (0, 1) , 𝑡 ≥ 0

We can compute the moments of 𝑥𝑡

1. 𝐸𝑥2
𝑡+1 = 𝑎2𝐸𝑥2

𝑡 + 𝑏2, 𝑡 ≥ 0, where 𝐸𝑥2
0 = 𝜎2

0

2. 𝐸𝑥𝑡+𝑗𝑥𝑡 = 𝑎𝑗𝐸𝑥2
𝑡 , ∀𝑡 ∀𝑗

Given some 𝑇 , we can formulate the sequence {𝑥𝑡}𝑇
𝑡=0 as a random vector

𝑋 =
⎡
⎢⎢
⎣

𝑥0
𝑥1
⋮

𝑥𝑇

⎤
⎥⎥
⎦

and the covariance matrix Σ𝑥 can be constructed using the moments we have computed above.

Similarly, we can define

𝑌 =
⎡
⎢⎢
⎣

𝑦0
𝑦1
⋮

𝑦𝑇

⎤
⎥⎥
⎦

, 𝑣 =
⎡
⎢⎢
⎣

𝑣0
𝑣1
⋮

𝑣𝑇

⎤
⎥⎥
⎦

and therefore

𝑌 = 𝐶𝑋 + 𝐷𝑉

where 𝐶 and 𝐷 are both diagonal matrices with constant 𝑐 and 𝑑 as diagonal respectively.

Consequently, the covariance matrix of 𝑌 is

Σ𝑦 = 𝐸𝑌 𝑌 ′ = 𝐶Σ𝑥𝐶′ + 𝐷𝐷′
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By stacking 𝑋 and 𝑌 , we can write

𝑍 = [ 𝑋
𝑌 ]

and

Σ𝑧 = 𝐸𝑍𝑍′ = [ Σ𝑥 Σ𝑥𝐶′

𝐶Σ𝑥 Σ𝑦
]

Thus, the stacked sequences {𝑥𝑡}𝑇
𝑡=0 and {𝑦𝑡}𝑇

𝑡=0 jointly follow the multivariate normal distribution 𝑁 (0, Σ𝑧).
# as an example, consider the case where T = 3
T = 3

# variance of the initial distribution x_0
σ0 = 1.

# parameters of the equation system
a = .9
b = 1.
c = 1.0
d = .05

# construct the covariance matrix of X
Σx = np.empty((T+1, T+1))

Σx[0, 0] = σ0 ** 2
for i in range(T):

Σx[i, i+1:] = Σx[i, i] * a ** np.arange(1, T+1-i)
Σx[i+1:, i] = Σx[i, i+1:]

Σx[i+1, i+1] = a ** 2 * Σx[i, i] + b ** 2

Σx

array([[1. , 0.9 , 0.81 , 0.729 ],
[0.9 , 1.81 , 1.629 , 1.4661 ],
[0.81 , 1.629 , 2.4661 , 2.21949 ],
[0.729 , 1.4661 , 2.21949 , 2.997541]])

# construct the covariance matrix of Y
C = np.eye(T+1) * c
D = np.eye(T+1) * d

Σy = C @ Σx @ C.T + D @ D.T

# construct the covariance matrix of Z
Σz = np.empty((2*(T+1), 2*(T+1)))

Σz[:T+1, :T+1] = Σx
Σz[:T+1, T+1:] = Σx @ C.T
Σz[T+1:, :T+1] = C @ Σx
Σz[T+1:, T+1:] = Σy
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Σz

array([[1. , 0.9 , 0.81 , 0.729 , 1. , 0.9 ,
0.81 , 0.729 ],

[0.9 , 1.81 , 1.629 , 1.4661 , 0.9 , 1.81 ,
1.629 , 1.4661 ],

[0.81 , 1.629 , 2.4661 , 2.21949 , 0.81 , 1.629 ,
2.4661 , 2.21949 ],

[0.729 , 1.4661 , 2.21949 , 2.997541, 0.729 , 1.4661 ,
2.21949 , 2.997541],

[1. , 0.9 , 0.81 , 0.729 , 1.0025 , 0.9 ,
0.81 , 0.729 ],

[0.9 , 1.81 , 1.629 , 1.4661 , 0.9 , 1.8125 ,
1.629 , 1.4661 ],

[0.81 , 1.629 , 2.4661 , 2.21949 , 0.81 , 1.629 ,
2.4686 , 2.21949 ],

[0.729 , 1.4661 , 2.21949 , 2.997541, 0.729 , 1.4661 ,
2.21949 , 3.000041]])

# construct the mean vector of Z
μz = np.zeros(2*(T+1))

The following Python code lets us sample random vectors 𝑋 and 𝑌 .

This is going to be very useful for doing the conditioning to be used in the fun exercises below.

z = np.random.multivariate_normal(μz, Σz)

x = z[:T+1]
y = z[T+1:]

13.9.1 Smoothing Example

This is an instance of a classic smoothing calculation whose purpose is to compute 𝐸𝑋 ∣ 𝑌 .

An interpretation of this example is

• 𝑋 is a random sequence of hidden Markov state variables 𝑥𝑡

• 𝑌 is a sequence of observed signals 𝑦𝑡 bearing information about the hidden state

# construct a MultivariateNormal instance
multi_normal_ex1 = MultivariateNormal(μz, Σz)
x = z[:T+1]
y = z[T+1:]

# partition Z into X and Y
multi_normal_ex1.partition(T+1)

# compute the conditional mean and covariance matrix of X given Y=y

print("X = ", x)
print("Y = ", y)
print(" E [ X | Y] = ", )

multi_normal_ex1.cond_dist(0, y)
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X = [-0.43676975 0.84079513 0.95499047 -0.18847844]
Y = [-0.46715285 0.92537074 1.00275965 -0.1509145 ]
E [ X | Y] =

(array([-0.46298244, 0.9224051 , 0.99997651, -0.14829382]),
array([[2.48875094e-03, 5.57449314e-06, 1.24861729e-08, 2.80235835e-11],

[5.57449314e-06, 2.48876343e-03, 5.57452116e-06, 1.25113941e-08],
[1.24861729e-08, 5.57452116e-06, 2.48876346e-03, 5.58575339e-06],
[2.80235835e-11, 1.25113941e-08, 5.58575339e-06, 2.49377812e-03]]))

13.9.2 Filtering Exercise

Compute 𝐸 [𝑥𝑡 ∣ 𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦0].
To do so, we need to first construct the mean vector and the covariance matrix of the subvector [𝑥𝑡, 𝑦0, … , 𝑦𝑡−2, 𝑦𝑡−1].
For example, let’s say that we want the conditional distribution of 𝑥3.

t = 3

# mean of the subvector
sub_μz = np.zeros(t+1)

# covariance matrix of the subvector
sub_Σz = np.empty((t+1, t+1))

sub_Σz[0, 0] = Σz[t, t] # x_t
sub_Σz[0, 1:] = Σz[t, T+1:T+t+1]
sub_Σz[1:, 0] = Σz[T+1:T+t+1, t]
sub_Σz[1:, 1:] = Σz[T+1:T+t+1, T+1:T+t+1]

sub_Σz

array([[2.997541, 0.729 , 1.4661 , 2.21949 ],
[0.729 , 1.0025 , 0.9 , 0.81 ],
[1.4661 , 0.9 , 1.8125 , 1.629 ],
[2.21949 , 0.81 , 1.629 , 2.4686 ]])

multi_normal_ex2 = MultivariateNormal(sub_μz, sub_Σz)
multi_normal_ex2.partition(1)

sub_y = y[:t]

multi_normal_ex2.cond_dist(0, sub_y)

(array([0.90209633]), array([[1.00201996]]))
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13.9.3 Prediction Exercise

Compute 𝐸 [𝑦𝑡 ∣ 𝑦𝑡−𝑗, … , 𝑦0].
As what we did in exercise 2, we will construct the mean vector and covariance matrix of the subvector
[𝑦𝑡, 𝑦0, … , 𝑦𝑡−𝑗−1, 𝑦𝑡−𝑗].
For example, we take a case in which 𝑡 = 3 and 𝑗 = 2.
t = 3
j = 2

sub_μz = np.zeros(t-j+2)
sub_Σz = np.empty((t-j+2, t-j+2))

sub_Σz[0, 0] = Σz[T+t+1, T+t+1]
sub_Σz[0, 1:] = Σz[T+t+1, T+1:T+t-j+2]
sub_Σz[1:, 0] = Σz[T+1:T+t-j+2, T+t+1]
sub_Σz[1:, 1:] = Σz[T+1:T+t-j+2, T+1:T+t-j+2]

sub_Σz

array([[3.000041, 0.729 , 1.4661 ],
[0.729 , 1.0025 , 0.9 ],
[1.4661 , 0.9 , 1.8125 ]])

multi_normal_ex3 = MultivariateNormal(sub_μz, sub_Σz)
multi_normal_ex3.partition(1)

sub_y = y[:t-j+1]

multi_normal_ex3.cond_dist(0, sub_y)

(array([0.74683942]), array([[1.81413617]]))

13.9.4 Constructing a Wold Representation

Now we’ll apply Cholesky decomposition to decompose Σ𝑦 = 𝐻𝐻′ and form

𝜖 = 𝐻−1𝑌 .

Then we can represent 𝑦𝑡 as

𝑦𝑡 = ℎ𝑡,𝑡𝜖𝑡 + ℎ𝑡,𝑡−1𝜖𝑡−1 + ⋯ + ℎ𝑡,0𝜖0.

H = np.linalg.cholesky(Σy)

H

array([[1.00124922, 0. , 0. , 0. ],
[0.8988771 , 1.00225743, 0. , 0. ],
[0.80898939, 0.89978675, 1.00225743, 0. ],
[0.72809046, 0.80980808, 0.89978676, 1.00225743]])
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ε = np.linalg.inv(H) @ y

ε

array([-0.46657 , 1.34173097, 0.17254856, -1.05063908])

y

array([-0.46715285, 0.92537074, 1.00275965, -0.1509145 ])

This example is an instance of what is known as aWold representation in time series analysis.

13.10 Stochastic Difference Equation

Consider the stochastic second-order linear difference equation

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑦−1 + 𝛼2𝑦𝑡−2 + 𝑢𝑡

where 𝑢𝑡 ∼ 𝑁 (0, 𝜎2
𝑢) and

[ 𝑦−1
𝑦0

] ∼ 𝑁 (𝜇 ̃𝑦, Σ ̃𝑦)

It can be written as a stacked system

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 ⋯ 0 0 0
−𝛼1 1 0 0 ⋯ 0 0 0
−𝛼2 −𝛼1 1 0 ⋯ 0 0 0

0 −𝛼2 −𝛼1 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮
0 0 0 0 ⋯ −𝛼2 −𝛼1 1

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴

⎡
⎢
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
𝑦4
⋮

𝑦𝑇

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0 + 𝛼1𝑦0 + 𝛼2𝑦−1
𝛼0 + 𝛼2𝑦0

𝛼0
𝛼0
⋮

𝛼0

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑏

+

⎡
⎢
⎢
⎢
⎢
⎣

𝑢1
𝑢2
𝑢3
𝑢4
⋮

𝑢𝑇

⎤
⎥
⎥
⎥
⎥
⎦⏟

≡𝑢

We can compute 𝑦 by solving the system

𝑦 = 𝐴−1 (𝑏 + 𝑢)

We have

𝜇𝑦 = 𝐴−1𝜇𝑏

Σ𝑦 = 𝐴−1𝐸 [(𝑏 − 𝜇𝑏 + 𝑢) (𝑏 − 𝜇𝑏 + 𝑢)′] (𝐴−1)′

= 𝐴−1 (Σ𝑏 + Σ𝑢) (𝐴−1)′

where

𝜇𝑏 =
⎡
⎢
⎢
⎢
⎣

𝛼0 + 𝛼1𝜇𝑦0
+ 𝛼2𝜇𝑦−1

𝛼0 + 𝛼2𝜇𝑦0
𝛼0
⋮

𝛼0

⎤
⎥
⎥
⎥
⎦

Σ𝑏 = [ 𝐶Σ ̃𝑦𝐶′ 0𝑁−2×𝑁−2
0𝑁−2×2 0𝑁−2×𝑁−2

] , 𝐶 = [ 𝛼2 𝛼1
0 𝛼2

]
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Σ𝑢 =
⎡
⎢⎢
⎣

𝜎2
𝑢 0 ⋯ 0
0 𝜎2

𝑢 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝜎2

𝑢

⎤
⎥⎥
⎦

# set parameters
T = 80
T = 160
# coefficients of the second order difference equation
𝛼0 = 10
𝛼1 = 1.53
𝛼2 = -.9

# variance of u
σu = 1.
σu = 10.

# distribution of y_{-1} and y_{0}
μy_tilde = np.array([1., 0.5])
Σy_tilde = np.array([[2., 1.], [1., 0.5]])

# construct A and A^{\prime}
A = np.zeros((T, T))

for i in range(T):
A[i, i] = 1

if i-1 >= 0:
A[i, i-1] = -𝛼1

if i-2 >= 0:
A[i, i-2] = -𝛼2

A_inv = np.linalg.inv(A)

# compute the mean vectors of b and y
μb = np.full(T, 𝛼0)
μb[0] += 𝛼1 * μy_tilde[1] + 𝛼2 * μy_tilde[0]
μb[1] += 𝛼2 * μy_tilde[1]

μy = A_inv @ μb

# compute the covariance matrices of b and y
Σu = np.eye(T) * σu ** 2

Σb = np.zeros((T, T))

C = np.array([[𝛼2, 𝛼1], [0, 𝛼2]])
Σb[:2, :2] = C @ Σy_tilde @ C.T

Σy = A_inv @ (Σb + Σu) @ A_inv.T
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13.11 Application to Stock Price Model

Let

𝑝𝑡 =
𝑇 −𝑡
∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗

Form

⎡
⎢
⎢
⎢
⎣

𝑝1
𝑝2
𝑝3
⋮

𝑝𝑇

⎤
⎥
⎥
⎥
⎦⏟

≡𝑝

=
⎡
⎢
⎢
⎢
⎣

1 𝛽 𝛽2 ⋯ 𝛽𝑇 −1

0 1 𝛽 ⋯ 𝛽𝑇 −2

0 0 1 ⋯ 𝛽𝑇 −3

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐵

⎡
⎢
⎢
⎢
⎣

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑇

⎤
⎥
⎥
⎥
⎦

we have

𝜇𝑝 = 𝐵𝜇𝑦
Σ𝑝 = 𝐵Σ𝑦𝐵′

β = .96

# construct B
B = np.zeros((T, T))

for i in range(T):
B[i, i:] = β ** np.arange(0, T-i)

Denote

𝑧 = [ 𝑦
𝑝 ] = [ 𝐼

𝐵 ]
⏟

≡𝐷

𝑦

Thus, {𝑦𝑡}𝑇
𝑡=1 and {𝑝𝑡}𝑇

𝑡=1 jointly follow the multivariate normal distribution 𝑁 (𝜇𝑧, Σ𝑧), where

𝜇𝑧 = 𝐷𝜇𝑦

Σ𝑧 = 𝐷Σ𝑦𝐷′

D = np.vstack([np.eye(T), B])

μz = D @ μy
Σz = D @ Σy @ D.T

We can simulate paths of 𝑦𝑡 and 𝑝𝑡 and compute the conditional mean𝐸 [𝑝𝑡 ∣ 𝑦𝑡−1, 𝑦𝑡] using the MultivariateNor-
mal class.

z = np.random.multivariate_normal(μz, Σz)
y, p = z[:T], z[T:]
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cond_Ep = np.empty(T-1)

sub_μ = np.empty(3)
sub_Σ = np.empty((3, 3))
for t in range(2, T+1):

sub_μ[:] = μz[[t-2, t-1, T-1+t]]
sub_Σ[:, :] = Σz[[t-2, t-1, T-1+t], :][:, [t-2, t-1, T-1+t]]

multi_normal = MultivariateNormal(sub_μ, sub_Σ)
multi_normal.partition(2)

cond_Ep[t-2] = multi_normal.cond_dist(1, y[t-2:t])[0][0]

plt.plot(range(1, T), y[1:], label='$y_{t}$')
plt.plot(range(1, T), y[:-1], label='$y_{t-1}$')
plt.plot(range(1, T), p[1:], label='$p_{t}$')
plt.plot(range(1, T), cond_Ep, label='$Ep_{t}|y_{t}, y_{t-1}$')

plt.xlabel('t')
plt.legend(loc=1)
plt.show()

In the above graph, the green line is what the price of the stock would be if people had perfect foresight about the path
of dividends while the green line is the conditional expectation 𝐸𝑝𝑡|𝑦𝑡, 𝑦𝑡−1, which is what the price would be if people
did not have perfect foresight but were optimally predicting future dividends on the basis of the information 𝑦𝑡, 𝑦𝑡−1 at
time 𝑡.
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13.12 Filtering Foundations

Assume that 𝑥0 is an 𝑛 × 1 random vector and that 𝑦0 is a 𝑝 × 1 random vector determined by the observation equation

𝑦0 = 𝐺𝑥0 + 𝑣0, 𝑥0 ∼ 𝒩( ̂𝑥0, Σ0), 𝑣0 ∼ 𝒩(0, 𝑅)

where 𝑣0 is orthogonal to 𝑥0, 𝐺 is a 𝑝 × 𝑛 matrix, and 𝑅 is a 𝑝 × 𝑝 positive definite matrix.
We consider the problem of someone who

• observes 𝑦0

• does not observe 𝑥0,

• knows ̂𝑥0, Σ0, 𝐺, 𝑅 and therefore the joint probability distribution of the vector [𝑥0
𝑦0

]

• wants to infer 𝑥0 from 𝑦0 in light of what he knows about that joint probability distribution.

Therefore, the person wants to construct the probability distribution of 𝑥0 conditional on the random vector 𝑦0.

The joint distribution of [𝑥0
𝑦0

] is multivariate normal 𝒩(𝜇, Σ) with

𝜇 = [ ̂𝑥0
𝐺 ̂𝑥0

] , Σ = [ Σ0 Σ0𝐺′

𝐺Σ0 𝐺Σ0𝐺′ + 𝑅]

By applying an appropriate instance of the above formulas for the mean vector ̂𝜇1 and covariance matrix Σ̂11 of 𝑧1
conditional on 𝑧2, we find that the probability distribution of 𝑥0 conditional on 𝑦0 is 𝒩( ̃𝑥0, Σ̃0) where

𝛽0 = Σ0𝐺′(𝐺Σ0𝐺′ + 𝑅)−1

̃𝑥0 = ̂𝑥0 + 𝛽0(𝑦0 − 𝐺 ̂𝑥0)
Σ̃0 = Σ0 − Σ0𝐺′(𝐺Σ0𝐺′ + 𝑅)−1𝐺Σ0

We can express our finding that the probability distribution of 𝑥0 conditional on 𝑦0 is 𝒩( ̃𝑥0, Σ̃0) by representing 𝑥0 as

𝑥0 = ̃𝑥0 + 𝜁0 (13.2)

where 𝜁0 is a Gaussian random vector that is orthogonal to ̃𝑥0 and 𝑦0 and that has mean vector 0 and conditional covariance
matrix 𝐸[𝜁0𝜁′

0|𝑦0] = Σ̃0.

13.12.1 Step toward dynamics

Now suppose that we are in a time series setting and that we have the one-step state transition equation

𝑥1 = 𝐴𝑥0 + 𝐶𝑤1, 𝑤1 ∼ 𝒩(0, 𝐼)

where 𝐴 is an 𝑛 × 𝑛 matrix and 𝐶 is an 𝑛 × 𝑚 matrix.

Using equation (13.2), we can also represent 𝑥1 as

𝑥1 = 𝐴( ̃𝑥0 + 𝜁0) + 𝐶𝑤1

It follows that

𝐸𝑥1|𝑦0 = 𝐴 ̃𝑥0
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and that the corresponding conditional covariance matrix 𝐸(𝑥1 − 𝐸𝑥1|𝑦0)(𝑥1 − 𝐸𝑥1|𝑦0)′ ≡ Σ1 is

Σ1 = 𝐴Σ̃0𝐴′ + 𝐶𝐶′

or

Σ1 = 𝐴Σ0𝐴′ − 𝐴Σ0𝐺′(𝐺Σ0𝐺′ + 𝑅)−1𝐺Σ0𝐴′

We can write the mean of 𝑥1 conditional on 𝑦0 as

̂𝑥1 = 𝐴 ̂𝑥0 + 𝐴Σ0𝐺′(𝐺Σ0𝐺′ + 𝑅)−1(𝑦0 − 𝐺 ̂𝑥0)

or

̂𝑥1 = 𝐴 ̂𝑥0 + 𝐾0(𝑦0 − 𝐺 ̂𝑥0)

where

𝐾0 = 𝐴Σ0𝐺′(𝐺Σ0𝐺′ + 𝑅)−1

13.12.2 Dynamic version

Suppose now that for 𝑡 ≥ 0, {𝑥𝑡+1, 𝑦𝑡}∞
𝑡=0 are governed by the equations

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡

where as before 𝑥0 ∼ 𝒩( ̂𝑥0, Σ0), 𝑤𝑡+1 is the 𝑡 + 1th component of an i.i.d. stochastic process distributed as 𝑤𝑡+1 ∼
𝒩(0, 𝐼), and 𝑣𝑡 is the 𝑡th component of an i.i.d. process distributed as 𝑣𝑡 ∼ 𝒩(0, 𝑅) and the {𝑤𝑡+1}∞

𝑡=0 and {𝑣𝑡}∞
𝑡=0

processes are orthogonal at all pairs of dates.

The logic and formulas that we applied above imply that the probability distribution of 𝑥𝑡 conditional on 𝑦0, 𝑦1, … , 𝑦𝑡−1 =
𝑦𝑡−1 is

𝑥𝑡|𝑦𝑡−1 ∼ 𝒩(𝐴 ̃𝑥𝑡, 𝐴Σ̃𝑡𝐴′ + 𝐶𝐶′)

where { ̃𝑥𝑡, Σ̃𝑡}∞
𝑡=1 can be computed by iterating on the following equations starting from 𝑡 = 1 and initial conditions for

̃𝑥0, Σ̃0 computed as we have above:

Σ𝑡 = 𝐴Σ̃𝑡−1𝐴′ + 𝐶𝐶′

̂𝑥𝑡 = 𝐴 ̃𝑥𝑡−1
𝛽𝑡 = Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1

̃𝑥𝑡 = ̂𝑥𝑡 + 𝛽𝑡(𝑦𝑡 − 𝐺 ̂𝑥𝑡)
Σ̃𝑡 = Σ𝑡 − Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡

If we shift the first equation forward one period and then substitute the expression for Σ̃𝑡 on the right side of the fifth
equation into it we obtain

Σ𝑡+1 = 𝐶𝐶′ + 𝐴Σ𝑡𝐴′ − 𝐴Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡𝐴′.

This is a matrix Riccati difference equation that is closely related to another matrix Riccati difference equation that appears
in a quantecon lecture on the basics of linear quadratic control theory.
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That equation has the form

𝑃𝑡−1 = 𝑅 + 𝐴′𝑃𝑡𝐴 − 𝐴′𝑃𝑡𝐵(𝐵′𝑃𝑡𝐵 + 𝑄)−1𝐵′𝑃𝑡𝐴.

Stare at the two preceding equations for a moment or two, the first being a matrix difference equation for a conditional
covariance matrix, the second being a matrix difference equation in the matrix appearing in a quadratic form for an
intertemporal cost of value function.

Although the two equations are not identical, they display striking family resemblences.

• the first equation tells dynamics that work forward in time

• the second equation tells dynamics that work backward in time

• while many of the terms are similar, one equation seems to apply matrix transformations to some matrices that play
similar roles in the other equation

The family resemblences of these two equations reflects a transcendent duality that prevails between control theory and
filtering theory.

13.12.3 An example

We can use the Python class MultivariateNormal to construct examples.

Here is an example for a single period problem at time 0
G = np.array([[1., 3.]])
R = np.array([[1.]])

x0_hat = np.array([0., 1.])
Σ0 = np.array([[1., .5], [.3, 2.]])

μ = np.hstack([x0_hat, G @ x0_hat])
Σ = np.block([[Σ0, Σ0 @ G.T], [G @ Σ0, G @ Σ0 @ G.T + R]])

# construction of the multivariate normal instance
multi_normal = MultivariateNormal(μ, Σ)

multi_normal.partition(2)

# the observation of y
y0 = 2.3

# conditional distribution of x0
μ1_hat, Σ11 = multi_normal.cond_dist(0, y0)
μ1_hat, Σ11

(array([-0.078125, 0.803125]),
array([[ 0.72098214, -0.203125 ],

[-0.403125 , 0.228125 ]]))

A = np.array([[0.5, 0.2], [-0.1, 0.3]])
C = np.array([[2.], [1.]])

# conditional distribution of x1
x1_cond = A @ μ1_hat

(continues on next page)
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(continued from previous page)

Σ1_cond = C @ C.T + A @ Σ11 @ A.T
x1_cond, Σ1_cond

(array([0.1215625, 0.24875 ]),
array([[4.12874554, 1.95523214],

[1.92123214, 1.04592857]]))

13.12.4 Code for Iterating

Here is code for solving a dynamic filtering problem by iterating on our equations, followed by an example.

def iterate(x0_hat, Σ0, A, C, G, R, y_seq):

p, n = G.shape

T = len(y_seq)
x_hat_seq = np.empty((T+1, n))
Σ_hat_seq = np.empty((T+1, n, n))

x_hat_seq[0] = x0_hat
Σ_hat_seq[0] = Σ0

for t in range(T):
xt_hat = x_hat_seq[t]
Σt = Σ_hat_seq[t]
μ = np.hstack([xt_hat, G @ xt_hat])
Σ = np.block([[Σt, Σt @ G.T], [G @ Σt, G @ Σt @ G.T + R]])

# filtering
multi_normal = MultivariateNormal(μ, Σ)
multi_normal.partition(n)
x_tilde, Σ_tilde = multi_normal.cond_dist(0, y_seq[t])

# forecasting
x_hat_seq[t+1] = A @ x_tilde
Σ_hat_seq[t+1] = C @ C.T + A @ Σ_tilde @ A.T

return x_hat_seq, Σ_hat_seq

iterate(x0_hat, Σ0, A, C, G, R, [2.3, 1.2, 3.2])

(array([[0. , 1. ],
[0.1215625 , 0.24875 ],
[0.18680212, 0.06904689],
[0.75576875, 0.05558463]]),

array([[[1. , 0.5 ],
[0.3 , 2. ]],

[[4.12874554, 1.95523214],
[1.92123214, 1.04592857]],

[[4.08198663, 1.99218488],
[1.98640488, 1.00886423]],

(continues on next page)
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(continued from previous page)

[[4.06457628, 2.00041999],
[1.99943739, 1.00275526]]]))

The iterative algorithm just described is a version of the celebrated Kalman filter.

We describe the Kalman filter and some applications of it in A First Look at the Kalman Filter

13.13 Classic Factor Analysis Model

The factor analysis model widely used in psychology and other fields can be represented as

𝑌 = Λ𝑓 + 𝑈

where

1. 𝑌 is 𝑛 × 1 random vector, 𝐸𝑈𝑈 ′ = 𝐷 is a diagonal matrix,

2. Λ is 𝑛 × 𝑘 coefficient matrix,

3. 𝑓 is 𝑘 × 1 random vector, 𝐸𝑓𝑓 ′ = 𝐼 ,
4. 𝑈 is 𝑛 × 1 random vector, and 𝑈 ⟂ 𝑓 (i.e., 𝐸𝑈𝑓 ′ = 0 )
5. It is presumed that 𝑘 is small relative to 𝑛; often 𝑘 is only 1 or 2, as in our IQ examples.

This implies that

Σ𝑦 = 𝐸𝑌 𝑌 ′ = ΛΛ′ + 𝐷
𝐸𝑌 𝑓 ′ = Λ

𝐸𝑓𝑌 ′ = Λ′

Thus, the covariance matrix Σ𝑌 is the sum of a diagonal matrix 𝐷 and a positive semi-definite matrix ΛΛ′ of rank 𝑘.
This means that all covariances among the𝑛 components of the𝑌 vector are intermediated by their common dependencies
on the 𝑘 < factors.

Form

𝑍 = ( 𝑓
𝑌 )

the covariance matrix of the expanded random vector 𝑍 can be computed as

Σ𝑧 = 𝐸𝑍𝑍′ = ( 𝐼 Λ′

Λ ΛΛ′ + 𝐷 )

In the following, we first construct the mean vector and the covariance matrix for the case where 𝑁 = 10 and 𝑘 = 2.
N = 10
k = 2

We set the coefficient matrix Λ and the covariance matrix of 𝑈 to be

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
⋮ ⋮
1 0
0 1
⋮ ⋮
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝐷 =
⎛⎜⎜⎜
⎝

𝜎2
𝑢 0 ⋯ 0
0 𝜎2

𝑢 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝜎2

𝑢

⎞⎟⎟⎟
⎠
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where the first half of the first column of Λ is filled with 1s and 0s for the rest half, and symmetrically for the second
column.

𝐷 is a diagonal matrix with parameter 𝜎2
𝑢 on the diagonal.

Λ = np.zeros((N, k))
Λ[:N//2, 0] = 1
Λ[N//2:, 1] = 1

σu = .5
D = np.eye(N) * σu ** 2

# compute Σy
Σy = Λ @ Λ.T + D

We can now construct the mean vector and the covariance matrix for 𝑍.
μz = np.zeros(k+N)

Σz = np.empty((k+N, k+N))

Σz[:k, :k] = np.eye(k)
Σz[:k, k:] = Λ.T
Σz[k:, :k] = Λ
Σz[k:, k:] = Σy

z = np.random.multivariate_normal(μz, Σz)

f = z[:k]
y = z[k:]

multi_normal_factor = MultivariateNormal(μz, Σz)
multi_normal_factor.partition(k)

Let’s compute the conditional distribution of the hidden factor 𝑓 on the observations 𝑌 , namely, 𝑓 ∣ 𝑌 = 𝑦.
multi_normal_factor.cond_dist(0, y)

(array([ 1.09088417, -1.73625932]),
array([[0.04761905, 0. ],

[0. , 0.04761905]]))

We can verify that the conditional mean 𝐸 [𝑓 ∣ 𝑌 = 𝑦] = 𝐵𝑌 where 𝐵 = Λ′Σ−1
𝑦 .

B = Λ.T @ np.linalg.inv(Σy)

B @ y

array([ 1.09088417, -1.73625932])

Similarly, we can compute the conditional distribution 𝑌 ∣ 𝑓 .
multi_normal_factor.cond_dist(1, f)

(array([ 0.97154349, 0.97154349, 0.97154349, 0.97154349, 0.97154349,
-1.8093751 , -1.8093751 , -1.8093751 , -1.8093751 , -1.8093751 ]),

(continues on next page)
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(continued from previous page)

array([[0.25, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0.25, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0.25, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0.25, 0. , 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0.25, 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0.25, 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0.25, 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25, 0. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.25]]))

It can be verified that the mean is Λ𝐼−1𝑓 = Λ𝑓 .
Λ @ f

array([ 0.97154349, 0.97154349, 0.97154349, 0.97154349, 0.97154349,
-1.8093751 , -1.8093751 , -1.8093751 , -1.8093751 , -1.8093751 ])

13.14 PCA and Factor Analysis

To learn about Principal Components Analysis (PCA), please see this lecture Singular Value Decompositions.

For fun, let’s apply a PCA decomposition to a covariance matrix Σ𝑦 that in fact is governed by our factor-analytic model.

Technically, this means that the PCA model is misspecified. (Can you explain why?)

Nevertheless, this exercise will let us study how well the first two principal components from a PCA can approximate the
conditional expectations 𝐸𝑓𝑖|𝑌 for our two factors 𝑓𝑖, 𝑖 = 1, 2 for the factor analytic model that we have assumed truly
governs the data on 𝑌 we have generated.

So we compute the PCA decomposition

Σ𝑦 = 𝑃 Λ̃𝑃 ′

where Λ̃ is a diagonal matrix.

We have

𝑌 = 𝑃𝜖

and

𝜖 = 𝑃 ′𝑌

Note that we will arrange the eigenvectors in 𝑃 in the descending order of eigenvalues.

𝜆_tilde, P = np.linalg.eigh(Σy)

# arrange the eigenvectors by eigenvalues
ind = sorted(range(N), key=lambda x: 𝜆_tilde[x], reverse=True)

P = P[:, ind]
𝜆_tilde = 𝜆_tilde[ind]
Λ_tilde = np.diag(𝜆_tilde)

print('𝜆_tilde =', 𝜆_tilde)
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𝜆_tilde = [5.25 5.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]

# verify the orthogonality of eigenvectors
np.abs(P @ P.T - np.eye(N)).max()

np.float64(4.440892098500626e-16)

# verify the eigenvalue decomposition is correct
P @ Λ_tilde @ P.T

array([[1.25, 1. , 1. , 1. , 1. , 0. , 0. , 0. , 0. , 0. ],
[1. , 1.25, 1. , 1. , 1. , 0. , 0. , 0. , 0. , 0. ],
[1. , 1. , 1.25, 1. , 1. , 0. , 0. , 0. , 0. , 0. ],
[1. , 1. , 1. , 1.25, 1. , 0. , 0. , 0. , 0. , 0. ],
[1. , 1. , 1. , 1. , 1.25, 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. , 0. , 1.25, 1. , 1. , 1. , 1. ],
[0. , 0. , 0. , 0. , 0. , 1. , 1.25, 1. , 1. , 1. ],
[0. , 0. , 0. , 0. , 0. , 1. , 1. , 1.25, 1. , 1. ],
[0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1.25, 1. ],
[0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1. , 1.25]])

ε = P.T @ y

print("ε = ", ε)

ε = [ 2.56125572 -4.07651357 0.51306262 0.03814162 0.53291673 -0.03546758
0.01798607 -0.35826715 0.49125961 0.41459053]

# print the values of the two factors

print('f = ', f)

f = [ 0.97154349 -1.8093751 ]

Below we’ll plot several things

• the 𝑁 values of 𝑦
• the 𝑁 values of the principal components 𝜖
• the value of the first factor 𝑓1 plotted only for the first 𝑁/2 observations of 𝑦 for which it receives a non-zero
loading in Λ

• the value of the second factor 𝑓2 plotted only for the final𝑁/2 observations for which it receives a non-zero loading
in Λ

plt.scatter(range(N), y, label='y')
plt.scatter(range(N), ε, label=r'$\epsilon$')
plt.hlines(f[0], 0, N//2-1, ls='--', label='$f_{1}$')
plt.hlines(f[1], N//2, N-1, ls='-.', label='$f_{2}$')
plt.legend()

plt.show()
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Consequently, the first two 𝜖𝑗 correspond to the largest two eigenvalues.

Let’s look at them, after which we’ll look at 𝐸𝑓|𝑦 = 𝐵𝑦
ε[:2]

array([ 2.56125572, -4.07651357])

# compare with Ef|y
B @ y

array([ 1.09088417, -1.73625932])

The fraction of variance in 𝑦𝑡 explained by the first two principal components can be computed as below.

𝜆_tilde[:2].sum() / 𝜆_tilde.sum()

np.float64(0.84)

Compute

̂𝑌 = 𝑃𝑗𝜖𝑗 + 𝑃𝑘𝜖𝑘

where 𝑃𝑗 and 𝑃𝑘 correspond to the largest two eigenvalues.

y_hat = P[:, :2] @ ε[:2]

In this example, it turns out that the projection ̂𝑌 of 𝑌 on the first two principal components does a good job of approx-
imating 𝐸𝑓 ∣ 𝑦.
We confirm this in the following plot of 𝑓 , 𝐸𝑦 ∣ 𝑓 , 𝐸𝑓 ∣ 𝑦, and ̂𝑦 on the coordinate axis versus 𝑦 on the ordinate axis.
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plt.scatter(range(N), Λ @ f, label='$Ey|f$')
plt.scatter(range(N), y_hat, label=r'$\hat{y}$')
plt.hlines(f[0], 0, N//2-1, ls='--', label='$f_{1}$')
plt.hlines(f[1], N//2, N-1, ls='-.', label='$f_{2}$')

Efy = B @ y
plt.hlines(Efy[0], 0, N//2-1, ls='--', color='b', label='$Ef_{1}|y$')
plt.hlines(Efy[1], N//2, N-1, ls='-.', color='b', label='$Ef_{2}|y$')
plt.legend()

plt.show()

The covariance matrix of ̂𝑌 can be computed by first constructing the covariance matrix of 𝜖 and then use the upper left
block for 𝜖1 and 𝜖2.

Σεjk = (P.T @ Σy @ P)[:2, :2]

Pjk = P[:, :2]

Σy_hat = Pjk @ Σεjk @ Pjk.T
print('Σy_hat = \n', Σy_hat)

Σy_hat =
[[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0. ]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0. ]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0. ]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0. ]
[1.05 1.05 1.05 1.05 1.05 0. 0. 0. 0. 0. ]
[0. 0. 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]

(continues on next page)
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(continued from previous page)

[0. 0. 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]
[0. 0. 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]
[0. 0. 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]
[0. 0. 0. 0. 0. 1.05 1.05 1.05 1.05 1.05]]
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CHAPTER

FOURTEEN

FAULT TREE UNCERTAINTIES

14.1 Overview

This lecture puts elementary tools to work to approximate probability distributions of the annual failure rates of a system
consisting of a number of critical parts.

We’ll use log normal distributions to approximate probability distributions of critical component parts.

To approximate the probability distribution of the sum of 𝑛 log normal probability distributions that describes the failure
rate of the entire system, we’ll compute the convolution of those 𝑛 log normal probability distributions.

We’ll use the following concepts and tools:

• log normal distributions

• the convolution theorem that describes the probability distribution of the sum independent random variables

• fault tree analysis for approximating a failure rate of a multi-component system

• a hierarchical probability model for describing uncertain probabilities

• Fourier transforms and inverse Fourier tranforms as efficient ways of computing convolutions of sequences

For more about Fourier transforms see this quantecon lecture Circulant Matrices as well as these lecture Covariance
Stationary Processes and Estimation of Spectra.

El-Shanawany, Ardron, and Walker [El-Shanawany et al., 2018] and Greenfield and Sargent [Greenfield and Sargent,
1993] used some of the methods described here to approximate probabilities of failures of safety systems in nuclear
facilities.

These methods respond to some of the recommendations made by Apostolakis [Apostolakis, 1990] for constructing
procedures for quantifying uncertainty about the reliability of a safety system.

We’ll start by bringing in some Python machinery.

!pip install tabulate

Requirement already satisfied: tabulate in /home/runner/miniconda3/envs/quantecon/
↪lib/python3.13/site-packages (0.9.0)

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import fftconvolve
from tabulate import tabulate
import time
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np.set_printoptions(precision=3, suppress=True)

14.2 Log normal distribution

If a random variable 𝑥 follows a normal distribution with mean 𝜇 and variance 𝜎2, then the natural logarithm of 𝑥, say
𝑦 = log(𝑥), follows a log normal distribution with parameters 𝜇, 𝜎2.

Notice that we said parameters and notmean and variance 𝜇, 𝜎2.

• 𝜇 and 𝜎2 are the mean and variance of 𝑥 = exp(𝑦)
• they are not the mean and variance of 𝑦
• instead, the mean of 𝑦 is 𝑒𝜇+ 1

2 𝜎2
and the variance of 𝑦 is (𝑒𝜎2 − 1)𝑒2𝜇+𝜎2

A log normal random variable 𝑦 is nonnegative.
The density for a log normal random variate 𝑦 is

𝑓(𝑦) = 1
𝑦𝜎

√
2𝜋 exp(−(log 𝑦 − 𝜇)2

2𝜎2 )

for 𝑦 ≥ 0.
Important features of a log normal random variable are

mean: 𝑒𝜇+ 1
2 𝜎2

variance: (𝑒𝜎2 − 1)𝑒2𝜇+𝜎2

median: 𝑒𝜇

mode: 𝑒𝜇−𝜎2

.95 quantile: 𝑒𝜇+1.645𝜎

.95-.05 quantile ratio: 𝑒1.645𝜎

Recall the following stability property of two independent normally distributed random variables:

If 𝑥1 is normal with mean 𝜇1 and variance 𝜎2
1 and 𝑥2 is independent of 𝑥1 and normal with mean 𝜇2 and variance 𝜎2

2,
then 𝑥1 + 𝑥2 is normally distributed with mean 𝜇1 + 𝜇2 and variance 𝜎2

1 + 𝜎2
2.

Independent log normal distributions have a different stability property.

The product of independent log normal random variables is also log normal.

In particular, if 𝑦1 is log normal with parameters (𝜇1, 𝜎2
1) and 𝑦2 is log normal with parameters (𝜇2, 𝜎2

2), then the product
𝑦1𝑦2 is log normal with parameters (𝜇1 + 𝜇2, 𝜎2

1 + 𝜎2
2).

Note

While the product of two log normal distributions is log normal, the sum of two log normal distributions is not log
normal.

This observation sets the stage for challenge that confronts us in this lecture, namely, to approximate probability distri-
butions of sums of independent log normal random variables.

To compute the probability distribution of the sum of two log normal distributions, we can use the following convolution
property of a probability distribution that is a sum of independent random variables.
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14.3 The Convolution Property

Let 𝑥 be a random variable with probability density 𝑓(𝑥), where 𝑥 ∈ R.

Let 𝑦 be a random variable with probability density 𝑔(𝑦), where 𝑦 ∈ R.

Let 𝑥 and 𝑦 be independent random variables and let 𝑧 = 𝑥 + 𝑦 ∈ R.

Then the probability distribution of 𝑧 is

ℎ(𝑧) = (𝑓 ∗ 𝑔)(𝑧) ≡ ∫
∞

−∞
𝑓(𝑧)𝑔(𝑧 − 𝜏)𝑑𝜏

where (𝑓 ∗ 𝑔) denotes the convolution of the two functions 𝑓 and 𝑔.
If the random variables are both nonnegative, then the above formula specializes to

ℎ(𝑧) = (𝑓 ∗ 𝑔)(𝑧) ≡ ∫
∞

0
𝑓(𝑧)𝑔(𝑧 − 𝜏)𝑑𝜏

Below, we’ll use a discretized version of the preceding formula.

In particular, we’ll replace both 𝑓 and 𝑔 with discretized counterparts, normalized to sum to 1 so that they are probability
distributions.

• by discretized we mean an equally spaced sampled version

Then we’ll use the following version of the above formula

ℎ𝑛 = (𝑓 ∗ 𝑔)𝑛 =
∞

∑
𝑚=0

𝑓𝑚𝑔𝑛−𝑚, 𝑛 ≥ 0

to compute a discretized version of the probability distribution of the sum of two random variables, one with probability
mass function 𝑓 , the other with probability mass function 𝑔.
Before applying the convolution property to sums of log normal distributions, let’s practice on some simple discrete
distributions.

To take one example, let’s consider the following two probability distributions

𝑓𝑗 = Prob(𝑋 = 𝑗), 𝑗 = 0, 1

and

𝑔𝑗 = Prob(𝑌 = 𝑗), 𝑗 = 0, 1, 2, 3

and

ℎ𝑗 = Prob(𝑍 ≡ 𝑋 + 𝑌 = 𝑗), 𝑗 = 0, 1, 2, 3, 4

The convolution property tells us that

ℎ = 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

Let’s compute an example using the numpy.convolve and scipy.signal.fftconvolve.
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f = [.75, .25]
g = [0., .6, 0., .4]
h = np.convolve(f,g)
hf = fftconvolve(f,g)

print("f = ", f, ", np.sum(f) = ", np.sum(f))
print("g = ", g, ", np.sum(g) = ", np.sum(g))
print("h = ", h, ", np.sum(h) = ", np.sum(h))
print("hf = ", hf, ",np.sum(hf) = ", np.sum(hf))

f = [0.75, 0.25] , np.sum(f) = 1.0
g = [0.0, 0.6, 0.0, 0.4] , np.sum(g) = 1.0
h = [0. 0.45 0.15 0.3 0.1 ] , np.sum(h) = 1.0
hf = [0. 0.45 0.15 0.3 0.1 ] ,np.sum(hf) = 1.0000000000000002

A little later we’ll explain some advantages that come from using scipy.signal.ftconvolve rather than numpy.
convolve.numpy program convolve.

They provide the same answers but scipy.signal.ftconvolve is much faster.

That’s why we rely on it later in this lecture.

14.4 Approximating Distributions

We’ll construct an example to verify that discretized distributions can do a good job of approximating samples drawn
from underlying continuous distributions.

We’ll start by generating samples of size 25000 of three independent log normal random variates as well as pairwise and
triple-wise sums.

Then we’ll plot histograms and compare them with convolutions of appropriate discretized log normal distributions.

## create sums of two and three log normal random variates ssum2 = s1 + s2 and ssum3␣
↪= s1 + s2 + s3

mu1, sigma1 = 5., 1. # mean and standard deviation
s1 = np.random.lognormal(mu1, sigma1, 25000)

mu2, sigma2 = 5., 1. # mean and standard deviation
s2 = np.random.lognormal(mu2, sigma2, 25000)

mu3, sigma3 = 5., 1. # mean and standard deviation
s3 = np.random.lognormal(mu3, sigma3, 25000)

ssum2 = s1 + s2

ssum3 = s1 + s2 + s3

count, bins, ignored = plt.hist(s1, 1000, density=True, align='mid')
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count, bins, ignored = plt.hist(ssum2, 1000, density=True, align='mid')
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count, bins, ignored = plt.hist(ssum3, 1000, density=True, align='mid')

samp_mean2 = np.mean(s2)
pop_mean2 = np.exp(mu2+ (sigma2**2)/2)

pop_mean2, samp_mean2, mu2, sigma2

(np.float64(244.69193226422038), np.float64(244.9254392277955), 5.0, 1.0)

Here are helper functions that create a discretized version of a log normal probability density function.

def p_log_normal(x,μ,σ):
p = 1 / (σ*x*np.sqrt(2*np.pi)) * np.exp(-1/2*((np.log(x) - μ)/σ)**2)
return p

def pdf_seq(μ,σ,I,m):
x = np.arange(1e-7,I,m)
p_array = p_log_normal(x,μ,σ)
p_array_norm = p_array/np.sum(p_array)
return p_array,p_array_norm,x

Now we shall set a grid length 𝐼 and a grid increment size 𝑚 = 1 for our discretizations.

Note

We set 𝐼 equal to a power of two because we want to be free to use a Fast Fourier Transform to compute a convolution
of two sequences (discrete distributions).
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We recommend experimenting with different values of the power 𝑝 of 2.
Setting it to 15 rather than 12, for example, improves how well the discretized probability mass function approximates
the original continuous probability density function being studied.

p=15
I = 2**p # Truncation value
m = .1 # increment size

## Cell to check -- note what happens when don't normalize!
## things match up without adjustment. Compare with above

p1,p1_norm,x = pdf_seq(mu1,sigma1,I,m)
## compute number of points to evaluate the probability mass function
NT = x.size

plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(x[:int(NT)],p1[:int(NT)],label = '')
plt.xlim(0,2500)
count, bins, ignored = plt.hist(s1, 1000, density=True, align='mid')

plt.show()

# Compute mean from discretized pdf and compare with the theoretical value

mean= np.sum(np.multiply(x[:NT],p1_norm[:NT]))
meantheory = np.exp(mu1+.5*sigma1**2)
mean, meantheory

(np.float64(244.69059898302908), np.float64(244.69193226422038))
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14.5 Convolving Probability Mass Functions

Now let’s use the convolution theorem to compute the probability distribution of a sum of the two log normal random
variables we have parameterized above.

We’ll also compute the probability of a sum of three log normal distributions constructed above.

Before we do these things, we shall explain our choice of Python algorithm to compute a convolution of two sequences.

Because the sequences that we convolve are long, we use the scipy.signal.fftconvolve function rather than
the numpy.convove function.

These two functions give virtually equivalent answers but for long sequences scipy.signal.fftconvolve is much
faster.

The program scipy.signal.fftconvolve uses fast Fourier transforms and their inverses to calculate convolu-
tions.

Let’s define the Fourier transform and the inverse Fourier transform.

The Fourier transform of a sequence {𝑥𝑡}𝑇 −1
𝑡=0 is a sequence of complex numbers {𝑥(𝜔𝑗)}𝑇 −1

𝑗=0 given by

𝑥(𝜔𝑗) =
𝑇 −1
∑
𝑡=0

𝑥𝑡 exp(−𝑖𝜔𝑗𝑡) (14.1)

where 𝜔𝑗 = 2𝜋𝑗
𝑇 for 𝑗 = 0, 1, … , 𝑇 − 1.

The inverse Fourier transform of the sequence {𝑥(𝜔𝑗)}𝑇 −1
𝑗=0 is

𝑥𝑡 = 𝑇 −1
𝑇 −1
∑
𝑗=0

𝑥(𝜔𝑗) exp(𝑖𝜔𝑗𝑡) (14.2)

The sequences {𝑥𝑡}𝑇 −1
𝑡=0 and {𝑥(𝜔𝑗)}𝑇 −1

𝑗=0 contain the same information.

The pair of equations (14.1) and (14.2) tell how to recover one series from its Fourier partner.

The program scipy.signal.fftconvolve deploys the theorem that a convolution of two sequences {𝑓𝑘}, {𝑔𝑘}
can be computed in the following way:

• Compute Fourier transforms 𝐹(𝜔), 𝐺(𝜔) of the {𝑓𝑘} and {𝑔𝑘} sequences, respectively
• Form the product 𝐻(𝜔) = 𝐹(𝜔)𝐺(𝜔)
• The convolution of 𝑓 ∗ 𝑔 is the inverse Fourier transform of 𝐻(𝜔)

The fast Fourier transform and the associated inverse fast Fourier transform execute these calculations very quickly.

This is the algorithm that scipy.signal.fftconvolve uses.

Let’s do a warmup calculation that compares the times taken by numpy.convove and scipy.signal.
fftconvolve.

p1,p1_norm,x = pdf_seq(mu1,sigma1,I,m)
p2,p2_norm,x = pdf_seq(mu2,sigma2,I,m)
p3,p3_norm,x = pdf_seq(mu3,sigma3,I,m)

tic = time.perf_counter()

c1 = np.convolve(p1_norm,p2_norm)
c2 = np.convolve(c1,p3_norm)

(continues on next page)
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(continued from previous page)

toc = time.perf_counter()

tdiff1 = toc - tic

tic = time.perf_counter()

c1f = fftconvolve(p1_norm,p2_norm)
c2f = fftconvolve(c1f,p3_norm)
toc = time.perf_counter()

toc = time.perf_counter()

tdiff2 = toc - tic

print("time with np.convolve = ", tdiff1, "; time with fftconvolve = ", tdiff2)

time with np.convolve = 34.02601950400003 ; time with fftconvolve = 0.
↪16428049200021633

The fast Fourier transform is two orders of magnitude faster than numpy.convolve

Now let’s plot our computed probability mass function approximation for the sum of two log normal random variables
against the histogram of the sample that we formed above.

NT= np.size(x)

plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(x[:int(NT)],c1f[:int(NT)]/m,label = '')
plt.xlim(0,5000)

count, bins, ignored = plt.hist(ssum2, 1000, density=True, align='mid')
# plt.plot(P2P3[:10000],label = 'FFT method',linestyle = '--')

plt.show()
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NT= np.size(x)
plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(x[:int(NT)],c2f[:int(NT)]/m,label = '')
plt.xlim(0,5000)

count, bins, ignored = plt.hist(ssum3, 1000, density=True, align='mid')
# plt.plot(P2P3[:10000],label = 'FFT method',linestyle = '--')

plt.show()

## Let's compute the mean of the discretized pdf
mean= np.sum(np.multiply(x[:NT],c1f[:NT]))
# meantheory = np.exp(mu1+.5*sigma1**2)
mean, 2*meantheory

(np.float64(489.38109740938546), np.float64(489.38386452844077))

## Let's compute the mean of the discretized pdf
mean= np.sum(np.multiply(x[:NT],c2f[:NT]))
# meantheory = np.exp(mu1+.5*sigma1**2)
mean, 3*meantheory

(np.float64(734.0714863312278), np.float64(734.0757967926611))

14.6 Failure Tree Analysis

We shall soon apply the convolution theorem to compute the probability of a top event in a failure tree analysis.

Before applying the convolution theorem, we first describe the model that connects constituent events to the top end
whose failure rate we seek to quantify.

The model is an example of the widely used failure tree analysis described by El-Shanawany, Ardron, and Walker
[El-Shanawany et al., 2018].

To construct the statistical model, we repeatedly use what is called the rare event approximation.
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We want to compute the probabilty of an event 𝐴 ∪ 𝐵.

• the union 𝐴 ∪ 𝐵 is the event that 𝐴 OR 𝐵 occurs

A law of probability tells us that 𝐴 OR 𝐵 occurs with probability

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)

where the intersection 𝐴 ∩ 𝐵 is the event that 𝐴 AND 𝐵 both occur and the union 𝐴 ∪ 𝐵 is the event that 𝐴 OR 𝐵
occurs.

If 𝐴 and 𝐵 are independent, then

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

If 𝑃 (𝐴) and 𝑃(𝐵) are both small, then 𝑃(𝐴)𝑃(𝐵) is even smaller.
The rare event approximation is

𝑃(𝐴 ∪ 𝐵) ≈ 𝑃(𝐴) + 𝑃(𝐵)

This approximation is widely used in evaluating system failures.

14.7 Application

A system has been designed with the feature a system failure occurs when any of 𝑛 critical components fails.

The failure probability 𝑃(𝐴𝑖) of each event 𝐴𝑖 is small.

We assume that failures of the components are statistically independent random variables.

We repeatedly apply a rare event approximation to obtain the following formula for the problem of a system failure:

𝑃(𝐹) ≈ 𝑃(𝐴1) + 𝑃(𝐴2) + ⋯ + 𝑃(𝐴𝑛)

or

𝑃(𝐹) ≈
𝑛

∑
𝑖=1

𝑃(𝐴𝑖) (14.3)

Probabilities for each event are recorded as failure rates per year.

14.8 Failure Rates Unknown

Now we come to the problem that really interests us, following [El-Shanawany et al., 2018] and Greenfield and Sargent
[Greenfield and Sargent, 1993] in the spirit of Apostolakis [Apostolakis, 1990].

The constituent probabilities or failure rates 𝑃(𝐴𝑖) are not known a priori and have to be estimated.
We address this problem by specifying probabilities of probabilities that capture one notion of not knowing the con-
stituent probabilities that are inputs into a failure tree analysis.

Thus, we assume that a system analyst is uncertain about the failure rates 𝑃(𝐴𝑖), 𝑖 = 1, … , 𝑛 for components of a system.

The analyst copes with this situation by regarding the systems failure probability 𝑃(𝐹) and each of the component
probabilities 𝑃(𝐴𝑖) as random variables.
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• dispersions of the probability distribution of 𝑃(𝐴𝑖) characterizes the analyst’s uncertainty about the failure prob-
ability 𝑃(𝐴𝑖)

• the dispersion of the implied probability distribution of 𝑃(𝐹) characterizes his uncertainty about the probability
of a system’s failure.

This leads to what is sometimes called a hierarchicalmodel in which the analyst has probabilities about the probabilities
𝑃(𝐴𝑖).
The analyst formalizes his uncertainty by assuming that

• the failure probability 𝑃(𝐴𝑖) is itself a log normal random variable with parameters (𝜇𝑖, 𝜎𝑖).
• failure rates 𝑃(𝐴𝑖) and 𝑃(𝐴𝑗) are statistically independent for all pairs with 𝑖 ≠ 𝑗.

The analyst calibrates the parameters (𝜇𝑖, 𝜎𝑖) for the failure events 𝑖 = 1, … , 𝑛 by reading reliability studies in engineering
papers that have studied historical failure rates of components that are as similar as possible to the components being
used in the system under study.

The analyst assumes that such information about the observed dispersion of annual failure rates, or times to failure, can
inform him of what to expect about parts’ performances in his system.

The analyst assumes that the random variables 𝑃(𝐴𝑖) are statistically mutually independent.
The analyst wants to approximate a probability mass function and cumulative distribution function of the systems failure
probability 𝑃(𝐹).

• We say probability mass function because of how we discretize each random variable, as described earlier.

The analyst calculates the probability mass function for the top event 𝐹 , i.e., a system failure, by repeatedly applying
the convolution theorem to compute the probability distribution of a sum of independent log normal random variables,
as described in equation (14.3).

14.9 Waste Hoist Failure Rate

We’ll take close to a real world example by assuming that 𝑛 = 14.
The example estimates the annual failure rate of a critical hoist at a nuclear waste facility.

A regulatory agency wants the sytem to be designed in a way that makes the failure rate of the top event small with high
probability.

This example is Design Option B-2 (Case I) described in Table 10 on page 27 of [Greenfield and Sargent, 1993].

The table describes parameters 𝜇𝑖, 𝜎𝑖 for fourteen log normal random variables that consist of seven pairs of random
variables that are identically and independently distributed.

• Within a pair, parameters 𝜇𝑖, 𝜎𝑖 are the same

• As described in table 10 of [Greenfield and Sargent, 1993] p. 27, parameters of log normal distributions for the
seven unique probabilities 𝑃(𝐴𝑖) have been calibrated to be the values in the following Python code:

mu1, sigma1 = 4.28, 1.1947
mu2, sigma2 = 3.39, 1.1947
mu3, sigma3 = 2.795, 1.1947
mu4, sigma4 = 2.717, 1.1947
mu5, sigma5 = 2.717, 1.1947
mu6, sigma6 = 1.444, 1.4632
mu7, sigma7 = -.040, 1.4632
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Note

Because the failure rates are all very small, log normal distributions with the above parameter values actually describe
𝑃(𝐴𝑖) times 10−09.

So the probabilities that we’ll put on the 𝑥 axis of the probability mass function and associated cumulative distribution
function should be multiplied by 10−09

To extract a table that summarizes computed quantiles, we’ll use a helper function

def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx

We compute the required thirteen convolutions in the following code.

(Please feel free to try different values of the power parameter 𝑝 that we use to set the number of points in our grid for
constructing the probability mass functions that discretize the continuous log normal distributions.)

We’ll plot a counterpart to the cumulative distribution function (CDF) in figure 5 on page 29 of [Greenfield and Sargent,
1993] and we’ll also present a counterpart to their Table 11 on page 28.

p=15
I = 2**p # Truncation value
m = .05 # increment size

p1,p1_norm,x = pdf_seq(mu1,sigma1,I,m)
p2,p2_norm,x = pdf_seq(mu2,sigma2,I,m)
p3,p3_norm,x = pdf_seq(mu3,sigma3,I,m)
p4,p4_norm,x = pdf_seq(mu4,sigma4,I,m)
p5,p5_norm,x = pdf_seq(mu5,sigma5,I,m)
p6,p6_norm,x = pdf_seq(mu6,sigma6,I,m)
p7,p7_norm,x = pdf_seq(mu7,sigma7,I,m)
p8,p8_norm,x = pdf_seq(mu7,sigma7,I,m)
p9,p9_norm,x = pdf_seq(mu7,sigma7,I,m)
p10,p10_norm,x = pdf_seq(mu7,sigma7,I,m)
p11,p11_norm,x = pdf_seq(mu7,sigma7,I,m)
p12,p12_norm,x = pdf_seq(mu7,sigma7,I,m)
p13,p13_norm,x = pdf_seq(mu7,sigma7,I,m)
p14,p14_norm,x = pdf_seq(mu7,sigma7,I,m)

tic = time.perf_counter()

c1 = fftconvolve(p1_norm,p2_norm)
c2 = fftconvolve(c1,p3_norm)
c3 = fftconvolve(c2,p4_norm)
c4 = fftconvolve(c3,p5_norm)
c5 = fftconvolve(c4,p6_norm)
c6 = fftconvolve(c5,p7_norm)
c7 = fftconvolve(c6,p8_norm)
c8 = fftconvolve(c7,p9_norm)
c9 = fftconvolve(c8,p10_norm)
c10 = fftconvolve(c9,p11_norm)

(continues on next page)

14.9. Waste Hoist Failure Rate 267



Intermediate Quantitative Economics with Python

(continued from previous page)

c11 = fftconvolve(c10,p12_norm)
c12 = fftconvolve(c11,p13_norm)
c13 = fftconvolve(c12,p14_norm)

toc = time.perf_counter()

tdiff13 = toc - tic

print("time for 13 convolutions = ", tdiff13)

time for 13 convolutions = 8.769221460000153

d13 = np.cumsum(c13)
Nx=int(1400)
plt.figure()
plt.plot(x[0:int(Nx/m)],d13[0:int(Nx/m)]) # show Yad this -- I multiplied by m --␣

↪step size
plt.hlines(0.5,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.9,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.95,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.1,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.05,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.ylim(0,1)
plt.xlim(0,Nx)
plt.xlabel("$x10^{-9}$",loc = "right")
plt.show()

x_1 = x[find_nearest(d13,0.01)]
x_5 = x[find_nearest(d13,0.05)]
x_10 = x[find_nearest(d13,0.1)]
x_50 = x[find_nearest(d13,0.50)]
x_66 = x[find_nearest(d13,0.665)]
x_85 = x[find_nearest(d13,0.85)]
x_90 = x[find_nearest(d13,0.90)]
x_95 = x[find_nearest(d13,0.95)]
x_99 = x[find_nearest(d13,0.99)]
x_9978 = x[find_nearest(d13,0.9978)]

print(tabulate([
['1%',f"{x_1}"],
['5%',f"{x_5}"],
['10%',f"{x_10}"],
['50%',f"{x_50}"],
['66.5%',f"{x_66}"],
['85%',f"{x_85}"],
['90%',f"{x_90}"],
['95%',f"{x_95}"],
['99%',f"{x_99}"],
['99.78%',f"{x_9978}"]],
headers = ['Percentile', 'x * 1e-9']))
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Percentile x * 1e-9
------------ ----------
1% 76.15
5% 106.5
10% 128.2
50% 260.55
66.5% 338.55
85% 509.4
90% 608.8
95% 807.6
99% 1470.2
99.78% 2474.85

The above table agrees closely with column 2 of Table 11 on p. 28 of of [Greenfield and Sargent, 1993].

Discrepancies are probably due to slight differences in the number of digits retained in inputting 𝜇𝑖, 𝜎𝑖, 𝑖 = 1, … , 14 and
in the number of points deployed in the discretizations.
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CHAPTER

FIFTEEN

INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

GPU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

In addition to what’s included in base Anaconda, we need to install the following packages

!pip install -U kaleido plotly
!conda install -y -c plotly plotly-orca

# kaleido needs chrome to build images
import kaleido
kaleido.get_chrome_sync()

Note

If you are running this on Google Colab the above cell will present an error. This is because Google Colab doesn’t
use Anaconda to manage the Python packages. However this lecture will still execute as Google Colab has plotly
installed.

We also need to install JAX to run this lecture

!pip install --upgrade jax

import jax
print(f"JAX backend: {jax.devices()[0].platform}") # to check that gpu is activated␣

↪in environment

JAX backend: gpu
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15.1 Overview

Substantial parts ofmachine learning and artificial intelligence are about

• approximating an unknown function with a known function

• estimating the known function from a set of data on the left- and right-hand variables

This lecture describes the structure of a plain vanilla artificial neural network (ANN) of a type that is widely used to
approximate a function 𝑓 that maps 𝑥 in a space 𝑋 into 𝑦 in a space 𝑌 .

To introduce elementary concepts, we study an example in which 𝑥 and 𝑦 are scalars.
We’ll describe the following concepts that are brick and mortar for neural networks:

• a neuron

• an activation function

• a network of neurons

• A neural network as a composition of functions

• back-propagation and its relationship to the chain rule of differential calculus

15.2 A Deep (but not Wide) Artificial Neural Network

We describe a “deep” neural network of “width” one.

Deep means that the network composes a large number of functions organized into nodes of a graph.

Width refers to the number of right hand side variables on the right hand side of the function being approximated.

Setting “width” to one means that the network composes just univariate functions.

Let 𝑥 ∈ ℝ be a scalar and 𝑦 ∈ ℝ be another scalar.

We assume that 𝑦 is a nonlinear function of 𝑥:

𝑦 = 𝑓(𝑥)

We want to approximate 𝑓(𝑥) with another function that we define recursively.
For a network of depth 𝑁 ≥ 1, each layer 𝑖 = 1, … 𝑁 consists of

• an input 𝑥𝑖

• an affine function 𝑤𝑖𝑥𝑖 + 𝑏𝐼 , where 𝑤𝑖 is a scalar weight placed on the input 𝑥𝑖 and 𝑏𝑖 is a scalar bias

• an activation function ℎ𝑖 that takes (𝑤𝑖𝑥𝑖 + 𝑏𝑖) as an argument and produces an output 𝑥𝑖+1

An example of an activation function ℎ is the sigmoid function

ℎ(𝑧) = 1
1 + 𝑒−𝑧

Another popular activation function is the rectified linear unit (ReLU) function

ℎ(𝑧) = max(0, 𝑧)

Yet another activation function is the identity function

ℎ(𝑧) = 𝑧
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As activation functions below, we’ll use the sigmoid function for layers 1 to 𝑁 − 1 and the identity function for layer 𝑁 .

To approximate a function 𝑓(𝑥) we construct ̂𝑓(𝑥) by proceeding as follows.
Let

𝑙𝑖 (𝑥) = 𝑤𝑖𝑥 + 𝑏𝑖.

We construct ̂𝑓 by iterating on compositions of functions ℎ𝑖 ∘ 𝑙𝑖:

𝑓(𝑥) ≈ ̂𝑓(𝑥) = ℎ𝑁 ∘ 𝑙𝑁 ∘ ℎ𝑁−1 ∘ 𝑙1 ∘ ⋯ ∘ ℎ1 ∘ 𝑙1(𝑥)

If 𝑁 > 1, we call the right side a “deep” neural net.
The larger is the integer 𝑁 , the “deeper” is the neural net.

Evidently, if we know the parameters {𝑤𝑖, 𝑏𝑖}𝑁
𝑖=1, then we can compute ̂𝑓(𝑥) for a given 𝑥 = ̃𝑥 by iterating on the

recursion

𝑥𝑖+1 = ℎ𝑖 ∘ 𝑙𝑖(𝑥𝑖), , 𝑖 = 1, … 𝑁 (15.1)

starting from 𝑥1 = ̃𝑥.
The value of 𝑥𝑁+1 that emerges from this iterative scheme equals ̂𝑓( ̃𝑥).

15.3 Calibrating Parameters

We now consider a neural network like the one describe above with width 1, depth 𝑁 , and activation functions ℎ𝑖 for
1 ⩽ 𝑖 ⩽ 𝑁 that map ℝ into itself.

Let {(𝑤𝑖, 𝑏𝑖)}
𝑁
𝑖=1 denote a sequence of weights and biases.

As mentioned above, for a given input 𝑥1, our approximating function ̂𝑓 evaluated at 𝑥1 equals the “output” 𝑥𝑁+1 from
our network that can be computed by iterating on 𝑥𝑖+1 = ℎ𝑖 (𝑤𝑖𝑥𝑖 + 𝑏𝑖).
For a given prediction ̂𝑦(𝑥) and target 𝑦 = 𝑓(𝑥), consider the loss function

ℒ ( ̂𝑦, 𝑦) (𝑥) = 1
2 ( ̂𝑦 − 𝑦)2 (𝑥).

This criterion is a function of the parameters {(𝑤𝑖, 𝑏𝑖)}
𝑁
𝑖=1 and the point 𝑥.

We’re interested in solving the following problem:

min
{(𝑤𝑖,𝑏𝑖)}𝑁

𝑖=1

∫ ℒ (𝑥𝑁+1, 𝑦) (𝑥)𝑑𝜇(𝑥)

where 𝜇(𝑥) is some measure of points 𝑥 ∈ ℝ over which we want a good approximation ̂𝑓(𝑥) to 𝑓(𝑥).
Stack weights and biases into a vector of parameters 𝑝:

𝑝 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑤1
𝑏1
𝑤2
𝑏2
⋮

𝑤𝑁
𝑏𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Applying a “poor man’s version” of a stochastic gradient descent algorithm for finding a zero of a function leads to the
following update rule for parameters:

𝑝𝑘+1 = 𝑝𝑘 − 𝛼 𝑑ℒ
𝑑𝑥𝑁+1

𝑑𝑥𝑁+1
𝑑𝑝𝑘

(15.2)

where 𝑑ℒ
𝑑𝑥𝑁+1

= − (𝑥𝑁+1 − 𝑦) and 𝛼 > 0 is a step size.
(See this and this to gather insights about how stochastic gradient descent relates to Newton’s method.)

To implement one step of this parameter update rule, we want the vector of derivatives 𝑑𝑥𝑁+1
𝑑𝑝𝑘

.

In the neural network literature, this step is accomplished by what is known as back propagation.

15.4 Back Propagation and the Chain Rule

Thanks to properties of

• the chain and product rules for differentiation from differential calculus, and

• lower triangular matrices

back propagation can actually be accomplished in one step by

• inverting a lower triangular matrix, and

• matrix multiplication

(This idea is from the last 7 minutes of this great youtube video by MIT’s Alan Edelman)

https://youtu.be/rZS2LGiurKY

Here goes.

Define the derivative of ℎ(𝑧) with respect to 𝑧 evaluated at 𝑧 = 𝑧𝑖 as 𝛿𝑖:

𝛿𝑖 = 𝑑
𝑑𝑧 ℎ(𝑧)|𝑧=𝑧𝑖

or

𝛿𝑖 = ℎ′ (𝑤𝑖𝑥𝑖 + 𝑏𝑖) .

Repeated application of the chain rule and product rule to our recursion (15.1) allows us to obtain:

𝑑𝑥𝑖+1 = 𝛿𝑖 (𝑑𝑤𝑖𝑥𝑖 + 𝑤𝑖𝑑𝑥𝑖 + 𝑏𝑖)

After imposing 𝑑𝑥1 = 0, we get the following system of equations:

⎛⎜
⎝

𝑑𝑥2
⋮

𝑑𝑥𝑁+1

⎞⎟
⎠

= ⎛⎜
⎝

𝛿1𝑤1 𝛿1 0 0 0
0 0 ⋱ 0 0
0 0 0 𝛿𝑁𝑤𝑁 𝛿𝑁

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐷

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑𝑤1
𝑑𝑏1

⋮
𝑑𝑤𝑁
𝑑𝑏𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜
⎝

0 0 0 0
𝑤2 0 0 0
0 ⋱ 0 0
0 0 𝑤𝑁 0

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿

⎛⎜
⎝

𝑑𝑥2
⋮

𝑑𝑥𝑁+1

⎞⎟
⎠

or

𝑑𝑥 = 𝐷𝑑𝑝 + 𝐿𝑑𝑥
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which implies that

𝑑𝑥 = (𝐼 − 𝐿)−1𝐷𝑑𝑝

which in turn implies

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑑𝑥𝑁+1/𝑑𝑤1
𝑑𝑥𝑁+1/𝑑𝑏1

⋮
𝑑𝑥𝑁+1/𝑑𝑤𝑁
𝑑𝑥𝑁+1/𝑑𝑏𝑁

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝑒𝑁 (𝐼 − 𝐿)−1 𝐷.

We can then solve the above problem by applying our update for 𝑝 multiple times for a collection of input-output pairs
{(𝑥𝑖

1, 𝑦𝑖)}𝑀
𝑖=1 that we’ll call our “training set”.

15.5 Training Set

Choosing a training set amounts to a choice of measure 𝜇 in the above formulation of our function approximation problem
as a minimization problem.

In this spirit, we shall use a uniform grid of, say, 50 or 200 points.

There are many possible approaches to the minimization problem posed above:

• batch gradient descent in which you use an average gradient over the training set

• stochastic gradient descent in which you sample points randomly and use individual gradients

• something in-between (so-called “mini-batch gradient descent”)

The update rule (15.2) described above amounts to a stochastic gradient descent algorithm.

from IPython.display import Image
import jax.numpy as jnp
from jax import grad, jit, jacfwd, vmap
from jax import random
import jax
import plotly.graph_objects as go

# A helper function to randomly initialize weights and biases
# for a dense neural network layer
def random_layer_params(m, n, key, scale=1.):

w_key, b_key = random.split(key)
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,))

# Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params(sizes, key):

keys = random.split(key, len(sizes))
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:],␣

↪keys)]

def compute_xδw_seq(params, x):
# Initialize arrays
δ = jnp.zeros(len(params))
xs = jnp.zeros(len(params) + 1)
ws = jnp.zeros(len(params))

(continues on next page)
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(continued from previous page)

bs = jnp.zeros(len(params))

h = jax.nn.sigmoid

xs = xs.at[0].set(x)
for i, (w, b) in enumerate(params[:-1]):

output = w * xs[i] + b
activation = h(output[0, 0])

# Store elements
δ = δ.at[i].set(grad(h)(output[0, 0]))
ws = ws.at[i].set(w[0, 0])
bs = bs.at[i].set(b[0])
xs = xs.at[i+1].set(activation)

final_w, final_b = params[-1]
preds = final_w * xs[-2] + final_b

# Store elements
δ = δ.at[-1].set(1.)
ws = ws.at[-1].set(final_w[0, 0])
bs = bs.at[-1].set(final_b[0])
xs = xs.at[-1].set(preds[0, 0])

return xs, δ, ws, bs

def loss(params, x, y):
xs, δ, ws, bs = compute_xδw_seq(params, x)
preds = xs[-1]

return 1 / 2 * (y - preds) ** 2

# Parameters
N = 3 # Number of layers
layer_sizes = [1, ] * (N + 1)
param_scale = 0.1
step_size = 0.01
params = init_network_params(layer_sizes, random.PRNGKey(1))

x = 5
y = 3
xs, δ, ws, bs = compute_xδw_seq(params, x)

dxs_ad = jacfwd(lambda params, x: compute_xδw_seq(params, x)[0], argnums=0)(params, x)
dxs_ad_mat = jnp.block([dx.reshape((-1, 1)) for dx_tuple in dxs_ad for dx in dx_tuple␣

↪])[1:]

jnp.block([[δ * xs[:-1]], [δ]])

Array([[1.0165801 , 0.06087969, 0.09382247],
[0.20331602, 0.08501981, 1. ]], dtype=float32)

L = jnp.diag(δ * ws, k=-1)

(continues on next page)
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(continued from previous page)

L = L[1:, 1:]

D = jax.scipy.linalg.block_diag(*[row.reshape((1, 2)) for row in jnp.block([[δ * xs[:-
↪1]], [δ]]).T])

dxs_la = jax.scipy.linalg.solve_triangular(jnp.eye(N) - L, D, lower=True)

# Check that the `dx` generated by the linear algebra method
# are the same as the ones generated using automatic differentiation
jnp.max(jnp.abs(dxs_ad_mat - dxs_la))

Array(0., dtype=float32)

grad_loss_ad = jnp.block([dx.reshape((-1, 1)) for dx_tuple in grad(loss)(params, x,␣
↪y) for dx in dx_tuple ])

# Check that the gradient of the loss is the same for both approaches
jnp.max(jnp.abs(-(y - xs[-1]) * dxs_la[-1] - grad_loss_ad))

Array(5.9604645e-08, dtype=float32)

@jit
def update_ad(params, x, y):

grads = grad(loss)(params, x, y)
return [(w - step_size * dw, b - step_size * db)

for (w, b), (dw, db) in zip(params, grads)]

@jit
def update_la(params, x, y):

xs, δ, ws, bs = compute_xδw_seq(params, x)
N = len(params)
L = jnp.diag(δ * ws, k=-1)
L = L[1:, 1:]

D = jax.scipy.linalg.block_diag(*[row.reshape((1, 2)) for row in jnp.block([[δ *␣
↪xs[:-1]], [δ]]).T])

dxs_la = jax.scipy.linalg.solve_triangular(jnp.eye(N) - L, D, lower=True)

grads = -(y - xs[-1]) * dxs_la[-1]

return [(w - step_size * dw, b - step_size * db)
for (w, b), (dw, db) in zip(params, grads.reshape((-1, 2)))]

# Check that both updates are the same
update_la(params, x, y)

[(Array([[-0.00826643]], dtype=float32), Array([0.94700736], dtype=float32)),
(Array([[-2.0638916]], dtype=float32), Array([-0.7872697], dtype=float32)),
(Array([[1.6248171]], dtype=float32), Array([1.5765371], dtype=float32))]

15.5. Training Set 277



Intermediate Quantitative Economics with Python

update_ad(params, x, y)

[(Array([[-0.00826644]], dtype=float32), Array([0.94700736], dtype=float32)),
(Array([[-2.0638916]], dtype=float32), Array([-0.7872697], dtype=float32)),
(Array([[1.6248171]], dtype=float32), Array([1.5765371], dtype=float32))]

15.6 Example 1

Consider the function

𝑓 (𝑥) = −3𝑥 + 2

on [0.5, 3].
We use a uniform grid of 200 points and update the parameters for each point on the grid 300 times.

ℎ𝑖 is the sigmoid activation function for all layers except the final one for which we use the identity function and 𝑁 = 3.
Weights are initialized randomly.

def f(x):
return -3 * x + 2

M = 200
grid = jnp.linspace(0.5, 3, num=M)
f_val = f(grid)

indices = jnp.arange(M)
key = random.PRNGKey(0)

def train(params, grid, f_val, key, num_epochs=300):
for epoch in range(num_epochs):

key, _ = random.split(key)
random_permutation = random.permutation(random.PRNGKey(1), indices)
for x, y in zip(grid[random_permutation], f_val[random_permutation]):

params = update_la(params, x, y)

return params

# Parameters
N = 3 # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex1 = init_network_params(layer_sizes, key)

%%time
params_ex1 = train(params_ex1, grid, f_val, key, num_epochs=500)

CPU times: user 18.1 s, sys: 3.85 s, total: 22 s
Wall time: 16.1 s

predictions = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex1, grid)[0][:, -1]
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fig = go.Figure()
fig.add_trace(go.Scatter(x=grid, y=f_val, name=r'$-3x+2$'))
fig.add_trace(go.Scatter(x=grid, y=predictions, name='Approximation'))

# Export to PNG file
Image(fig.to_image(format="png"))
# fig.show() will provide interactive plot when running
# notebook locally

15.7 How Deep?

It is fun to think about how deepening the neural net for the above example affects the quality of approximation

• If the network is too deep, you’ll run into the vanishing gradient problem

• Other parameters such as the step size and the number of epochs can be as important or more important than the
number of layers in the situation considered in this lecture.

• Indeed, since 𝑓 is a linear function of 𝑥, a one-layer network with the identity map as an activation would probably
work best.
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15.8 Example 2

We use the same setup as for the previous example with

𝑓 (𝑥) = log (𝑥)

def f(x):
return jnp.log(x)

grid = jnp.linspace(0.5, 3, num=M)
f_val = f(grid)

# Parameters
N = 1 # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_1 = init_network_params(layer_sizes, key)

# Parameters
N = 2 # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_2 = init_network_params(layer_sizes, key)

# Parameters
N = 3 # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_3 = init_network_params(layer_sizes, key)

params_ex2_1 = train(params_ex2_1, grid, f_val, key, num_epochs=300)

params_ex2_2 = train(params_ex2_2, grid, f_val, key, num_epochs=300)

params_ex2_3 = train(params_ex2_3, grid, f_val, key, num_epochs=300)

predictions_1 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_1, grid)[0][:, -1]
predictions_2 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_2, grid)[0][:, -1]
predictions_3 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_3, grid)[0][:, -1]

fig = go.Figure()
fig.add_trace(go.Scatter(x=grid, y=f_val, name=r'$\log{x}$'))
fig.add_trace(go.Scatter(x=grid, y=predictions_1, name='One-layer neural network'))
fig.add_trace(go.Scatter(x=grid, y=predictions_2, name='Two-layer neural network'))
fig.add_trace(go.Scatter(x=grid, y=predictions_3, name='Three-layer neural network'))

# Export to PNG file
Image(fig.to_image(format="png"))
# fig.show() will provide interactive plot when running
# notebook locally
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CHAPTER

SIXTEEN

RANDOMIZED RESPONSE SURVEYS

16.1 Overview

Social stigmas can inhibit people from confessing potentially embarrassing activities or opinions.

When people are reluctant to participate a sample survey about personally sensitive issues, they might decline to partici-
pate, and even if they do participate, they might choose to provide incorrect answers to sensitive questions.

These problems induce selection biases that present challenges to interpreting and designing surveys.

To illustrate how social scientists have thought about estimating the prevalence of such embarrassing activities and opin-
ions, this lecture describes a classic approach of S. L. Warner [Warner, 1965].

Warner used elementary probability to construct a way to protect the privacy of individual respondents to surveys while
still estimating the fraction of a collection of individuals who have a socially stigmatized characteristic or who engage in
a socially stigmatized activity.

Warner’s idea was to add noise between the respondent’s answer and the signal about that answer that the survey maker
ultimately receives.

Knowing about the structure of the noise assures the respondent that the survey maker does not observe his answer.

Statistical properties of the noise injection procedure provide the respondent plausible deniability.

Related ideas underlie modern differential privacy systems.

(See https://en.wikipedia.org/wiki/Differential_privacy)

16.2 Warner’s Strategy

As usual, let’s bring in the Python modules we’ll be using.

import numpy as np
import pandas as pd

Suppose that every person in population either belongs to Group A or Group B.

We want to estimate the proportion 𝜋 who belong to Group A while protecting individual respondents’ privacy.

Warner [Warner, 1965] proposed and analyzed the following procedure.

• A random sample of 𝑛 people is drawn with replacement from the population and each person is interviewed.

• Draw 𝑛 random samples from the population with replacement and interview each person.

• Prepare a random spinner that with 𝑝 probability points to the Letter A and with (1 − 𝑝) probability points to the
Letter B.
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• Each subject spins a random spinner and sees an outcome (A or B) that the interviewer does not observe.

• The subject states whether he belongs to the group to which the spinner points.

• If the spinner points to the group that the spinner belongs, the subject reports “yes”; otherwise he reports “no”.

• The subject answers the question truthfully.

Warner constructed a maximum likelihood estimators of the proportion of the population in set A.

Let

• 𝜋 : True probability of A in the population

• 𝑝 : Probability that the spinner points to A

• 𝑋𝑖 = {1, if the 𝑖th subject says yes
0, if the 𝑖th subject says no

Index the sample set so that the first 𝑛1 report “yes”, while the second 𝑛 − 𝑛1 report “no”.

The likelihood function of a sample set is

𝐿 = [𝜋𝑝 + (1 − 𝜋)(1 − 𝑝)]𝑛1 [(1 − 𝜋)𝑝 + 𝜋(1 − 𝑝)]𝑛−𝑛1 (16.1)

The log of the likelihood function is:

log(𝐿) = 𝑛1 log [𝜋𝑝 + (1 − 𝜋)(1 − 𝑝)] + (𝑛 − 𝑛1) log [(1 − 𝜋)𝑝 + 𝜋(1 − 𝑝)] (16.2)

The first-order necessary condition for maximizing the log likelihood function with respect to 𝜋 is:

(𝑛 − 𝑛1)(2𝑝 − 1)
(1 − 𝜋)𝑝 + 𝜋(1 − 𝑝) = 𝑛1(2𝑝 − 1)

𝜋𝑝 + (1 − 𝜋)(1 − 𝑝)
or

𝜋𝑝 + (1 − 𝜋)(1 − 𝑝) = 𝑛1
𝑛 (16.3)

If 𝑝 ≠ 1
2 , then the maximum likelihood estimator (MLE) of 𝜋 is:

̂𝜋 = 𝑝 − 1
2𝑝 − 1 + 𝑛1

(2𝑝 − 1)𝑛 (16.4)

We compute the mean and variance of the MLE estimator ̂𝜋 to be:

𝔼( ̂𝜋) = 1
2𝑝 − 1 [𝑝 − 1 + 1

𝑛
𝑛

∑
𝑖=1

𝔼𝑋𝑖]

= 1
2𝑝 − 1 [𝑝 − 1 + 𝜋𝑝 + (1 − 𝜋)(1 − 𝑝)]

= 𝜋

(16.5)

and

𝑉 𝑎𝑟( ̂𝜋) = 𝑛𝑉 𝑎𝑟(𝑋𝑖)
(2𝑝 − 1)2𝑛2

= [𝜋𝑝 + (1 − 𝜋)(1 − 𝑝)] [(1 − 𝜋)𝑝 + 𝜋(1 − 𝑝)]
(2𝑝 − 1)2𝑛2

=
1
4 + (2𝑝2 − 2𝑝 + 1

2 )(−2𝜋2 + 2𝜋 − 1
2 )

(2𝑝 − 1)2𝑛2

= 1
𝑛 [ 1

16(𝑝 − 1
2 )2 − (𝜋 − 1

2)2]

(16.6)
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Equation (16.5) indicates that ̂𝜋 is an unbiased estimator of 𝜋 while equation (16.6) tell us the variance of the estimator.

To compute a confidence interval, first rewrite (16.6) as:

𝑉 𝑎𝑟( ̂𝜋) =
1
4 − (𝜋 − 1

2 )2

𝑛 +
1

16(𝑝− 1
2 )2 − 1

4
𝑛

(16.7)

This equation indicates that the variance of ̂𝜋 can be represented as a sum of the variance due to sampling plus the
variance due to the random device.

From the expressions above we can find that:

• When 𝑝 is 1
2 , expression (16.1) degenerates to a constant.

• When 𝑝 is 1 or 0, the randomized estimate degenerates to an estimator without randomized sampling.
We shall only discuss situations in which 𝑝 ∈ ( 1

2 , 1)
(a situation in which 𝑝 ∈ (0, 1

2 ) is symmetric).
From expressions (16.5) and (16.7) we can deduce that:

• The MSE of ̂𝜋 decreases as 𝑝 increases.

16.3 Comparing Two Survey Designs

Let’s compare the preceding randomized-response method with a stylized non-randomized response method.

In our non-randomized response method, we suppose that:

• Members of Group A tells the truth with probability 𝑇𝑎 while the members of Group B tells the truth with proba-
bility 𝑇𝑏

• 𝑌𝑖 is 1 or 0 according to whether the sample’s 𝑖th member’s report is in Group A or not.

Then we can estimate 𝜋 as:

̂𝜋 = ∑𝑛
𝑖=1 𝑌𝑖
𝑛

(16.8)

We calculate the expectation, bias, and variance of the estimator to be:

𝔼( ̂𝜋) = 𝜋𝑇𝑎 + [(1 − 𝜋)(1 − 𝑇𝑏)] (16.9)

𝐵𝑖𝑎𝑠( ̂𝜋) = 𝔼( ̂𝜋 − 𝜋)
= 𝜋[𝑇𝑎 + 𝑇𝑏 − 2] + [1 − 𝑇𝑏] (16.10)

𝑉 𝑎𝑟( ̂𝜋) = [𝜋𝑇𝑎 + (1 − 𝜋)(1 − 𝑇𝑏)] [1 − 𝜋𝑇𝑎 − (1 − 𝜋)(1 − 𝑇𝑏)]
𝑛 (16.11)

It is useful to define a

MSE Ratio = Mean Square Error Randomized
Mean Square Error Regular

We can compute MSE Ratios for different survey designs associated with different parameter values.

The following Python code computes objects we want to stare at in order to make comparisons under different values of
𝜋𝐴 and 𝑛:
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class Comparison:
def __init__(self, A, n):

self.A = A
self.n = n
TaTb = np.array([[0.95, 1], [0.9, 1], [0.7, 1],

[0.5, 1], [1, 0.95], [1, 0.9],
[1, 0.7], [1, 0.5], [0.95, 0.95],
[0.9, 0.9], [0.7, 0.7], [0.5, 0.5]])

self.p_arr = np.array([0.6, 0.7, 0.8, 0.9])
self.p_map = dict(zip(self.p_arr, [f"MSE Ratio: p = {x}" for x in self.p_

↪arr]))
self.template = pd.DataFrame(columns=self.p_arr)
self.template[['T_a','T_b']] = TaTb
self.template['Bias'] = None

def theoretical(self):
A = self.A
n = self.n
df = self.template.copy()
df['Bias'] = A * (df['T_a'] + df['T_b'] - 2) + (1 - df['T_b'])
for p in self.p_arr:

df[p] = (1 / (16 * (p - 1/2)**2) - (A - 1/2)**2) / n / \
(df['Bias']**2 + ((A * df['T_a'] + (1 - A) * (1 - df['T_b'])) *␣

↪(1 - A * df['T_a'] - (1 - A) * (1 - df['T_b'])) / n))
df[p] = df[p].round(2)

df = df.set_index(["T_a", "T_b", "Bias"]).rename(columns=self.p_map)
return df

def MCsimulation(self, size=1000, seed=123456):
A = self.A
n = self.n
df = self.template.copy()
np.random.seed(seed)
sample = np.random.rand(size, self.n) <= A
random_device = np.random.rand(size, n)
mse_rd = {}
for p in self.p_arr:

spinner = random_device <= p
rd_answer = sample * spinner + (1 - sample) * (1 - spinner)
n1 = rd_answer.sum(axis=1)
pi_hat = (p - 1) / (2 * p - 1) + n1 / n / (2 * p - 1)
mse_rd[p] = np.sum((pi_hat - A)**2)

for inum, irow in df.iterrows():
truth_a = np.random.rand(size, self.n) <= irow.T_a
truth_b = np.random.rand(size, self.n) <= irow.T_b
trad_answer = sample * truth_a + (1 - sample) * (1 - truth_b)
pi_trad = trad_answer.sum(axis=1) / n
df.loc[inum, 'Bias'] = pi_trad.mean() - A
mse_trad = np.sum((pi_trad - A)**2)
for p in self.p_arr:

df.loc[inum, p] = (mse_rd[p] / mse_trad).round(2)
df = df.set_index(["T_a", "T_b", "Bias"]).rename(columns=self.p_map)
return df

Let’s put the code to work for parameter values

• 𝜋𝐴 = 0.6
• 𝑛 = 1000
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We can generate MSE Ratios theoretically using the above formulas.

We can also perform Monte Carlo simulations of a MSE Ratio.

cp1 = Comparison(0.6, 1000)
df1_theoretical = cp1.theoretical()
df1_theoretical

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.03 5.45 1.36 0.60
0.90 1.00 -0.06 1.62 0.40 0.18
0.70 1.00 -0.18 0.19 0.05 0.02
0.50 1.00 -0.30 0.07 0.02 0.01
1.00 0.95 0.02 9.82 2.44 1.08

0.90 0.04 3.41 0.85 0.37
0.70 0.12 0.43 0.11 0.05
0.50 0.20 0.16 0.04 0.02

0.95 0.95 -0.01 18.25 4.54 2.00
0.90 0.90 -0.02 9.70 2.41 1.06
0.70 0.70 -0.06 1.62 0.40 0.18
0.50 0.50 -0.10 0.61 0.15 0.07

MSE Ratio: p = 0.9
T_a T_b Bias
0.95 1.00 -0.03 0.33
0.90 1.00 -0.06 0.10
0.70 1.00 -0.18 0.01
0.50 1.00 -0.30 0.00
1.00 0.95 0.02 0.60

0.90 0.04 0.21
0.70 0.12 0.03
0.50 0.20 0.01

0.95 0.95 -0.01 1.11
0.90 0.90 -0.02 0.59
0.70 0.70 -0.06 0.10
0.50 0.50 -0.10 0.04

df1_mc = cp1.MCsimulation()
df1_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.030060 5.76 1.36 0.63
0.90 1.00 -0.060045 1.73 0.41 0.19
0.70 1.00 -0.179530 0.21 0.05 0.02
0.50 1.00 -0.300077 0.07 0.02 0.01
1.00 0.95 0.019770 10.59 2.5 1.15

0.90 0.040050 3.63 0.86 0.39
0.70 0.120052 0.46 0.11 0.05
0.50 0.199746 0.17 0.04 0.02

0.95 0.95 -0.010137 18.65 4.41 2.02
0.90 0.90 -0.020103 10.48 2.48 1.14
0.70 0.70 -0.060488 1.71 0.4 0.19
0.50 0.50 -0.099341 0.66 0.16 0.07

MSE Ratio: p = 0.9

(continues on next page)
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(continued from previous page)

T_a T_b Bias
0.95 1.00 -0.030060 0.35
0.90 1.00 -0.060045 0.1
0.70 1.00 -0.179530 0.01
0.50 1.00 -0.300077 0.0
1.00 0.95 0.019770 0.64

0.90 0.040050 0.22
0.70 0.120052 0.03
0.50 0.199746 0.01

0.95 0.95 -0.010137 1.12
0.90 0.90 -0.020103 0.63
0.70 0.70 -0.060488 0.1
0.50 0.50 -0.099341 0.04

The theoretical calculations do a good job of predicting Monte Carlo results.

We see that in many situations, especially when the bias is not small, the MSE of the randomized-sampling methods is
smaller than that of the non-randomized sampling method.

These differences become larger as 𝑝 increases.
By adjusting parameters 𝜋𝐴 and 𝑛, we can study outcomes in different situations.
For example, for another situation described in Warner [Warner, 1965]:

• 𝜋𝐴 = 0.5
• 𝑛 = 1000

we can use the code

cp2 = Comparison(0.5, 1000)
df2_theoretical = cp2.theoretical()
df2_theoretical

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.025 7.15 1.79 0.79
0.90 1.00 -0.050 2.27 0.57 0.25
0.70 1.00 -0.150 0.27 0.07 0.03
0.50 1.00 -0.250 0.10 0.02 0.01
1.00 0.95 0.025 7.15 1.79 0.79

0.90 0.050 2.27 0.57 0.25
0.70 0.150 0.27 0.07 0.03
0.50 0.250 0.10 0.02 0.01

0.95 0.95 0.000 25.00 6.25 2.78
0.90 0.90 0.000 25.00 6.25 2.78
0.70 0.70 0.000 25.00 6.25 2.78
0.50 0.50 0.000 25.00 6.25 2.78

MSE Ratio: p = 0.9
T_a T_b Bias
0.95 1.00 -0.025 0.45
0.90 1.00 -0.050 0.14
0.70 1.00 -0.150 0.02
0.50 1.00 -0.250 0.01
1.00 0.95 0.025 0.45

0.90 0.050 0.14
0.70 0.150 0.02

(continues on next page)
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(continued from previous page)

0.50 0.250 0.01
0.95 0.95 0.000 1.56
0.90 0.90 0.000 1.56
0.70 0.70 0.000 1.56
0.50 0.50 0.000 1.56

df2_mc = cp2.MCsimulation()
df2_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.025230 7.0 1.69 0.75
0.90 1.00 -0.050279 2.23 0.54 0.24
0.70 1.00 -0.149866 0.27 0.07 0.03
0.50 1.00 -0.250211 0.1 0.02 0.01
1.00 0.95 0.024410 7.38 1.78 0.79

0.90 0.049839 2.26 0.54 0.24
0.70 0.149769 0.27 0.07 0.03
0.50 0.249851 0.1 0.02 0.01

0.95 0.95 -0.000260 24.29 5.86 2.59
0.90 0.90 -0.000109 25.73 6.2 2.74
0.70 0.70 -0.000439 25.75 6.21 2.74
0.50 0.50 0.000768 24.91 6.01 2.65

MSE Ratio: p = 0.9
T_a T_b Bias
0.95 1.00 -0.025230 0.44
0.90 1.00 -0.050279 0.14
0.70 1.00 -0.149866 0.02
0.50 1.00 -0.250211 0.01
1.00 0.95 0.024410 0.46

0.90 0.049839 0.14
0.70 0.149769 0.02
0.50 0.249851 0.01

0.95 0.95 -0.000260 1.52
0.90 0.90 -0.000109 1.61
0.70 0.70 -0.000439 1.61
0.50 0.50 0.000768 1.56

We can also revisit a calculation in the concluding section of Warner [Warner, 1965] in which

• 𝜋𝐴 = 0.6
• 𝑛 = 2000

We use the code

cp3 = Comparison(0.6, 2000)
df3_theoretical = cp3.theoretical()
df3_theoretical

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.03 3.05 0.76 0.33
0.90 1.00 -0.06 0.84 0.21 0.09
0.70 1.00 -0.18 0.10 0.02 0.01
0.50 1.00 -0.30 0.03 0.01 0.00

(continues on next page)
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1.00 0.95 0.02 6.03 1.50 0.66
0.90 0.04 1.82 0.45 0.20
0.70 0.12 0.22 0.05 0.02
0.50 0.20 0.08 0.02 0.01

0.95 0.95 -0.01 14.12 3.51 1.55
0.90 0.90 -0.02 5.98 1.49 0.66
0.70 0.70 -0.06 0.84 0.21 0.09
0.50 0.50 -0.10 0.31 0.08 0.03

MSE Ratio: p = 0.9
T_a T_b Bias
0.95 1.00 -0.03 0.19
0.90 1.00 -0.06 0.05
0.70 1.00 -0.18 0.01
0.50 1.00 -0.30 0.00
1.00 0.95 0.02 0.37

0.90 0.04 0.11
0.70 0.12 0.01
0.50 0.20 0.00

0.95 0.95 -0.01 0.86
0.90 0.90 -0.02 0.36
0.70 0.70 -0.06 0.05
0.50 0.50 -0.10 0.02

df3_mc = cp3.MCsimulation()
df3_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8 \
T_a T_b Bias
0.95 1.00 -0.030316 3.27 0.8 0.34
0.90 1.00 -0.060352 0.91 0.22 0.09
0.70 1.00 -0.180087 0.11 0.03 0.01
0.50 1.00 -0.299849 0.04 0.01 0.0
1.00 0.95 0.019734 6.7 1.64 0.69

0.90 0.039766 2.01 0.49 0.21
0.70 0.119789 0.24 0.06 0.02
0.50 0.200138 0.09 0.02 0.01

0.95 0.95 -0.010475 14.78 3.61 1.53
0.90 0.90 -0.020373 6.32 1.54 0.65
0.70 0.70 -0.059945 0.92 0.23 0.1
0.50 0.50 -0.100103 0.34 0.08 0.03

MSE Ratio: p = 0.9
T_a T_b Bias
0.95 1.00 -0.030316 0.19
0.90 1.00 -0.060352 0.05
0.70 1.00 -0.180087 0.01
0.50 1.00 -0.299849 0.0
1.00 0.95 0.019734 0.39

0.90 0.039766 0.12
0.70 0.119789 0.01
0.50 0.200138 0.0

0.95 0.95 -0.010475 0.85
0.90 0.90 -0.020373 0.36
0.70 0.70 -0.059945 0.05
0.50 0.50 -0.100103 0.02
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Evidently, as 𝑛 increases, the randomized response method does better performance in more situations.

16.4 Concluding Remarks

This QuantEcon lecture describes some alternative randomized response surveys.

That lecture presents a utilitarian analysis of those alternatives conducted by Lars Ljungqvist [Ljungqvist, 1993].

import matplotlib.pyplot as plt
import numpy as np

16.4. Concluding Remarks 291



Intermediate Quantitative Economics with Python

292 Chapter 16. Randomized Response Surveys



CHAPTER

SEVENTEEN

EXPECTED UTILITIES OF RANDOM RESPONSES

17.1 Overview

This QuantEcon lecture describes randomized response surveys in the tradition ofWarner [Warner, 1965] that are designed
to protect respondents’ privacy.

Lars Ljungqvist [Ljungqvist, 1993] analyzed how a respondent’s decision about whether to answer truthfully depends on
expected utility.

The lecture tells how Ljungqvist used his framework to shed light on alternative randomized response survey techniques
proposed, for example, by [Lanke, 1975], [Lanke, 1976], [Leysieffer and Warner, 1976], [Anderson, 1976], [Fligner et
al., 1977], [Greenberg et al., 1977], [Greenberg et al., 1969].

17.2 Privacy Measures

We consider randomized response models with only two possible answers, “yes” and “no.”

The design determines probabilities

Pr(yes|𝐴) = 1 − Pr(no|𝐴)
Pr(yes|𝐴′) = 1 − Pr(no|𝐴′)

These design probabilities in turn can be used to compute the conditional probability of belonging to the sensitive group
𝐴 for a given response, say 𝑟:

Pr(𝐴|𝑟) = 𝜋𝐴Pr(𝑟|𝐴)
𝜋𝐴Pr(𝑟|𝐴) + (1 − 𝜋𝐴)Pr(𝑟|𝐴′) (17.1)

17.3 Zoo of Concepts

At this point we describe some concepts proposed by various researchers
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17.3.1 Leysieffer and Warner(1976)

The response 𝑟 is regarded as jeopardizing with respect to 𝐴 or 𝐴′
if

Pr(𝐴|𝑟) > 𝜋𝐴
or

Pr(𝐴′ |𝑟) > 1 − 𝜋𝐴

(17.2)

From Bayes’s rule:

Pr(𝐴|𝑟)
Pr(𝐴′ |𝑟) × (1 − 𝜋𝐴)

𝜋𝐴
= Pr(𝑟|𝐴)

Pr(𝑟|𝐴′) (17.3)

If this expression is greater (less) than unity, it follows that 𝑟 is jeopardizing with respect to 𝐴(𝐴′
). Then, the natural

measure of jeopardy will be:

𝑔(𝑟|𝐴) = Pr(𝑟|𝐴)
Pr(𝑟|𝐴′)

and

𝑔(𝑟|𝐴′) = Pr(𝑟|𝐴′)
Pr(𝑟|𝐴)

(17.4)

Suppose, without loss of generality, that Pr(yes|𝐴) > Pr(yes|𝐴′), then a yes (no) answer is jeopardizing with respect
𝐴(𝐴′

), that is,

𝑔(yes|𝐴) > 1
and

𝑔(no|𝐴′) > 1
Leysieffer and Warner proved that the variance of the estimate can only be decreased through an increase in one or both
of these two measures of jeopardy.

An efficient randomized response model is, therefore, any model that attains the maximum acceptable levels of jeopardy
that are consistent with cooperation of the respondents.

As a special example, Leysieffer and Warner considered “a problem in which there is no jeopardy in a no answer”; that
is, 𝑔(no|𝐴′) can be of unlimited magnitude.
Evidently, an optimal design must have

Pr(yes|𝐴) = 1

which implies that

Pr(𝐴|no) = 0

17.3.2 Lanke(1976)

Lanke (1975) [Lanke, 1975] argued that “it is membership in Group A that people may want to hide, not membership in
the complementary Group A’.”

For that reason, Lanke (1976) [Lanke, 1976] argued that an appropriate measure of protection is to minimize

max {Pr(𝐴|yes),Pr(𝐴|no)} (17.5)

Holding this measure constant, he explained under what conditions the smallest variance of the estimate was achieved
with the unrelated question model or Warner’s (1965) original model.
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17.3.3 2.3 Fligner, Policello, and Singh

Fligner, Policello, and Singh reached similar conclusion as Lanke (1976). [Fligner et al., 1977]

They measured “private protection” as

1 − max {Pr(𝐴|yes),Pr(𝐴|no)}
1 − 𝜋𝐴

(17.6)

17.3.4 2.4 Greenberg, Kuebler, Abernathy, and Horvitz (1977)

[Greenberg et al., 1977]

Greenberg, Kuebler, Abernathy, and Horvitz (1977) stressed the importance of examining the risk to respondents who
do not belong to 𝐴 as well as the risk to those who do belong to the sensitive group.

They defined the hazard for an individual in 𝐴 as the probability that he or she is perceived as belonging to 𝐴:
Pr(yes|𝐴) × Pr(𝐴|yes) + Pr(no|𝐴) × Pr(𝐴|no) (17.7)

Similarly, the hazard for an individual who does not belong to 𝐴 would be

Pr(yes|𝐴′) × Pr(𝐴|yes) + Pr(no|𝐴′) × Pr(𝐴|no) (17.8)

Greenberg et al. (1977) also considered an alternative related measure of hazard that “is likely to be closer to the actual
concern felt by a respondent.”

The “limited hazard” for an individual in 𝐴 and 𝐴′
is

Pr(yes|𝐴) × Pr(𝐴|yes) (17.9)

and

Pr(yes|𝐴′) × Pr(𝐴|yes) (17.10)

This measure is just the first term in (17.7), i.e., the probability that an individual answers “yes” and is perceived to belong
to 𝐴.

17.4 Respondent’s Expected Utility

17.4.1 Truth Border

Key assumptions that underlie a randomized response technique for estimating the fraction of a population that belongs
to 𝐴 are:

• Assumption 1: Respondents feel discomfort from being thought of as belonging to 𝐴.
• Assumption 2: Respondents prefer to answer questions truthfully than to lie, so long as the cost of doing so is not
too high. The cost is taken to be the discomfort in 1.

Let 𝑟𝑖 denote individual 𝑖’s response to the randomized question.
𝑟𝑖 can only take values “yes” or “no”.

For a given design of a randomized response interview and a given belief about the fraction of the population that belongs
to 𝐴, the respondent’s answer is associated with a conditional probability Pr(𝐴|𝑟𝑖) that the individual belongs to 𝐴.
Given 𝑟𝑖 and complete privacy, the individual’s utility is higher if 𝑟𝑖 represents a truthful answer rather than a lie.

In terms of a respondent’s expected utility as a function of Pr(𝐴|𝑟𝑖) and 𝑟𝑖

17.4. Respondent’s Expected Utility 295



Intermediate Quantitative Economics with Python

• The higher is Pr(𝐴|𝑟𝑖), the lower isindividual 𝑖’s expected utility.
• expected utility is higher if 𝑟𝑖 represents a truthful answer rather than a lie

Define:

• 𝜙𝑖 ∈ {truth, lie}, a dichotomous variable that indicates whether or not 𝑟𝑖 is a truthful statement.

• 𝑈𝑖 (Pr(𝐴|𝑟𝑖), 𝜙𝑖), a utility function that is differentiable in its first argument, summarizes individual 𝑖’s expected
utility.

Then there is an 𝑟𝑖 such that

𝜕𝑈𝑖 (Pr(𝐴|𝑟𝑖), 𝜙𝑖)
𝜕Pr(𝐴|𝑟𝑖)

< 0, for 𝜙𝑖 ∈ {truth, lie} (17.11)

and

𝑈𝑖 (Pr(𝐴|𝑟𝑖), truth) > 𝑈𝑖 (Pr(𝐴|𝑟𝑖), lie) , for Pr(𝐴|𝑟𝑖) ∈ [0, 1] (17.12)

Suppose now that correct answer for individual 𝑖 is “yes”.
Individual 𝑖 would choose to answer truthfully if

𝑈𝑖 (Pr(𝐴|yes), truth) ≥ 𝑈𝑖 (Pr(𝐴|no), lie) (17.13)

If the correct answer is “no”, individual 𝑖 would volunteer the correct answer only if

𝑈𝑖 (Pr(𝐴|no), truth) ≥ 𝑈𝑖 (Pr(𝐴|yes), lie) (17.14)

Assume that

Pr(𝐴|yes) > 𝜋𝐴 > Pr(𝐴|no)

so that a “yes” answer increases the odds that an individual belongs to 𝐴.
Constraint (17.14) holds for sure.

Consequently, constraint (17.13) becomes the single necessary condition for individual 𝑖 always to answer truthfully.
At equality, constraint (10.a) determines conditional probabilities that make the individual indifferent between telling the
truth and lying when the correct answer is “yes”:

𝑈𝑖 (Pr(𝐴|yes), truth) = 𝑈𝑖 (Pr(𝐴|no), lie) (17.15)

Equation (17.15) defines a “truth border”.

Differentiating (17.15) with respect to the conditional probabilities shows that the truth border has a positive slope in the
space of conditional probabilities:

𝜕Pr(𝐴|no)
𝜕Pr(𝐴|yes) =

𝜕𝑈𝑖(Pr(𝐴|yes),truth)
𝜕Pr(𝐴|yes)

𝜕𝑈𝑖(Pr(𝐴|no),lie)
𝜕Pr(𝐴|no)

> 0 (17.16)

The source of the positive relationship is:

• The individual is willing to volunteer a truthful “yes” answer so long as the utility from doing so (i.e., the left side
of (17.15)) is at least as high as the utility of lying on the right side of (17.15).

• Suppose now that Pr(𝐴|yes) increases. That reduces the utility of telling the truth. To preserve indifference
between a truthful answer and a lie, Pr(𝐴|no) must increase to reduce the utility of lying.
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17.4.2 Drawing a Truth Border

We can deduce two things about the truth border:

• The truth border divides the space of conditional probabilities into two subsets: “truth telling” and “lying”. Thus,
sufficient privacy elicits a truthful answer, whereas insufficient privacy results in a lie. The truth border depends on
a respondent’s utility function.

• Assumptions in (17.11) and (17.11) are sufficient only to guarantee a positive slope of the truth border. The truth
border can have either a concave or a convex shape.

We can draw some truth borders with the following Python code:

x1 = np.arange(0, 1, 0.001)
y1 = x1 - 0.4
x2 = np.arange(0.4**2, 1, 0.001)
y2 = (pow(x2, 0.5) - 0.4)**2
x3 = np.arange(0.4**0.5, 1, 0.001)
y3 = pow(x3**2 - 0.4, 0.5)
plt.figure(figsize=(12, 10))
plt.plot(x1, y1, 'r-', label=r'Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-Pr(A|r_i)+f(\

↪phi_i)$')
plt.fill_between(x1, 0, y1, facecolor='red', alpha=0.05)
plt.plot(x2, y2, 'b-', label=r'Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-Pr(A|r_i)^{2}

↪+f(\phi_i)$')
plt.fill_between(x2, 0, y2, facecolor='blue', alpha=0.05)
plt.plot(x3, y3, 'y-', label=r'Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-\sqrt{Pr(A|r_

↪i)}+f(\phi_i)$')
plt.fill_between(x3, 0, y3, facecolor='green', alpha=0.05)
plt.plot(x1, x1, ':', linewidth=2)
plt.xlim([0, 1])
plt.ylim([0, 1])

plt.xlabel('Pr(A|yes)')
plt.ylabel('Pr(A|no)')
plt.text(0.42, 0.3, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text(0.8, 0.1, "Lying", fontdict={'size':28, 'style':'italic'})

plt.legend(loc=0, fontsize='large')
plt.title('Figure 1.1')
plt.show()
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Figure 1.1 three types of truth border.

Without loss of generality, we consider the truth border:

𝑈𝑖(Pr(𝐴|𝑟𝑖), 𝜙𝑖) = −Pr(𝐴|𝑟𝑖) + 𝑓(𝜙𝑖)

and plot the “truth telling” and “lying area” of individual 𝑖 in Figure 1.2:
x1 = np.arange(0, 1, 0.001)
y1 = x1 - 0.4
z1 = x1
z2 = 0
plt.figure(figsize=(12, 10))
plt.plot(x1, y1,'r-',label=r'Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-Pr(A|r_i)+f(\

↪phi_i)$')
plt.plot(x1, x1, ':', linewidth=2)
plt.fill_between(x1, y1, z1, facecolor='blue', alpha=0.05, label='truth telling')
plt.fill_between(x1, z2, y1, facecolor='green', alpha=0.05, label='lying')
plt.xlim([0, 1])
plt.ylim([0, 1])

plt.xlabel('Pr(A|yes)')
plt.ylabel('Pr(A|no)')

(continues on next page)
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(continued from previous page)

plt.text(0.5, 0.4, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text(0.8, 0.2, "Lying", fontdict={'size':28, 'style':'italic'})

plt.legend(loc=0, fontsize='large')
plt.title('Figure 1.2')
plt.show()

17.5 Utilitarian View of Survey Design

17.5.1 Iso-variance Curves

A statistician’s objective is

• to find a randomized response survey design that minimizes the bias and the variance of the estimator.

Given a design that ensures truthful answers by all respondents, Anderson(1976, Theorem 1) [Anderson, 1976] showed
that the minimum variance estimate in the two-response model has variance

𝑉 (Pr(𝐴|yes),Pr(𝐴|no)) =𝜋𝐴
2(1 − 𝜋𝐴)2

𝑛 × 1
Pr(𝐴|yes) − 𝜋𝐴

× 1
𝜋𝐴 − Pr(𝐴|no) (17.17)
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where the random sample with replacement consists of 𝑛 individuals.

We can use Expression (17.17) to draw iso-variance curves.

The following inequalities restrict the shapes of iso-variance curves:

𝑑 Pr(𝐴|no)
𝑑 Pr(𝐴|yes) ∣

constant variance

= 𝜋𝐴 − Pr(𝐴|no)
Pr(𝐴|yes) − 𝜋𝐴

> 0 (17.18)

𝑑2 Pr(𝐴|no)
𝑑 Pr(𝐴|yes)2 ∣

constant variance

= − 2 [𝜋𝐴 − Pr(𝐴|no)]
[Pr(𝐴|yes) − 𝜋𝐴]2

< 0 (17.19)

From expression (17.17), (17.18) and (17.19) we can see that:

• Variance can be reduced only by increasing the distance of Pr(𝐴|yes) and/or Pr(𝐴|no) from 𝑟𝐴.

• Iso-variance curves are always upward-sloping and concave.

17.5.2 Drawing Iso-variance Curves

We use Python code to draw iso-variance curves.

The pairs of conditional probabilities can be attained using Warner’s (1965) model.

Note that:

• Any point on the iso-variance curves can be attained with the unrelated question model as long as the statistician
can completely control the model design.

• Warner’s (1965) original randomized response model is less flexible than the unrelated question model.

class Iso_Variance:
def __init__(self, pi, n):

self.pi = pi
self.n = n

def plotting_iso_variance_curve(self):
pi = self.pi
n = self.n

nv = np.array([0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7])
x = np.arange(0, 1, 0.001)
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange(0, pi, 0.001)
y1 = [pi for i in x0]
y2 = [pi for i in x2]
y0 = 1 / (1 + (x0 * (1 - pi)**2) / ((1 - x0) * pi**2))

plt.figure(figsize=(12, 10))
plt.plot(x0, y0, 'm-', label='Warner')
plt.plot(x, x, 'c:', linewidth=2)
plt.plot(x0, y1,'c:', linewidth=2)
plt.plot(y2, x2, 'c:', linewidth=2)
for i in range(len(nv)):

y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
plt.plot(x0, y, 'k--', alpha=1 - 0.07 * i, label=f'V{i+1}')

plt.xlim([0, 1])
plt.ylim([0, 0.5])
plt.xlabel('Pr(A|yes)')

(continues on next page)
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(continued from previous page)

plt.ylabel('Pr(A|no)')
plt.legend(loc=0, fontsize='large')
plt.text(0.32, 0.28, "High Var", fontdict={'size':15, 'style':'italic'})
plt.text(0.91, 0.01, "Low Var", fontdict={'size':15, 'style':'italic'})
plt.title('Figure 2')
plt.show()

Properties of iso-variance curves are:

• All points on one iso-variance curve share the same variance

• From 𝑉1 to 𝑉9, the variance of the iso-variance curve increase monotonically, as colors brighten monotonically

Suppose the parameters of the iso-variance model follow those in Ljungqvist [Ljungqvist, 1993], which are:

• 𝜋 = 0.3
• 𝑛 = 100

Then we can plot the iso-variance curve in Figure 2:

var = Iso_Variance(pi=0.3, n=100)
var.plotting_iso_variance_curve()
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17.5.3 Optimal Survey

A point on an iso-variance curves can be attained with the unrelated question design.

We now focus on finding an “optimal survey design” that

• Minimizes the variance of the estimator subject to privacy restrictions.

To obtain an optimal design, we first superimpose all individuals’ truth borders on the iso-variance mapping.

To construct an optimal design

• The statistician should find the intersection of areas above all truth borders; that is, the set of conditional probabil-
ities ensuring truthful answers from all respondents.

• The point where this set touches the lowest possible iso-variance curve determines an optimal survey design.

Consquently, a minimum variance unbiased estimator is pinned down by an individual who is the least willing to volunteer
a truthful answer.

Here are some comments about the model design:

• An individual’s decision of whether or not to answer truthfully depends on his or her belief about other respondents’
behavior, because this determines the individual’s calculation of Pr(𝐴|yes) and Pr(𝐴|no).

• An equilibrium of the optimal design model is a Nash equilibrium of a noncooperative game.

• Assumption (17.12) is sufficient to guarantee existence of an optimal model design. By choosing Pr(𝐴|yes) and
Pr(𝐴|no) sufficiently close to each other, all respondents will find it optimal to answer truthfully. The closer are
these probabilities, the higher the variance of the estimator becomes.

• If respondents experience a large enough increase in expected utility from telling the truth, then there is no need to
use a randomized responsemodel. The smallest possible variance of the estimate is then obtained at Pr(𝐴|yes) = 1
and Pr(𝐴|no) = 0 ; that is, when respondents answer truthfully to direct questioning.

• A more general design problem would be to minimize some weighted sum of the estimator’s variance and bias. It
would be optimal to accept some lies from the most “reluctant” respondents.

17.6 Criticisms of Proposed Privacy Measures

We can use a utilitarian approach to analyze some privacy measures.

We’ll enlist Python Code to help us.

17.6.1 Analysis of Method of Lanke’s (1976)

Lanke (1976) recommends a privacy protection criterion that minimizes:

max {Pr(𝐴|yes),Pr(𝐴|no)} (17.20)

Following Lanke’s suggestion, the statistician should find the highest possible Pr(𝐴|yes) consistent with truth telling while
Pr(𝐴|no) is fixed at 0. The variance is then minimized at point 𝑋 in Figure 3.

However, we can see that in Figure 3, point 𝑍 offers a smaller variance that still allows cooperation of the respondents,
and it is achievable following our discussion of the truth border in Part III:
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pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]
x = np.arange(0, 1, 0.001)
y = x - 0.4
z = x
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange(0, pi, 0.001)
y1 = [pi for i in x0]
y2 = [pi for i in x2]

plt.figure(figsize=(12, 10))
plt.plot(x, x, 'c:', linewidth=2)
plt.plot(x0, y1, 'c:', linewidth=2)
plt.plot(y2, x2, 'c:', linewidth=2)
plt.plot(x, y, 'r-', label='Truth Border')
plt.fill_between(x, y, z, facecolor='blue', alpha=0.05, label='truth telling')
plt.fill_between(x, 0, y, facecolor='green', alpha=0.05, label='lying')
for i in range(len(nv)):

y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
plt.plot(x0, y, 'k--', alpha=1 - 0.07 * i, label=f'V{i+1}')

plt.scatter(0.498, 0.1, c='b', marker='*', label='Z', s=150)
plt.scatter(0.4, 0, c='y', label='X', s=150)
plt.xlim([0, 1])
plt.ylim([0, 0.5])
plt.xlabel('Pr(A|yes)')
plt.ylabel('Pr(A|no)')
plt.text(0.45, 0.35, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text(0.85, 0.35, "Lying",fontdict = {'size':28, 'style':'italic'})
plt.text(0.515, 0.095, "Optimal Design", fontdict={'size':16,'color':'b'})
plt.legend(loc=0, fontsize='large')
plt.title('Figure 3')
plt.show()
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17.6.2 Method of Leysieffer and Warner (1976)

Leysieffer and Warner (1976) recommend a two-dimensional measure of jeopardy that reduces to a single dimension
when there is no jeopardy in a ‘no’ answer”, which means that

Pr(yes|𝐴) = 1

and

Pr(𝐴|no) = 0

This is not an optimal choice under a utilitarian approach.
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17.6.3 Analysis on the Method of Chaudhuri and Mukerjee’s (1988)

[Chadhuri and Mukerjee, 1988]

Chaudhuri andMukerjee (1988) argued that the individual may find that since “yes” may sometimes relate to the sensitive
group A, a clever respondent may falsely but safely always be inclined to respond “no”. In this situation, the truth border
is such that individuals choose to lie whenever the truthful answer is “yes” and

Pr(𝐴|no) = 0

Here the gain from lying is too high for someone to volunteer a “yes” answer.

This means that

𝑈𝑖 (Pr(𝐴|yes), truth) < 𝑈𝑖 (Pr(𝐴|no), lie)

in any situation always.

As a result, there is no attainable model design.

However, under a utilitarian approach there should exist other survey designs that are consistent with truthful answers.

In particular, respondents will choose to answer truthfully if the relative advantage from lying is eliminated.

We can use Python to show that the optimal model design corresponds to point Q in Figure 4:

def f(x):
if x < 0.16:

return 0
else:

return (pow(x, 0.5) - 0.4)**2

pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]
x = np.arange(0, 1, 0.001)
y = [f(i) for i in x]
z = x
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange(0, pi, 0.001)
y1 = [pi for i in x0]
y2 = [pi for i in x2]
x3 = np.arange(0.16, 1, 0.001)
y3 = (pow(x3, 0.5) - 0.4)**2

plt.figure(figsize=(12, 10))
plt.plot(x, x, 'c:', linewidth=2)
plt.plot(x0, y1,'c:', linewidth=2)
plt.plot(y2, x2,'c:', linewidth=2)
plt.plot(x3, y3,'b-', label='Truth Border')
plt.fill_between(x, y, z, facecolor='blue', alpha=0.05, label='Truth telling')
plt.fill_between(x3, 0, y3,facecolor='green', alpha=0.05, label='Lying')
for i in range(len(nv)):

y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
plt.plot(x0, y, 'k--', alpha=1 - 0.07 * i, label=f'V{i+1}')

plt.scatter(0.61, 0.146, c='r', marker='*', label='Z', s=150)
plt.xlim([0, 1])
plt.ylim([0, 0.5])
plt.xlabel('Pr(A|yes)')

(continues on next page)
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(continued from previous page)

plt.ylabel('Pr(A|no)')
plt.text(0.45, 0.35, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text(0.8, 0.1, "Lying", fontdict={'size':28, 'style':'italic'})
plt.text(0.63, 0.141, "Optimal Design", fontdict={'size':16,'color':'r'})
plt.legend(loc=0, fontsize='large')
plt.title('Figure 4')
plt.show()

17.6.4 Method of Greenberg et al. (1977)

[Greenberg et al., 1977]

Greenberg et al. (1977) defined the hazard for an individual in𝐴 as the probability that he or she is perceived as belonging
to 𝐴:

Pr(yes|𝐴) × Pr(𝐴|yes) + Pr(no|𝐴) × Pr(𝐴|no) (17.21)

The hazard for an individual who does not belong to 𝐴 is

Pr(yes|𝐴′) × Pr(𝐴|yes) + Pr(no|𝐴′) × Pr(𝐴|no) (17.22)
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They also considered an alternative related measure of hazard that they said “is likely to be closer to the actual concern
felt by a respondent.”

Their “limited hazard” for an individual in 𝐴 and 𝐴′
is

Pr(yes|𝐴) × Pr(𝐴|yes) (17.23)

and

Pr(yes|𝐴′) × Pr(𝐴|yes) (17.24)

According to Greenberg et al. (1977), a respondent commits himself or herself to answer truthfully on the basis of a
probability in (17.21) or (17.23) before randomly selecting the question to be answered.

Suppose that the appropriate privacy measure is captured by the notion of “limited hazard” in (17.23) and (17.24).

Consider an unrelated question model where the unrelated question is replaced by the instruction “Say the word ‘no’”,
which implies that

Pr(𝐴|yes) = 1

and it follows that:

• Hazard for an individual in 𝐴′
is 0.

• Hazard for an individual in 𝐴 can also be made arbitrarily small by choosing a sufficiently small Pr(yes|𝐴).
Even though this hazard can be set arbitrarily close to 0, an individual in 𝐴 will completely reveal his or her identity
whenever truthfully answering the sensitive question.

However, under utilitarian framework, it is obviously contradictory.

If the individuals are willing to volunteer this information, it seems that the randomized response design was not necessary
in the first place.

It ignores the fact that respondents retain the option of lying until they have seen the question to be answered.

17.7 Concluding Remarks

The justifications for a randomized response procedure are that

• Respondents are thought to feel discomfort from being perceived as belonging to the sensitive group.

• Respondents prefer to answer questions truthfully than to lie, unless it is too revealing.

If a privacy measure is not completely consistent with the rational behavior of the respondents, all efforts to derive an
optimal model design are futile.

A utilitarian approach provides a systematic way to model respondents’ behavior under the assumption that they maximize
their expected utilities.

In a utilitarian analysis:

• A truth border divides the space of conditional probabilities of being perceived as belonging to the sensitive group,
Pr(𝐴|yes) and Pr(𝐴|no), into the truth-telling region and the lying region.

• The optimal model design is obtained at the point where the truth border touches the lowest possible iso-variance
curve.

A practical implication of the analysis of [Ljungqvist, 1993] is that uncertainty about respondents’ demands for privacy
can be acknowledged by choosing Pr(𝐴|yes) and Pr(𝐴|no) sufficiently close to each other.
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CHAPTER

EIGHTEEN

NON-CONJUGATE PRIORS

GPU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

!pip install numpyro jax

This lecture is a sequel to the Two Meanings of Probability.

That lecture offers a Bayesian interpretation of probability in a setting in which the likelihood function and the prior
distribution over parameters just happened to form a conjugate pair in which

• application of Bayes’ Law produces a posterior distribution that has the same functional form as the prior

Having a likelihood and prior that are conjugate can simplify calculation of a posterior, facilitating analytical or nearly
analytical calculations.

But in many situations the likelihood and prior need not form a conjugate pair.

• after all, a person’s prior is his or her own business and would take a form conjugate to a likelihood only by remote
coincidence

In these situations, computing a posterior can become very challenging.

In this lecture, we illustrate how modern Bayesians confront non-conjugate priors by using Monte Carlo techniques that
involve

• first cleverly forming a Markov chain whose invariant distribution is the posterior distribution we want

• simulating theMarkov chain until it has converged and then sampling from the invariant distribution to approximate
the posterior

We shall illustrate the approach by deploying a powerful Python library, NumPyro that implements this approach.

As usual, we begin by importing some Python code.

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as st

(continues on next page)
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(continued from previous page)

from typing import NamedTuple, Sequence
import jax.numpy as jnp
from jax import random

import numpyro
from numpyro import distributions as dist
import numpyro.distributions.constraints as constraints
from numpyro.infer import MCMC, NUTS, SVI, Trace_ELBO
from numpyro.optim import Adam

18.1 Unleashing MCMC on a binomial likelihood

This lecture begins with the binomial example in the Two Meanings of Probability.

That lecture computed a posterior

• analytically via choosing the conjugate priors,

This lecture instead computes posteriors

• numerically by sampling from the posterior distribution through MCMC methods, and

• using a variational inference (VI) approximation.

We use numpyro with assistance from jax to approximate a posterior distribution.

We use several alternative prior distributions.

We compare computed posteriors with ones associated with a conjugate prior as described inTwoMeanings of Probability.

18.1.1 Analytical posterior

Assume that the random variable 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚 (𝑛, 𝜃).
This defines a likelihood function

𝐿 (𝑌 |𝜃) = Prob(𝑋 = 𝑘|𝜃) = ( 𝑛!
𝑘!(𝑛 − 𝑘)!) 𝜃𝑘(1 − 𝜃)𝑛−𝑘

where 𝑌 = 𝑘 is an observed data point.

We view 𝜃 as a random variable for which we assign a prior distribution having density 𝑓(𝜃).
We will try alternative priors later, but for now, suppose the prior is distributed as 𝜃 ∼ 𝐵𝑒𝑡𝑎 (𝛼, 𝛽), i.e.,

𝑓(𝜃) = Prob(𝜃) = 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)
We choose this as our prior for now because we know that a conjugate prior for the binomial likelihood function is a beta
distribution.

After observing 𝑘 successes among 𝑁 sample observations, the posterior probability distribution of 𝜃 is

Prob(𝜃|𝑘) = Prob(𝜃, 𝑘)
Prob(𝑘) = Prob(𝑘|𝜃)Prob(𝜃)

Prob(𝑘) = Prob(𝑘|𝜃)Prob(𝜃)
∫1
0 Prob(𝑘|𝜃)Prob(𝜃)𝑑𝜃

=
(𝑁

𝑘 )(1 − 𝜃)𝑁−𝑘𝜃𝑘 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽)

∫1
0 (𝑁

𝑘 )(1 − 𝜃)𝑁−𝑘𝜃𝑘 𝜃𝛼−1(1−𝜃)𝛽−1

𝐵(𝛼,𝛽) 𝑑𝜃
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= (1 − 𝜃)𝛽+𝑁−𝑘−1𝜃𝛼+𝑘−1

∫1
0 (1 − 𝜃)𝛽+𝑁−𝑘−1𝜃𝛼+𝑘−1𝑑𝜃

.

Thus,

Prob(𝜃|𝑘) ∼ 𝐵𝑒𝑡𝑎(𝛼 + 𝑘, 𝛽 + 𝑁 − 𝑘)

The analytical posterior for a given conjugate beta prior is coded in the following

def simulate_draw(θ, n):
"""Draws a Bernoulli sample of size n with probability P(Y=1) = θ"""
rand_draw = np.random.rand(n)
draw = (rand_draw < θ).astype(int)
return draw

def analytical_beta_posterior(data, α0, β0):
"""
Computes analytically the posterior distribution
with beta prior parametrized by (α, β)
given # num observations

Parameters
---------
num : int.

the number of observations after which we calculate the posterior
α0, β0 : float.

the parameters for the beta distribution as a prior

Returns
---------
The posterior beta distribution
"""
num = len(data)
up_num = data.sum()
down_num = num - up_num
return st.beta(α0 + up_num, β0 + down_num)

18.1.2 Two ways to approximate posteriors

Suppose that we don’t have a conjugate prior.

Then we can’t compute posteriors analytically.

Instead, we use computational tools to approximate the posterior distribution for a set of alternative prior distributions
using numpyro.

We first use theMarkov Chain Monte Carlo (MCMC) algorithm.

We implement the NUTS sampler to sample from the posterior.

In that way we construct a sampling distribution that approximates the posterior.

After doing that we deploy another procedure called Variational Inference (VI).

In particular, we implement Stochastic Variational Inference (SVI) machinery in numpyro.

The MCMC algorithm supposedly generates a more accurate approximation since in principle it directly samples from
the posterior distribution.
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But it can be computationally expensive, especially when dimension is large.

A VI approach can be cheaper, but it is likely to produce an inferior approximation to the posterior, for the simple reason
that it requires guessing a parametric guide functional form that we use to approximate a posterior.

This guide function is likely at best to be an imperfect approximation.

By paying the cost of restricting the putative posterior to have a restricted functional form, the problem of approximating
a posterior is transformed to a well-posed optimization problem that seeks parameters of the putative posterior that
minimize a Kullback-Leibler (KL) divergence between true posterior and the putative posterior distribution.

• minimizing the KL divergence is equivalent to maximizing a criterion called the Evidence Lower Bound (ELBO),
as we shall verify soon.

18.2 Prior distributions

In order to be able to apply MCMC sampling or VI, numpyro requires that a prior distribution satisfy special properties:

• we must be able to sample from it;

• we must be able to compute the log pdf pointwise;

• the pdf must be differentiable with respect to the parameters.

We’ll want to define a distribution class.

We will use the following priors:

• a uniform distribution on [𝜃, 𝜃], where 0 ≤ 𝜃 < 𝜃 ≤ 1.
• a truncated log-normal distribution with support on [0, 1] with parameters (𝜇, 𝜎).

– To implement this, let 𝑍 ∼ 𝑁(𝜇, 𝜎) and ̃𝑍 be truncated normal with support [−∞, log(1)], then exp(𝑍) has
a log normal distribution with bounded support [0, 1]. This can be easily coded since numpyro has a built-
in truncated normal distribution, and numpyro’s TransformedDistribution class that includes an
exponential transformation.

• a shifted von Mises distribution that has support confined to [0, 1] with parameter (𝜇, 𝜅).
– Let 𝑋 ∼ 𝑣𝑜𝑛𝑀𝑖𝑠𝑒𝑠(0, 𝜅). We know that 𝑋 has bounded support [−𝜋, 𝜋]. We can define a shifted von
Mises random variable 𝑋̃ = 𝑎 + 𝑏𝑋 where 𝑎 = 0.5, 𝑏 = 1/(2𝜋) so that 𝑋̃ is supported on [0, 1].

– This can be implemented using numpyro’s TransformedDistribution class with its Affine-
Transform method.

• a truncated Laplace distribution.

– We also considered a truncated Laplace distribution because its density comes in a piece-wise non-smooth
form and has a distinctive spiked shape.

– The truncated Laplace can be created using numpyro’s TruncatedDistribution class.

def truncated_log_normal_trans(loc, scale):
"""
Obtains the truncated log normal distribution
using numpyro's TruncatedNormal and ExpTransform
"""
base_dist = dist.TruncatedNormal(

low=-jnp.inf, high=jnp.log(1), loc=loc, scale=scale
)
return dist.TransformedDistribution(

(continues on next page)
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base_dist, dist.transforms.ExpTransform()
)

def shifted_von_mises(κ):
"""Obtains the shifted von Mises distribution using AffineTransform"""
base_dist = dist.VonMises(0, κ)
return dist.TransformedDistribution(

base_dist,
dist.transforms.AffineTransform(loc=0.5, scale=1 / (2 * jnp.pi))

)

def truncated_laplace(loc, scale):
"""Obtains the truncated Laplace distribution on [0,1]"""
base_dist = dist.Laplace(loc, scale)
return dist.TruncatedDistribution(base_dist, low=0.0, high=1.0)

18.2.1 Variational inference

Instead of directly sampling from the posterior, the variational inference method approximates an unknown posterior
distribution with a family of tractable distributions/densities.

It then seeks to minimize a measure of statistical discrepancy between the approximating and true posteriors.

Thus variational inference (VI) approximates a posterior by solving a minimization problem.

Let the latent parameter/variable that we want to infer be 𝜃.
Let the prior be 𝑝(𝜃) and the likelihood be 𝑝 (𝑌 |𝜃).
We want 𝑝 (𝜃|𝑌 ).
Bayes’ rule implies

𝑝 (𝜃|𝑌 ) = 𝑝 (𝑌 , 𝜃)
𝑝 (𝑌 ) = 𝑝 (𝑌 |𝜃) 𝑝 (𝜃)

𝑝 (𝑌 )

where

𝑝 (𝑌 ) = ∫ 𝑝 (𝑌 ∣ 𝜃) 𝑝 (𝜃) 𝑑𝜃. (18.1)

The integral on the right side of (18.1) is typically difficult to compute.

Consider a guide distribution 𝑞𝜙(𝜃) parameterized by 𝜙 that we’ll use to approximate the posterior.

We choose parameters 𝜙 of the guide distribution to minimize a Kullback-Leibler (KL) divergence between the approx-
imate posterior 𝑞𝜙(𝜃) and the posterior:

𝐷𝐾𝐿(𝑞(𝜃; 𝜙) ‖ 𝑝(𝜃 ∣ 𝑌 )) ≡ − ∫ 𝑞(𝜃; 𝜙) log 𝑝(𝜃 ∣ 𝑌 )
𝑞(𝜃; 𝜙) 𝑑𝜃

Thus, we want a variational distribution 𝑞 that solves

min
𝜙

𝐷𝐾𝐿(𝑞(𝜃; 𝜙) ‖ 𝑝(𝜃 ∣ 𝑌 ))
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Note that

𝐷𝐾𝐿(𝑞(𝜃; 𝜙) ‖ 𝑝(𝜃 ∣ 𝑌 )) = − ∫ 𝑞(𝜃; 𝜙) log 𝑃(𝜃 ∣ 𝑌 )
𝑞(𝜃; 𝜙) 𝑑𝜃

= − ∫ 𝑞(𝜃) log
𝑝(𝜃,𝑌 )
𝑝(𝑌 )
𝑞(𝜃) 𝑑𝜃

= − ∫ 𝑞(𝜃) log 𝑝(𝜃, 𝑌 )
𝑞(𝜃)𝑝(𝑌 )𝑑𝜃

= − ∫ 𝑞(𝜃) [log 𝑝(𝜃, 𝑌 )
𝑞(𝜃) − log 𝑝(𝑌 )] 𝑑𝜃

= − ∫ 𝑞(𝜃) log 𝑝(𝜃, 𝑌 )
𝑞(𝜃) + ∫ 𝑞(𝜃) log 𝑝(𝑌 )𝑑𝜃

= − ∫ 𝑞(𝜃) log 𝑝(𝜃, 𝑌 )
𝑞(𝜃) 𝑑𝜃 + log 𝑝(𝑌 )

log 𝑝(𝑌 ) = 𝐷𝐾𝐿(𝑞(𝜃; 𝜙) ‖ 𝑝(𝜃 ∣ 𝑌 )) + ∫ 𝑞𝜙(𝜃) log 𝑝(𝜃, 𝑌 )
𝑞𝜙(𝜃) 𝑑𝜃

For observed data 𝑌 , 𝑝(𝜃, 𝑌 ) is a constant, so minimizing KL divergence is equivalent to maximizing

𝐸𝐿𝐵𝑂 ≡ ∫ 𝑞𝜙(𝜃) log 𝑝(𝜃, 𝑌 )
𝑞𝜙(𝜃) 𝑑𝜃 = 𝔼𝑞𝜙(𝜃) [log 𝑝(𝜃, 𝑌 ) − log 𝑞𝜙(𝜃)] (18.2)

Formula (18.2) is called the evidence lower bound (ELBO).

A standard optimization routine can be used to search for the optimal 𝜙 in our parametrized distribution 𝑞𝜙(𝜃).
The parameterized distribution 𝑞𝜙(𝜃) is called the variational distribution.
We can implement Stochastic Variational Inference (SVI) in numpyro using the Adam gradient descent algorithm to
approximate the posterior.

We use two sets of variational distributions: Beta and TruncatedNormal with support [0, 1]
• Learnable parameters for the Beta distribution are (𝛼, 𝛽), both of which are positive.
• Learnable parameters for the Truncated Normal distribution are (loc, scale).

Note

We restrict the truncated Normal parameter ‘loc’ to be in the interval [0, 1]

18.3 Implementation

We have constructed a Python class BayesianInference that requires the following arguments to be initialized:

• param: a tuple/scalar of parameters dependent on distribution types

• name_dist: a string that specifies distribution names

The (param, name_dist) pair includes:

• (𝛼, 𝛽, ‘beta’)
• (lower_bound, upper_bound, ‘uniform’)

• (loc, scale, ‘lognormal’)
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– Note: This is the truncated log normal.

• (𝜅, ‘vonMises’), where 𝜅 denotes concentration parameter, and center location is set to 0.5. Using numpyro, this
is the shifted distribution.

• (loc, scale, ‘laplace’)

– Note: This is the truncated Laplace

The class BayesianInference has several key methods :

• sample_prior:

– This can be used to draw a single sample from the given prior distribution.

• show_prior:

– Plots the approximate prior distribution by repeatedly drawing samples and fitting a kernel density curve.

• mcmc_sampling:

– INPUT: (data, num_samples, num_warmup=1000)

– Takes a jnp.array data and generates MCMC sampling of posterior of size num_samples.

• svi_run:

– INPUT: (data, guide_dist, n_steps=10000)

– guide_dist = ‘normal’ - use a truncated normal distribution as the parametrized guide

– guide_dist = ‘beta’ - use a beta distribution as the parametrized guide

– RETURN: (params, losses) - the learned parameters in a dict and the vector of loss at each step.

class BayesianInference(NamedTuple):
"""
Parameters
---------
param : tuple.

a tuple object that contains all relevant parameters for the distribution
name_dist : str.

name of the distribution - 'beta', 'uniform', 'lognormal', 'vonMises',
↪'laplace'

rng_key : jax.random.PRNGKey
PRNG key for random number generation.

"""
param: tuple
name_dist: str
rng_key: random.PRNGKey

def create_bayesian_inference(
param: tuple,
name_dist: str,
seed: int = 0

) -> BayesianInference:
"""Factory function to create a BayesianInference instance"""

rng_key = random.PRNGKey(seed)

return BayesianInference(
param=param,
name_dist=name_dist,

(continues on next page)
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rng_key=rng_key
)

def sample_prior(model: BayesianInference):
"""Define the prior distribution to sample from in numpyro models."""
if model.name_dist == "beta":

# unpack parameters
α0, β0 = model.param
sample = numpyro.sample(

"theta", dist.Beta(α0, β0), rng_key=model.rng_key
)

elif model.name_dist == "uniform":
# unpack parameters
lb, ub = model.param
sample = numpyro.sample(

"theta", dist.Uniform(lb, ub), rng_key=model.rng_key
)

elif model.name_dist == "lognormal":
# unpack parameters
loc, scale = model.param
sample = numpyro.sample(

"theta",
truncated_log_normal_trans(loc, scale),
rng_key=model.rng_key

)

elif model.name_dist == "vonMises":
# unpack parameters
κ = model.param
sample = numpyro.sample(

"theta", shifted_von_mises(κ), rng_key=model.rng_key
)

elif model.name_dist == "laplace":
# unpack parameters
loc, scale = model.param
sample = numpyro.sample(

"theta", truncated_laplace(loc, scale), rng_key=model.rng_key
)

return sample

def show_prior(
model: BayesianInference, size=1e5, bins=20, disp_plot=1

):
"""
Visualizes prior distribution by sampling from prior
and plots the approximated sampling distribution
"""
with numpyro.plate("show_prior", size=size):

sample = sample_prior(model)
# to JAX array
sample_array = jnp.asarray(sample)

(continues on next page)
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# plot histogram and kernel density
if disp_plot == 1:

sns.displot(
sample_array,
kde=True,
stat="density",
bins=bins,
height=5,
aspect=1.5

)
plt.xlim(0, 1)
plt.show()

else:
return sample_array

def set_model(model: BayesianInference, data):
"""
Define the probabilistic model by specifying prior,
conditional likelihood, and data conditioning
"""
theta = sample_prior(model)
output = numpyro.sample(

"obs", dist.Binomial(len(data), theta), obs=jnp.sum(data)
)

def mcmc_sampling(
model: BayesianInference, data, num_samples, num_warmup=1000

):
"""
Computes numerically the posterior distribution
with beta prior parametrized by (α0, β0)
given data using MCMC
"""
data = jnp.array(data, dtype=float)
nuts_kernel = NUTS(set_model)
mcmc = MCMC(

nuts_kernel,
num_samples=num_samples,
num_warmup=num_warmup,
progress_bar=False,

)
mcmc.run(model.rng_key, model=model, data=data)

samples = mcmc.get_samples()["theta"]
return samples

# arguments in this function are used to align with the arguments in set_model()
# this is required by svi.run()
def beta_guide(model: BayesianInference, data):

"""
Defines the candidate parametrized variational distribution
that we train to approximate posterior with numpyro
Here we use parameterized beta

(continues on next page)
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"""
α_q = numpyro.param("alpha_q", 10, constraint=constraints.positive)
β_q = numpyro.param("beta_q", 10, constraint=constraints.positive)

numpyro.sample("theta", dist.Beta(α_q, β_q))

# similar with beta_guide()
def truncnormal_guide(model: BayesianInference, data):

"""
Defines the candidate parametrized variational distribution
that we train to approximate posterior with numpyro
Here we use truncated normal on [0,1]
"""
loc = numpyro.param("loc", 0.5, constraint=constraints.interval(0.0, 1.0))
scale = numpyro.param("scale", 1, constraint=constraints.positive)
numpyro.sample(

"theta",
dist.TruncatedNormal(loc, scale, low=0.0, high=1.0)

)

def svi_init(model: BayesianInference, guide_dist, lr=0.0005):
"""Initiate SVI training mode with Adam optimizer"""
adam_params = {"lr": lr}

if guide_dist == "beta":
optimizer = Adam(step_size=lr)
svi = SVI(

set_model, beta_guide, optimizer, loss=Trace_ELBO()
)

elif guide_dist == "normal":
optimizer = Adam(step_size=lr)
svi = SVI(

set_model, truncnormal_guide, optimizer, loss=Trace_ELBO()
)

else:
print("WARNING: Please input either 'beta' or 'normal'")
svi = None

return svi

def svi_run(model: BayesianInference, data, guide_dist, n_steps=10000):
"""
Runs SVI and returns optimized parameters and losses

Returns
--------
params : the learned parameters for guide
losses : a vector of loss at each step
"""

# initiate SVI
svi = svi_init(model, guide_dist)

data = jnp.array(data, dtype=float)
(continues on next page)
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result = svi.run(
model.rng_key, n_steps, model, data, progress_bar=False
)

params = dict(
(key, jnp.asarray(value)) for key, value in result.params.items()

)
losses = jnp.asarray(result.losses)

return params, losses

18.4 Alternative prior distributions

Let’s see how well our sampling algorithm does in approximating

• a log normal distribution

• a uniform distribution

To examine our alternative prior distributions, we’ll plot approximate prior distributions below by calling the
show_prior method.

# truncated log normal
example_ln = create_bayesian_inference(param=(0, 2), name_dist="lognormal")
show_prior(example_ln, size=100000, bins=20)

Fig. 18.1: Truncated log normal distribution
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# truncated uniform
example_un = create_bayesian_inference(param=(0.1, 0.8), name_dist="uniform")
show_prior(example_un, size=100000, bins=20)

Fig. 18.2: Truncated uniform distribution

The above graphs show that sampling seems to work well with both distributions.

Now let’s see how well things work with von Mises distributions.

# shifted von Mises
example_vm = create_bayesian_inference(param=10, name_dist="vonMises")
show_prior(example_vm, size=100000, bins=20)

The graphs look good too.

Now let’s try with a Laplace distribution.

# truncated Laplace
example_lp = create_bayesian_inference(param=(0.5, 0.05), name_dist="laplace")
show_prior(example_lp, size=100000, bins=20)
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Fig. 18.3: Shifted von Mises distribution
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Fig. 18.4: Truncated Laplace distribution
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Having assured ourselves that our sampler seems to do a good job, let’s put it to work in using MCMC to compute
posterior probabilities.

18.5 Posteriors via MCMC and VI

We construct a class BayesianInferencePlot to implement MCMC or VI algorithms and plot multiple posteriors
for different updating data sizes and different possible priors.

This class takes as inputs the true data generating parameter θ, a list of updating data sizes for multiple posterior plotting,
and a defined and parametrized BayesianInference class.

It has two key methods:

• BayesianInferencePlot.mcmc_plot() takes desired MCMC sample size as input and plots the output
posteriors together with the prior defined in BayesianInference class.

• BayesianInferencePlot.svi_plot() takes desired VI distribution class (‘beta’ or ‘normal’) as input and
plots the posteriors together with the prior.

class BayesianInferencePlot(NamedTuple):
"""
Easily implement the MCMC and VI inference for a given instance of
BayesianInference class and plot the prior together with multiple posteriors

Parameters
----------
θ : float.

the true DGP parameter
N_list : list.

a list of sample size
bayesian_model : BayesianInference.

a class initiated using create_bayesian_inference()
binwidth : float.

plotting parameter for histogram bin width
linewidth : float.

plotting parameter for line width
colorlist : list.

list of colors for plotting
N_max : int.

maximum sample size
data : np.ndarray.

generated data array
"""
θ: float
N_list: Sequence[int]
bayesian_model: BayesianInference
binwidth: float
linewidth: float
colorlist: list
N_max: int
data: np.ndarray

def create_bayesian_inference_plot(
θ: float,
N_list: Sequence[int],
bayesian_model: BayesianInference,

(continues on next page)
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*,
binwidth: float = 0.02,
linewidth: float = 0.05,

) -> BayesianInferencePlot:
"""Factory function to create a BayesianInferencePlot instance"""

colorlist = sns.color_palette(n_colors=len(N_list))
N_max = int(max(N_list))
data = simulate_draw(θ, N_max)
return BayesianInferencePlot(

θ=θ,
N_list=list(map(int, N_list)),
bayesian_model=bayesian_model,
binwidth=binwidth,
linewidth=linewidth,
colorlist=colorlist,
N_max=N_max,
data=data,

)

def mcmc_plot(
plot_model: BayesianInferencePlot, num_samples, num_warmup=1000

):
fig, ax = plt.subplots()

# plot prior
prior_sample = show_prior(

plot_model.bayesian_model, disp_plot=0
)

sns.histplot(
data=prior_sample,
kde=True,
stat="density",
binwidth=plot_model.binwidth,
color="#4C4E52",
linewidth=plot_model.linewidth,
alpha=0.1,
ax=ax,
label="Prior distribution",

)

# plot posteriors
for id, n in enumerate(plot_model.N_list):

samples = mcmc_sampling(
plot_model.bayesian_model,
plot_model.data[:n],
num_samples,
num_warmup

)
sns.histplot(

samples,
kde=True,
stat="density",
binwidth=plot_model.binwidth,
linewidth=plot_model.linewidth,
alpha=0.2,

(continues on next page)
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color=plot_model.colorlist[id - 1],
label=f"Posterior with $n={n}$",

)
ax.legend(loc="upper left")
plt.xlim(0, 1)
plt.show()

def svi_fitting(guide_dist, params):
"""Fit the beta/truncnormal curve using parameters trained by SVI."""
# create x axis
xaxis = jnp.linspace(0, 1, 1000)
if guide_dist == "beta":

y = st.beta.pdf(xaxis, a=params["alpha_q"], b=params["beta_q"])

elif guide_dist == "normal":
# rescale upper/lower bound. See Scipy's truncnorm doc
lower, upper = (0, 1)
loc, scale = params["loc"], params["scale"]
a, b = (lower - loc) / scale, (upper - loc) / scale

y = st.truncnorm.pdf(
xaxis, a=a, b=b, loc=loc, scale=scale

)
return (xaxis, y)

def svi_plot(
plot_model: BayesianInferencePlot, guide_dist, n_steps=2000

):
fig, ax = plt.subplots()

# plot prior
prior_sample = show_prior(plot_model.bayesian_model, disp_plot=0)
sns.histplot(

data=prior_sample,
kde=True,
stat="density",
binwidth=plot_model.binwidth,
color="#4C4E52",
linewidth=plot_model.linewidth,
alpha=0.1,
ax=ax,
label="Prior distribution",

)

# plot posteriors
for id, n in enumerate(plot_model.N_list):

(params, losses) = svi_run(
plot_model.bayesian_model, plot_model.data[:n], guide_dist, n_steps

)
x, y = svi_fitting(guide_dist, params)
ax.plot(

x,
y,
alpha=1,
color=plot_model.colorlist[id - 1],

(continues on next page)
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label=f"Posterior with $n={n}$",
)

ax.legend(loc="upper left")
plt.xlim(0, 1)
plt.show()

Let’s set some parameters that we’ll use in all of the examples below.

To save computer time at first, notice that we’ll set mcmc_num_samples = 2000 and svi_num_steps = 5000.

(Later, to increase accuracy of approximations, we’ll want to increase these.)

num_list = [5, 10, 50, 100, 1000]
mcmc_num_samples = 2000
svi_num_steps = 5000

# θ is the data generating process
true_θ = 0.8

18.5.1 Beta prior and posteriors:

Let’s compare outcomes when we use a Beta prior.

For the same Beta prior, we shall

• compute posteriors analytically

• compute posteriors using MCMC using numpyro.

• compute posteriors using VI using numpyro.

Let’s start with the analytical method that we described in this Two Meanings of Probability

# first examine Beta prior
beta = create_bayesian_inference(param=(5, 5), name_dist="beta")

beta_plot = create_bayesian_inference_plot(true_θ, num_list, beta)

# plot analytical Beta prior and posteriors
xaxis = jnp.linspace(0, 1, 1000)
y_prior = st.beta.pdf(xaxis, 5, 5)

fig, ax = plt.subplots()
# plot analytical beta prior
ax.plot(xaxis, y_prior, label="Analytical Beta prior", color="#4C4E52")

data, colorlist, N_list = beta_plot.data, beta_plot.colorlist, beta_plot.N_list

# Plot analytical beta posteriors
for id, n in enumerate(N_list):

func = analytical_beta_posterior(data[:n], α0=5, β0=5)
y_posterior = func.pdf(xaxis)
ax.plot(

xaxis,
y_posterior,
color=colorlist[id - 1],
label=f"Analytical Beta posterior with $n={n}$",

(continues on next page)
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)
ax.legend(loc="upper left")
plt.xlim(0, 1)
plt.show()

Fig. 18.5: Analytical density (Beta prior)

Now let’s use MCMC while still using a beta prior.

We’ll do this for both MCMC and VI.

mcmc_plot(
beta_plot, num_samples=mcmc_num_samples

)

svi_plot(
beta_plot, guide_dist="beta", n_steps=svi_num_steps

)

Here the MCMC approximation looks good.

But the VI approximation doesn’t look so good.
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Fig. 18.6: MCMC density (Beta prior)

• even though we use the beta distribution as our guide, the VI approximated posterior distributions do not closely
resemble the posteriors that we had just computed analytically.

(Here, our initial parameter for Beta guide is (0.5, 0.5).)

But if we increase the number of steps from 5000 to 100000 in VI as we now shall do, we’ll get VI-approximated posteriors
that will be more accurate, as we shall see next.

(Increasing the step size increases computational time though).

svi_plot(
beta_plot, guide_dist="beta", n_steps=100000

)
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Fig. 18.7: SVI density (Beta prior, Beta guide)
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18.6 Non-conjugate prior distributions

Having assured ourselves that our MCMC and VI methods can work well when we have a conjugate prior and so can
also compute analytically, we next proceed to situations in which our prior is not a beta distribution, so we don’t have a
conjugate prior.

So we will have non-conjugate priors and are cast into situations in which we can’t calculate posteriors analytically.

18.6.1 Markov chain Monte Carlo

First, we implement and display MCMC.

We first initialize the BayesianInference classes and then can directly call BayesianInferencePlot to plot
both MCMC and SVI approximating posteriors.

# Initialize BayesianInference classes
# Try uniform
std_uniform = create_bayesian_inference(param=(0, 1), name_dist="uniform")
uniform = create_bayesian_inference(param=(0.2, 0.7), name_dist="uniform")

# Try truncated log normal
lognormal = create_bayesian_inference(param=(0, 2), name_dist="lognormal")

# Try Von Mises
vonmises = create_bayesian_inference(param=10, name_dist="vonMises")

# Try Laplace
laplace = create_bayesian_inference(param=(0.5, 0.07), name_dist="laplace")

To conduct our experiments more concisely, here we define two experiment functions that will print the model information
and plot the result.

def plot_mcmc_experiment(
bayesian_model: BayesianInference,
true_θ: float,
num_list: Sequence[int],
num_samples: int,
num_warmup: int = 1000,
description: str = ""

):
"""
Helper function to run and plot MCMC experiments for a given Bayesian model
"""
print(

f"=======INFO=======\n"
f"Parameters: {bayesian_model.param}\n"
f"Prior Dist: {bayesian_model.name_dist}"

)
if description:

print(description)

plot_model = create_bayesian_inference_plot(
true_θ, num_list, bayesian_model

)
mcmc_plot(plot_model, num_samples=num_samples, num_warmup=num_warmup)

(continues on next page)
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def plot_svi_experiment(
bayesian_model: BayesianInference,
true_θ: float,
num_list: Sequence[int],
guide_dist: str,
n_steps: int,
description: str = ""

):
"""
Helper function to run and plot SVI experiments for a given Bayesian model
"""
print(

f"=======INFO=======\n"
f"Parameters: {bayesian_model.param}\n"
f"Prior Dist: {bayesian_model.name_dist}"

)
if description:

print(description)

plot_model = create_bayesian_inference_plot(
true_θ, num_list, bayesian_model

)
svi_plot(plot_model, guide_dist=guide_dist, n_steps=n_steps)

# Uniform
plot_mcmc_experiment(

std_uniform,
true_θ,
num_list,
mcmc_num_samples

)

=======INFO=======
Parameters: (0, 1)
Prior Dist: uniform

plot_mcmc_experiment(
uniform,
true_θ,
num_list,
mcmc_num_samples

)

=======INFO=======
Parameters: (0.2, 0.7)
Prior Dist: uniform

In the situation depicted above, we have assumed a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜃, 𝜃) prior that puts zero probability outside a bounded
support that excludes the true value.

Consequently, the posterior cannot put positive probability above 𝜃 or below 𝜃.
Note how when the true data-generating 𝜃 is located at 0.8 as it is here, when 𝑛 gets large, the posterior concentrates on
the upper bound of the support of the prior, 0.7 here.
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Fig. 18.8: MCMC density (uniform prior)

# log normal
plot_mcmc_experiment(

lognormal,
true_θ,
num_list,
mcmc_num_samples

)

=======INFO=======
Parameters: (0, 2)
Prior Dist: lognormal

# von Mises
plot_mcmc_experiment(

vonmises,
true_θ,
num_list,
mcmc_num_samples,
description="\nNOTE: Shifted von Mises"

)

=======INFO=======
Parameters: 10
Prior Dist: vonMises

(continues on next page)
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Fig. 18.9: MCMC density (uniform prior)

(continued from previous page)

NOTE: Shifted von Mises

# Laplace
plot_mcmc_experiment(

laplace,
true_θ,
num_list,
mcmc_num_samples

)

=======INFO=======
Parameters: (0.5, 0.07)
Prior Dist: laplace
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Fig. 18.10: MCMC density (log normal prior)

18.6.2 Variational inference

To get more accuracy we will now increase the number of steps for Variational Inference (VI)

svi_num_steps = 50000

VI with a truncated normal guide

# Uniform
plot_svi_experiment(

create_bayesian_inference(param=(0, 1), name_dist="uniform"),
true_θ,
num_list,
"normal",
svi_num_steps

)

=======INFO=======
Parameters: (0, 1)
Prior Dist: uniform

# log normal
plot_svi_experiment(

lognormal,

(continues on next page)
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Fig. 18.11: MCMC density (von Mises prior)

(continued from previous page)

true_θ,
num_list,
"normal",
svi_num_steps

)

=======INFO=======
Parameters: (0, 2)
Prior Dist: lognormal

# Laplace
plot_svi_experiment(

laplace,
true_θ,
num_list,
"normal",
svi_num_steps

)

=======INFO=======
Parameters: (0.5, 0.07)
Prior Dist: laplace
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Fig. 18.12: MCMC density (Laplace prior)

Variational inference with a Beta guide distribution

# uniform
plot_svi_experiment(

std_uniform,
true_θ,
num_list,
"beta",
svi_num_steps

)

=======INFO=======
Parameters: (0, 1)
Prior Dist: uniform

# log normal
plot_svi_experiment(

lognormal,
true_θ,
num_list,
"beta",
svi_num_steps

)
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Fig. 18.13: SVI density (uniform prior, normal guide)

=======INFO=======
Parameters: (0, 2)
Prior Dist: lognormal

# von Mises
plot_svi_experiment(

vonmises,
true_θ,
num_list,
"beta",
svi_num_steps,
description="Shifted von Mises"

)

=======INFO=======
Parameters: 10
Prior Dist: vonMises
Shifted von Mises

# Laplace
plot_svi_experiment(

laplace,
true_θ,
num_list,
"beta",

(continues on next page)

18.6. Non-conjugate prior distributions 339



Intermediate Quantitative Economics with Python

Fig. 18.14: SVI density (log normal prior, normal guide)

(continued from previous page)

svi_num_steps
)

=======INFO=======
Parameters: (0.5, 0.07)
Prior Dist: laplace
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Fig. 18.15: SVI density (Laplace prior, normal guide)
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Fig. 18.16: SVI density (uniform prior, Beta guide)
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Fig. 18.17: SVI density (log normal prior, Beta guide)
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Fig. 18.18: SVI density (von Mises prior, Beta guide)
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Fig. 18.19: SVI density (Laplace prior, Beta guide)
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CHAPTER

NINETEEN

POSTERIOR DISTRIBUTIONS FOR AR(1) PARAMETERS

GPU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

!pip install numpyro jax

In addition to what’s included in base Anaconda, we need to install the following packages

!pip install arviz pymc

We’ll begin with some Python imports.

import arviz as az
import pymc as pmc
import numpyro
from numpyro import distributions as dist

import numpy as np
import jax.numpy as jnp
from jax import random
import matplotlib.pyplot as plt

import logging
logging.basicConfig()
logger = logging.getLogger('pymc')
logger.setLevel(logging.CRITICAL)

This lecture uses Bayesian methods offered by pymc and numpyro to make statistical inferences about two parameters of
a univariate first-order autoregression.

The model is a good laboratory for illustrating consequences of alternative ways of modeling the distribution of the initial
𝑦0:

• As a fixed number

• As a random variable drawn from the stationary distribution of the {𝑦𝑡} stochastic process
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The first component of the statistical model is

𝑦𝑡+1 = 𝜌𝑦𝑡 + 𝜎𝑥𝜖𝑡+1, 𝑡 ≥ 0 (19.1)

where the scalars 𝜌 and 𝜎𝑥 satisfy |𝜌| < 1 and 𝜎𝑥 > 0; {𝜖𝑡+1} is a sequence of i.i.d. normal random variables with mean
0 and variance 1.
The second component of the statistical model is

𝑦0 ∼ 𝑁(𝜇0, 𝜎2
0) (19.2)

Consider a sample {𝑦𝑡}𝑇
𝑡=0 governed by this statistical model.

The model implies that the likelihood function of {𝑦𝑡}𝑇
𝑡=0 can be factored:

𝑓(𝑦𝑇 , 𝑦𝑇 −1, … , 𝑦0) = 𝑓(𝑦𝑇 |𝑦𝑇 −1)𝑓(𝑦𝑇 −1|𝑦𝑇 −2) ⋯ 𝑓(𝑦1|𝑦0)𝑓(𝑦0)

where we use 𝑓 to denote a generic probability density.

The statistical model (19.1)-(19.2) implies

𝑓(𝑦𝑡|𝑦𝑡−1) ∼ 𝒩(𝜌𝑦𝑡−1, 𝜎2
𝑥)

𝑓(𝑦0) ∼ 𝒩(𝜇0, 𝜎2
0)

Wewant to study how inferences about the unknown parameters (𝜌, 𝜎𝑥) depend on what is assumed about the parameters
𝜇0, 𝜎0 of the distribution of 𝑦0.

Below, we study two widely used alternative assumptions:

• (𝜇0, 𝜎0) = (𝑦0, 0) which means that 𝑦0 is drawn from the distribution 𝒩(𝑦0, 0); in effect, we are conditioning
on an observed initial value.

• 𝜇0, 𝜎0 are functions of 𝜌, 𝜎𝑥 because 𝑦0 is drawn from the stationary distribution implied by 𝜌, 𝜎𝑥.

Note: We do not treat a third possible case in which 𝜇0, 𝜎0 are free parameters to be estimated.

Unknown parameters are 𝜌, 𝜎𝑥.

We have independent prior probability distributions for 𝜌, 𝜎𝑥 and want to compute a posterior probability distribution
after observing a sample {𝑦𝑡}𝑇

𝑡=0.

The notebook uses pymc4 and numpyro to compute a posterior distribution of 𝜌, 𝜎𝑥. We will use NUTS samplers to
generate samples from the posterior in a chain. Both of these libraries support NUTS samplers.

NUTS is a form of Monte Carlo Markov Chain (MCMC) algorithm that bypasses random walk behaviour and allows
for convergence to a target distribution more quickly. This not only has the advantage of speed, but allows for complex
models to be fitted without having to employ specialised knowledge regarding the theory underlying those fitting methods.

Thus, we explore consequences of making these alternative assumptions about the distribution of 𝑦0:

• A first procedure is to condition on whatever value of 𝑦0 is observed. This amounts to assuming that the probability
distribution of the random variable 𝑦0 is a Dirac delta function that puts probability one on the observed value of
𝑦0.

• A second procedure assumes that 𝑦0 is drawn from the stationary distribution of a process described by (19.1) so

that 𝑦0 ∼ 𝑁 (0, 𝜎2
𝑥

(1−𝜌)2 )

When the initial value 𝑦0 is far out in a tail of the stationary distribution, conditioning on an initial value gives a posterior
that ismore accurate in a sense that we’ll explain.

Basically, when 𝑦0 happens to be in a tail of the stationary distribution and we don’t condition on 𝑦0, the likelihood
function for {𝑦𝑡}𝑇

𝑡=0 adjusts the posterior distribution of the parameter pair 𝜌, 𝜎𝑥 to make the observed value of 𝑦0 more
likely than it really is under the stationary distribution, thereby adversely twisting the posterior in short samples.
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An example below shows how not conditioning on 𝑦0 adversely shifts the posterior probability distribution of 𝜌 toward
larger values.

We begin by solving a direct problem that simulates an AR(1) process.

How we select the initial value 𝑦0 matters.

• If we think 𝑦0 is drawn from the stationary distribution 𝒩(0, 𝜎2
𝑥

1−𝜌2 ), then it is a good idea to use this distribution
as 𝑓(𝑦0). Why? Because 𝑦0 contains information about 𝜌, 𝜎𝑥.

• If we suspect that 𝑦0 is far in the tails of the stationary distribution – so that variation in early observations in the
sample have a significant transient component – it is better to condition on 𝑦0 by setting 𝑓(𝑦0) = 1.

To illustrate the issue, we’ll begin by choosing an initial 𝑦0 that is far out in a tail of the stationary distribution.

def ar1_simulate(rho, sigma, y0, T):

# Allocate space and draw epsilons
y = np.empty(T)
eps = np.random.normal(0.,sigma,T)

# Initial condition and step forward
y[0] = y0
for t in range(1, T):

y[t] = rho*y[t-1] + eps[t]

return y

sigma = 1.
rho = 0.5
T = 50

np.random.seed(145353452)
y = ar1_simulate(rho, sigma, 10, T)

plt.plot(y)
plt.tight_layout()
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Now we shall use Bayes’ law to construct a posterior distribution, conditioning on the initial value of 𝑦0.

(Later we’ll assume that 𝑦0 is drawn from the stationary distribution, but not now.)

First we’ll use pymc4.

19.1 PyMC Implementation

For a normal distribution in pymc, 𝑣𝑎𝑟 = 1/𝜏 = 𝜎2.

AR1_model = pmc.Model()

with AR1_model:

# Start with priors
rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho
sigma = pmc.HalfNormal('sigma', sigma = np.sqrt(10))

# Expected value of y at the next period (rho * y)
yhat = rho * y[:-1]

# Likelihood of the actual realization
y_like = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=y[1:])

pmc.sample by default uses the NUTS samplers to generate samples as shown in the below cell:
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with AR1_model:
trace = pmc.sample(50000, tune=10000, return_inferencedata=True)

Output()

with AR1_model:
az.plot_trace(trace, figsize=(17,6))

Evidently, the posteriors aren’t centered on the true values of .5, 1 that we used to generate the data.
This is a symptom of the classic Hurwicz bias for first order autoregressive processes (see Leonid Hurwicz [Hurwicz,
1950].)

The Hurwicz bias is worse the smaller is the sample (see [Orcutt and Winokur, 1969]).

Be that as it may, here is more information about the posterior.

with AR1_model:
summary = az.summary(trace, round_to=4)

summary

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \
rho 0.5361 0.0710 0.4034 0.6712 0.0002 0.0002 170785.4928
sigma 1.0103 0.1069 0.8193 1.2141 0.0003 0.0003 164516.0054

ess_tail r_hat
rho 126531.0400 1.0000
sigma 135884.5348 1.0001

Now we shall compute a posterior distribution after seeing the same data but instead assuming that 𝑦0 is drawn from the
stationary distribution.

This means that

𝑦0 ∼ 𝑁 (0, 𝜎2
𝑥

1 − 𝜌2 )

We alter the code as follows:
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AR1_model_y0 = pmc.Model()

with AR1_model_y0:

# Start with priors
rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho
sigma = pmc.HalfNormal('sigma', sigma=np.sqrt(10))

# Standard deviation of ergodic y
y_sd = sigma / np.sqrt(1 - rho**2)

# yhat
yhat = rho * y[:-1]
y_data = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=y[1:])
y0_data = pmc.Normal('y0_obs', mu=0., sigma=y_sd, observed=y[0])

with AR1_model_y0:
trace_y0 = pmc.sample(50000, tune=10000, return_inferencedata=True)

# Grey vertical lines are the cases of divergence

Output()

with AR1_model_y0:
az.plot_trace(trace_y0, figsize=(17,6))

with AR1_model:
summary_y0 = az.summary(trace_y0, round_to=4)

summary_y0

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk \
rho 0.8762 0.0812 0.7322 0.9983 0.0002 0.0002 106670.7138
sigma 1.4042 0.1469 1.1389 1.6816 0.0004 0.0004 119403.3801

ess_tail r_hat

(continues on next page)
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(continued from previous page)

rho 79989.8389 1.0
sigma 104354.5477 1.0

Please note how the posterior for 𝜌 has shifted to the right relative to when we conditioned on 𝑦0 instead of assuming that
𝑦0 is drawn from the stationary distribution.

Think about why this happens.

Hint

It is connected to how Bayes Law (conditional probability) solves an inverse problem by putting high probability on
parameter values that make observations more likely.

We’ll return to this issue after we use numpyro to compute posteriors under our two alternative assumptions about the
distribution of 𝑦0.

We’ll now repeat the calculations using numpyro.

19.2 Numpyro Implementation

def plot_posterior(sample):
"""
Plot trace and histogram
"""
# To np array
rhos = sample['rho']
sigmas = sample['sigma']
rhos, sigmas, = np.array(rhos), np.array(sigmas)

fig, axs = plt.subplots(2, 2, figsize=(17, 6))
# Plot trace
axs[0, 0].plot(rhos) # rho
axs[1, 0].plot(sigmas) # sigma

# Plot posterior
axs[0, 1].hist(rhos, bins=50, density=True, alpha=0.7)
axs[0, 1].set_xlim([0, 1])
axs[1, 1].hist(sigmas, bins=50, density=True, alpha=0.7)

axs[0, 0].set_title("rho")
axs[0, 1].set_title("rho")
axs[1, 0].set_title("sigma")
axs[1, 1].set_title("sigma")
plt.show()

def AR1_model(data):
# set prior
rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
sigma = numpyro.sample('sigma', dist.HalfNormal(scale=np.sqrt(10)))

# Expected value of y at the next period (rho * y)
yhat = rho * data[:-1]

(continues on next page)
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(continued from previous page)

# Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal(loc=yhat, scale=sigma), obs=data[1:])

# Make jnp array
y = jnp.array(y)

# Set NUTS kernal
NUTS_kernel = numpyro.infer.NUTS(AR1_model)

# Run MCMC
mcmc = numpyro.infer.MCMC(NUTS_kernel, num_samples=50000, num_warmup=10000, progress_

↪bar=False)
mcmc.run(rng_key=random.PRNGKey(1), data=y)

plot_posterior(mcmc.get_samples())

mcmc.print_summary()

mean std median 5.0% 95.0% n_eff r_hat
rho 0.54 0.07 0.54 0.42 0.65 44430.72 1.00

sigma 1.01 0.11 1.00 0.84 1.18 42626.35 1.00

Number of divergences: 0

Next, we again compute the posterior under the assumption that 𝑦0 is drawn from the stationary distribution, so that

𝑦0 ∼ 𝑁 (0, 𝜎2
𝑥

1 − 𝜌2 )

Here’s the new code to achieve this.

def AR1_model_y0(data):
# Set prior
rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
sigma = numpyro.sample('sigma', dist.HalfNormal(scale=np.sqrt(10)))

# Standard deviation of ergodic y
y_sd = sigma / jnp.sqrt(1 - rho**2)

(continues on next page)
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(continued from previous page)

# Expected value of y at the next period (rho * y)
yhat = rho * data[:-1]

# Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal(loc=yhat, scale=sigma), obs=data[1:])
y0_data = numpyro.sample('y0_obs', dist.Normal(loc=0., scale=y_sd), obs=data[0])

# Make jnp array
y = jnp.array(y)

# Set NUTS kernal
NUTS_kernel = numpyro.infer.NUTS(AR1_model_y0)

# Run MCMC
mcmc2 = numpyro.infer.MCMC(NUTS_kernel, num_samples=50000, num_warmup=10000, progress_

↪bar=False)
mcmc2.run(rng_key=random.PRNGKey(1), data=y)

plot_posterior(mcmc2.get_samples())

mcmc2.print_summary()

mean std median 5.0% 95.0% n_eff r_hat
rho 0.88 0.08 0.89 0.76 1.00 31419.08 1.00

sigma 1.41 0.15 1.39 1.17 1.64 26542.08 1.00

Number of divergences: 0

Look what happened to the posterior!

It has moved far from the true values of the parameters used to generate the data because of how Bayes’ Law (i.e.,
conditional probability) is telling numpyro to explain what it interprets as “explosive” observations early in the sample.

Bayes’ Law is able to generate a plausible likelihood for the first observation by driving 𝜌 → 1 and 𝜎 ↑ in order to raise
the variance of the stationary distribution.

Our example illustrates the importance of what you assume about the distribution of initial conditions.

19.2. Numpyro Implementation 355



Intermediate Quantitative Economics with Python

356 Chapter 19. Posterior Distributions for AR(1) Parameters



CHAPTER

TWENTY

FORECASTING AN AR(1) PROCESS

!pip install arviz pymc

This lecture describes methods for forecasting statistics that are functions of future values of a univariate autogressive
process.

The methods are designed to take into account two possible sources of uncertainty about these statistics:

• random shocks that impinge of the transition law

• uncertainty about the parameter values of the AR(1) process

We consider two sorts of statistics:

• prospective values 𝑦𝑡+𝑗 of a random process {𝑦𝑡} that is governed by the AR(1) process
• sample path properties that are defined as non-linear functions of future values {𝑦𝑡+𝑗}𝑗≥1 at time 𝑡

Sample path properties are things like “time to next turning point” or “time to next recession”.

To investigate sample path properties we’ll use a simulation procedure recommended by Wecker [Wecker, 1979].

To acknowledge uncertainty about parameters, we’ll deploy pymc to construct a Bayesian joint posterior distribution for
unknown parameters.

Let’s start with some imports.

import numpy as np
import arviz as az
import pymc as pmc
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('white')
colors = sns.color_palette()

import logging
logging.basicConfig()
logger = logging.getLogger('pymc')
logger.setLevel(logging.CRITICAL)
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20.1 A Univariate First-Order Autoregressive Process

Consider the univariate AR(1) model:

𝑦𝑡+1 = 𝜌𝑦𝑡 + 𝜎𝜖𝑡+1, 𝑡 ≥ 0 (20.1)

where the scalars 𝜌 and 𝜎 satisfy |𝜌| < 1 and 𝜎 > 0; {𝜖𝑡+1} is a sequence of i.i.d. normal random variables with mean 0
and variance 1.
The initial condition 𝑦0 is a known number.

Equation (20.1) implies that for 𝑡 ≥ 0, the conditional density of 𝑦𝑡+1 is

𝑓(𝑦𝑡+1|𝑦𝑡; 𝜌, 𝜎) ∼ 𝒩(𝜌𝑦𝑡, 𝜎2) (20.2)

Further, equation (20.1) also implies that for 𝑡 ≥ 0, the conditional density of 𝑦𝑡+𝑗 for 𝑗 ≥ 1 is

𝑓(𝑦𝑡+𝑗|𝑦𝑡; 𝜌, 𝜎) ∼ 𝒩 (𝜌𝑗𝑦𝑡, 𝜎2 1 − 𝜌2𝑗

1 − 𝜌2 ) (20.3)

The predictive distribution (20.3) that assumes that the parameters 𝜌, 𝜎 are known, which we express by conditioning on
them.

We also want to compute a predictive distribution that does not condition on 𝜌, 𝜎 but instead takes account of our uncer-
tainty about them.

We form this predictive distribution by integrating (20.3) with respect to a joint posterior distribution 𝜋𝑡(𝜌, 𝜎|𝑦𝑡) that
conditions on an observed history 𝑦𝑡 = {𝑦𝑠}𝑡

𝑠=0:

𝑓(𝑦𝑡+𝑗|𝑦𝑡) = ∫ 𝑓(𝑦𝑡+𝑗|𝑦𝑡; 𝜌, 𝜎)𝜋𝑡(𝜌, 𝜎|𝑦𝑡)𝑑𝜌𝑑𝜎 (20.4)

Predictive distribution (20.3) assumes that parameters (𝜌, 𝜎) are known.
Predictive distribution (20.4) assumes that parameters (𝜌, 𝜎) are uncertain, but have known probability distribution
𝜋𝑡(𝜌, 𝜎|𝑦𝑡).
We also want to compute some predictive distributions of “sample path statistics” that might include, for example

• the time until the next “recession”,

• the minimum value of 𝑌 over the next 8 periods,

• “severe recession”, and

• the time until the next turning point (positive or negative).

To accomplish that for situations in which we are uncertain about parameter values, we shall extend Wecker’s [Wecker,
1979] approach in the following way.

• first simulate an initial path of length 𝑇0;

• for a given prior, draw a sample of size 𝑁 from the posterior joint distribution of parameters (𝜌, 𝜎) after observing
the initial path;

• for each draw 𝑛 = 0, 1, ..., 𝑁 , simulate a “future path” of length 𝑇1 with parameters (𝜌𝑛, 𝜎𝑛) and compute our
three “sample path statistics”;

• finally, plot the desired statistics from the 𝑁 samples as an empirical distribution.
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20.2 Implementation

First, we’ll simulate a sample path from which to launch our forecasts.

In addition to plotting the sample path, under the assumption that the true parameter values are known, we’ll plot .9 and
.95 coverage intervals using conditional distribution (20.3) described above.
We’ll also plot a bunch of samples of sequences of future values and watch where they fall relative to the coverage interval.

def AR1_simulate(rho, sigma, y0, T):

# Allocate space and draw epsilons
y = np.empty(T)
eps = np.random.normal(0, sigma, T)

# Initial condition and step forward
y[0] = y0
for t in range(1, T):

y[t] = rho * y[t-1] + eps[t]

return y

def plot_initial_path(initial_path):
"""
Plot the initial path and the preceding predictive densities
"""
# Compute .9 confidence interval]
y0 = initial_path[-1]
center = np.array([rho**j * y0 for j in range(T1)])
vars = np.array([sigma**2 * (1 - rho**(2 * j)) / (1 - rho**2) for j in range(T1)])
y_bounds1_c95, y_bounds2_c95 = center + 1.96 * np.sqrt(vars), center - 1.96 * np.

↪sqrt(vars)
y_bounds1_c90, y_bounds2_c90 = center + 1.65 * np.sqrt(vars), center - 1.65 * np.

↪sqrt(vars)

# Plot
fig, ax = plt.subplots(1, 1, figsize=(12, 6))
ax.set_title("Initial Path and Predictive Densities", fontsize=15)
ax.plot(np.arange(-T0 + 1, 1), initial_path)
ax.set_xlim([-T0, T1])
ax.axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

# Simulate future paths
for i in range(10):

y_future = AR1_simulate(rho, sigma, y0, T1)
ax.plot(np.arange(T1), y_future, color='grey', alpha=.5)

# Plot 90% CI
ax.fill_between(np.arange(T1), y_bounds1_c95, y_bounds2_c95, alpha=.3, label='95%␣

↪CI')
ax.fill_between(np.arange(T1), y_bounds1_c90, y_bounds2_c90, alpha=.35, label='90

↪% CI')
ax.plot(np.arange(T1), center, color='red', alpha=.7, label='expected mean')
ax.legend(fontsize=12)
plt.show()

(continues on next page)
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(continued from previous page)

sigma = 1
rho = 0.9
T0, T1 = 100, 100
y0 = 10

# Simulate
np.random.seed(145)
initial_path = AR1_simulate(rho, sigma, y0, T0)

# Plot
plot_initial_path(initial_path)

As functions of forecast horizon, the coverage intervals have shapes like those described in https://python.quantecon.org/
perm_income_cons.html

20.3 Predictive Distributions of Path Properties

Wecker [Wecker, 1979] proposed using simulation techniques to characterize predictive distribution of some statistics
that are non-linear functions of 𝑦.
He called these functions “path properties” to contrast them with properties of single data points.

He studied two special prospective path properties of a given series {𝑦𝑡}.
The first was time until the next turning point.

• he defined a “turning point” to be the date of the second of two successive declines in 𝑦.
To examine this statistic, let 𝑍 be an indicator process

𝑍𝑡(𝑌 (𝜔)) ∶= { 1 if 𝑌𝑡(𝜔) < 𝑌𝑡−1(𝜔) < 𝑌𝑡−2(𝜔) ≥ 𝑌𝑡−3(𝜔)
0 otherwise
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Then the random variable time until the next turning point is defined as the following stopping time with respect to
𝑍:

𝑊𝑡(𝜔) ∶= inf{𝑘 ≥ 1 ∣ 𝑍𝑡+𝑘(𝜔) = 1}

Wecker [Wecker, 1979] also studied the minimum value of 𝑌 over the next 8 quarters which can be defined as the
random variable.

𝑀𝑡(𝜔) ∶= min{𝑌𝑡+1(𝜔); 𝑌𝑡+2(𝜔); … ; 𝑌𝑡+8(𝜔)}

It is interesting to study yet another possible concept of a turning point.

Thus, let

𝑇𝑡(𝑌 (𝜔)) ∶=
⎧{
⎨{⎩

1 if 𝑌𝑡−2(𝜔) > 𝑌𝑡−1(𝜔) > 𝑌𝑡(𝜔) and 𝑌𝑡(𝜔) < 𝑌𝑡+1(𝜔) < 𝑌𝑡+2(𝜔)
−1 if 𝑌𝑡−2(𝜔) < 𝑌𝑡−1(𝜔) < 𝑌𝑡(𝜔) and 𝑌𝑡(𝜔) > 𝑌𝑡+1(𝜔) > 𝑌𝑡+2(𝜔)
0 otherwise

Define a positive turning point today or tomorrow statistic as

𝑃𝑡(𝜔) ∶= { 1 if 𝑇𝑡(𝜔) = 1 or 𝑇𝑡+1(𝜔) = 1
0 otherwise

This is designed to express the event

• “after one or two decrease(s), 𝑌 will grow for two consecutive quarters”

Following [Wecker, 1979], we can use simulations to calculate probabilities of 𝑃𝑡 and 𝑁𝑡 for each period 𝑡.

20.4 A Wecker-Like Algorithm

The procedure consists of the following steps:

• index a sample path by 𝜔𝑖

• for a given date 𝑡, simulate 𝐼 sample paths of length 𝑁
𝑌 (𝜔𝑖) = {𝑌𝑡+1(𝜔𝑖), 𝑌𝑡+2(𝜔𝑖), … , 𝑌𝑡+𝑁(𝜔𝑖)}

𝐼
𝑖=1

• for each path 𝜔𝑖, compute the associated value of 𝑊𝑡(𝜔𝑖), 𝑊𝑡+1(𝜔𝑖), …
• consider the sets {𝑊𝑡(𝜔𝑖)}𝑇

𝑖=1, {𝑊𝑡+1(𝜔𝑖)}𝑇
𝑖=1, … , {𝑊𝑡+𝑁(𝜔𝑖)}𝑇

𝑖=1 as samples from the predictive distributions
𝑓(𝑊𝑡+1 ∣ 𝑦𝑡, … ), 𝑓(𝑊𝑡+2 ∣ 𝑦𝑡, 𝑦𝑡−1, … ), …, 𝑓(𝑊𝑡+𝑁 ∣ 𝑦𝑡, 𝑦𝑡−1, … ).

20.5 Using Simulations to Approximate a Posterior Distribution

The next code cells use pymc to compute the time 𝑡 posterior distribution of 𝜌, 𝜎.
Note that in defining the likelihood function, we choose to condition on the initial value 𝑦0.

20.4. A Wecker-Like Algorithm 361



Intermediate Quantitative Economics with Python

def draw_from_posterior(sample):
"""
Draw a sample of size N from the posterior distribution.
"""

AR1_model = pmc.Model()

with AR1_model:

# Start with priors
rho = pmc.Uniform('rho',lower=-1.,upper=1.) # Assume stable rho
sigma = pmc.HalfNormal('sigma', sigma = np.sqrt(10))

# Expected value of y at the next period (rho * y)
yhat = rho * sample[:-1]

# Likelihood of the actual realization.
y_like = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=sample[1:])

with AR1_model:
trace = pmc.sample(10000, tune=5000)

# check condition
with AR1_model:

az.plot_trace(trace, figsize=(17, 6))

rhos = trace.posterior.rho.values.flatten()
sigmas = trace.posterior.sigma.values.flatten()

post_sample = {
'rho': rhos,
'sigma': sigmas

}

return post_sample

post_samples = draw_from_posterior(initial_path)

Output()
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The graphs on the left portray posterior marginal distributions.

20.6 Calculating Sample Path Statistics

Our next step is to prepare Python code to compute our sample path statistics.

# define statistics
def next_recession(omega):

n = omega.shape[0] - 3
z = np.zeros(n, dtype=int)

for i in range(n):
z[i] = int(omega[i] <= omega[i+1] and omega[i+1] > omega[i+2] and omega[i+2] >

↪ omega[i+3])

if np.any(z) == False:
return 500

else:
return np.where(z==1)[0][0] + 1

def minimum_value(omega):
return min(omega[:8])

def severe_recession(omega):
z = np.diff(omega)
n = z.shape[0]

sr = (z < -.02).astype(int)
indices = np.where(sr == 1)[0]

if len(indices) == 0:
return T1

else:
return indices[0] + 1

def next_turning_point(omega):
"""
Suppose that omega is of length 6

(continues on next page)
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(continued from previous page)

y_{t-2}, y_{t-1}, y_{t}, y_{t+1}, y_{t+2}, y_{t+3}

that is sufficient for determining the value of P/N
"""

n = np.asarray(omega).shape[0] - 4
T = np.zeros(n, dtype=int)

for i in range(n):
if ((omega[i] > omega[i+1]) and (omega[i+1] > omega[i+2]) and

(omega[i+2] < omega[i+3]) and (omega[i+3] < omega[i+4])):
T[i] = 1

elif ((omega[i] < omega[i+1]) and (omega[i+1] < omega[i+2]) and
(omega[i+2] > omega[i+3]) and (omega[i+3] > omega[i+4])):
T[i] = -1

up_turn = np.where(T == 1)[0][0] + 1 if (1 in T) == True else T1
down_turn = np.where(T == -1)[0][0] + 1 if (-1 in T) == True else T1

return up_turn, down_turn

20.7 Original Wecker Method

Now we apply Wecker’s original method by simulating future paths and compute predictive distributions, conditioning
on the true parameters associated with the data-generating model.

def plot_Wecker(initial_path, N, ax):
"""
Plot the predictive distributions from "pure" Wecker's method.
"""
# Store outcomes
next_reces = np.zeros(N)
severe_rec = np.zeros(N)
min_vals = np.zeros(N)
next_up_turn, next_down_turn = np.zeros(N), np.zeros(N)

# Compute .9 confidence interval]
y0 = initial_path[-1]
center = np.array([rho**j * y0 for j in range(T1)])
vars = np.array([sigma**2 * (1 - rho**(2 * j)) / (1 - rho**2) for j in range(T1)])
y_bounds1_c95, y_bounds2_c95 = center + 1.96 * np.sqrt(vars), center - 1.96 * np.

↪sqrt(vars)
y_bounds1_c90, y_bounds2_c90 = center + 1.65 * np.sqrt(vars), center - 1.65 * np.

↪sqrt(vars)

# Plot
ax[0, 0].set_title("Initial path and predictive densities", fontsize=15)
ax[0, 0].plot(np.arange(-T0 + 1, 1), initial_path)
ax[0, 0].set_xlim([-T0, T1])
ax[0, 0].axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

# Plot 90% CI
ax[0, 0].fill_between(np.arange(T1), y_bounds1_c95, y_bounds2_c95, alpha=.3)
ax[0, 0].fill_between(np.arange(T1), y_bounds1_c90, y_bounds2_c90, alpha=.35)

(continues on next page)
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(continued from previous page)

ax[0, 0].plot(np.arange(T1), center, color='red', alpha=.7)

# Simulate future paths
for n in range(N):

sim_path = AR1_simulate(rho, sigma, initial_path[-1], T1)
next_reces[n] = next_recession(np.hstack([initial_path[-3:-1], sim_path]))
severe_rec[n] = severe_recession(sim_path)
min_vals[n] = minimum_value(sim_path)
next_up_turn[n], next_down_turn[n] = next_turning_point(sim_path)

if n%(N/10) == 0:
ax[0, 0].plot(np.arange(T1), sim_path, color='gray', alpha=.3, lw=1)

# Return next_up_turn, next_down_turn
sns.histplot(next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.8, label=

↪'True parameters')
ax[0, 1].set_title("Predictive distribution of time until the next recession",␣

↪fontsize=13)

sns.histplot(severe_rec, kde=False, stat='density', ax=ax[1, 0], binwidth=0.9,␣
↪alpha=.7, label='True parameters')

ax[1, 0].set_title(r"Predictive distribution of stopping time of growth$<-2\%$",␣
↪fontsize=13)

sns.histplot(min_vals, kde=True, stat='density', ax=ax[1, 1], alpha=.8, label=
↪'True parameters')

ax[1, 1].set_title("Predictive distribution of minimum value in the next 8 periods
↪", fontsize=13)

sns.histplot(next_up_turn, kde=True, stat='density', ax=ax[2, 0], alpha=.8, label=
↪'True parameters')

ax[2, 0].set_title("Predictive distribution of time until the next positive turn",
↪ fontsize=13)

sns.histplot(next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.8,␣
↪label='True parameters')

ax[2, 1].set_title("Predictive distribution of time until the next negative turn",
↪ fontsize=13)

fig, ax = plt.subplots(3, 2, figsize=(15,12))
plot_Wecker(initial_path, 1000, ax)
plt.show()
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20.8 Extended Wecker Method

Now we apply we apply our “extended” Wecker method based on predictive densities of 𝑦 defined by (20.4) that ac-
knowledge posterior uncertainty in the parameters 𝜌, 𝜎.
To approximate the intergration on the right side of (20.4), we repeatedly draw parameters from the joint posterior
distribution each time we simulate a sequence of future values from model (20.1).

def plot_extended_Wecker(post_samples, initial_path, N, ax):
"""
Plot the extended Wecker's predictive distribution
"""
# Select a sample
index = np.random.choice(np.arange(len(post_samples['rho'])), N + 1,␣

↪replace=False)
rho_sample = post_samples['rho'][index]
sigma_sample = post_samples['sigma'][index]

# Store outcomes
next_reces = np.zeros(N)
severe_rec = np.zeros(N)
min_vals = np.zeros(N)
next_up_turn, next_down_turn = np.zeros(N), np.zeros(N)

(continues on next page)
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# Plot
ax[0, 0].set_title("Initial path and future paths simulated from posterior draws",

↪ fontsize=15)
ax[0, 0].plot(np.arange(-T0 + 1, 1), initial_path)
ax[0, 0].set_xlim([-T0, T1])
ax[0, 0].axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

# Simulate future paths
for n in range(N):

sim_path = AR1_simulate(rho_sample[n], sigma_sample[n], initial_path[-1], T1)
next_reces[n] = next_recession(np.hstack([initial_path[-3:-1], sim_path]))
severe_rec[n] = severe_recession(sim_path)
min_vals[n] = minimum_value(sim_path)
next_up_turn[n], next_down_turn[n] = next_turning_point(sim_path)

if n % (N / 10) == 0:
ax[0, 0].plot(np.arange(T1), sim_path, color='gray', alpha=.3, lw=1)

# Return next_up_turn, next_down_turn
sns.histplot(next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.6,␣

↪color=colors[1], label='Sampling from posterior')
ax[0, 1].set_title("Predictive distribution of time until the next recession",␣

↪fontsize=13)

sns.histplot(severe_rec, kde=False, stat='density', ax=ax[1, 0], binwidth=.9,␣
↪alpha=.6, color=colors[1], label='Sampling from posterior')

ax[1, 0].set_title(r"Predictive distribution of stopping time of growth$<-2\%$",␣
↪fontsize=13)

sns.histplot(min_vals, kde=True, stat='density', ax=ax[1, 1], alpha=.6,␣
↪color=colors[1], label='Sampling from posterior')

ax[1, 1].set_title("Predictive distribution of minimum value in the next 8 periods
↪", fontsize=13)

sns.histplot(next_up_turn, kde=True, stat='density', ax=ax[2, 0], alpha=.6,␣
↪color=colors[1], label='Sampling from posterior')

ax[2, 0].set_title("Predictive distribution of time until the next positive turn",
↪ fontsize=13)

sns.histplot(next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.6,␣
↪color=colors[1], label='Sampling from posterior')

ax[2, 1].set_title("Predictive distribution of time until the next negative turn",
↪ fontsize=13)

fig, ax = plt.subplots(3, 2, figsize=(15, 12))
plot_extended_Wecker(post_samples, initial_path, 1000, ax)
plt.show()
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20.9 Comparison

Finally, we plot both the original Wecker method and the extended method with parameter values drawn from the pos-
terior together to compare the differences that emerge from pretending to know parameter values when they are actually
uncertain.

fig, ax = plt.subplots(3, 2, figsize=(15,12))
plot_Wecker(initial_path, 1000, ax)
ax[0, 0].clear()
plot_extended_Wecker(post_samples, initial_path, 1000, ax)
plt.legend()
plt.show()
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CHAPTER

TWENTYONE

STATISTICAL DIVERGENCE MEASURES

Contents

• Statistical Divergence Measures

– Overview

– Primer on entropy, cross-entropy, KL divergence

– Two Beta distributions: running example

– Kullback–Leibler divergence

– Jensen-Shannon divergence

– Chernoff entropy

– Comparing divergence measures

– KL divergence and maximum-likelihood estimation

– Related lectures

21.1 Overview

A statistical divergence quantifies discrepancies between two distinct probability distributions that can be challenging to
distinguish for the following reason:

• every event that has positive probability under one of the distributions also has positive probability under the other
distribution

• this means that there is no “smoking gun” event whose occurrence tells a statistician that one of the probability
distributions surely governs the data

A statistical divergence is a function that maps two probability distributions into a nonnegative real number.

Statistical divergence functions play important roles in statistics, information theory, and what many people now call
“machine learning”.

This lecture describes three divergence measures:

• Kullback–Leibler (KL) divergence

• Jensen–Shannon (JS) divergence

• Chernoff entropy
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These will appear in several quantecon lectures.

Let’s start by importing the necessary Python tools.

import matplotlib.pyplot as plt
import numpy as np
from numba import vectorize, jit
from math import gamma
from scipy.integrate import quad
from scipy.optimize import minimize_scalar
import pandas as pd
from IPython.display import display, Math

21.2 Primer on entropy, cross-entropy, KL divergence

Before diving in, we’ll introduce some useful concepts in a simple setting.

We’ll temporarily assume that 𝑓 and 𝑔 are two probability mass functions for discrete random variables on state space
𝐼 = {1, 2, … , 𝑛} that satisfy 𝑓𝑖 ≥ 0, ∑𝑖 𝑓𝑖 = 1, 𝑔𝑖 ≥ 0, ∑𝑖 𝑔𝑖 = 1.
We follow some statisticians and information theorists who define the surprise or surprisal associated with having
observed a single draw 𝑥 = 𝑖 from distribution 𝑓 as

log( 1
𝑓𝑖

)

They then define the information that you can anticipate to gather from observing a single realization as the expected
surprisal

𝐻(𝑓) = ∑
𝑖

𝑓𝑖 log( 1
𝑓𝑖

) .

Claude Shannon [Shannon, 1948] called 𝐻(𝑓) the entropy of distribution 𝑓 .

Note

By maximizing 𝐻(𝑓) with respect to {𝑓1, 𝑓2, … , 𝑓𝑛} subject to ∑𝑖 𝑓𝑖 = 1, we can verify that the distribution that
maximizes entropy is the uniform distribution 𝑓𝑖 = 1

𝑛 . Entropy 𝐻(𝑓) for the uniform distribution evidently equals
− log(𝑛).

Kullback and Leibler [Kullback and Leibler, 1951] define the amount of information that a single draw of 𝑥 provides for
distinguishing 𝑓 from 𝑔 as the log likelihood ratio

log
𝑓(𝑥)
𝑔(𝑥)

The following two concepts are widely used to compare two distributions 𝑓 and 𝑔.
Cross-Entropy:

𝐻(𝑓, 𝑔) = − ∑
𝑖

𝑓𝑖 log 𝑔𝑖 (21.1)

Kullback-Leibler (KL) Divergence:

𝐷𝐾𝐿(𝑓 ∥ 𝑔) = ∑
𝑖

𝑓𝑖 log [𝑓𝑖
𝑔𝑖

] (21.2)
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These concepts are related by the following equality.

𝐷𝐾𝐿(𝑓 ∥ 𝑔) = 𝐻(𝑓, 𝑔) − 𝐻(𝑓) (21.3)

To prove (21.3), note that

𝐷𝐾𝐿(𝑓 ∥ 𝑔) = ∑
𝑖

𝑓𝑖 log [𝑓𝑖
𝑔𝑖

] (21.4)

= ∑
𝑖

𝑓𝑖 [log 𝑓𝑖 − log 𝑔𝑖] (21.5)

= ∑
𝑖

𝑓𝑖 log 𝑓𝑖 − ∑
𝑖

𝑓𝑖 log 𝑔𝑖 (21.6)

= −𝐻(𝑓) + 𝐻(𝑓, 𝑔) (21.7)
= 𝐻(𝑓, 𝑔) − 𝐻(𝑓) (21.8)

Remember that 𝐻(𝑓) is the anticipated surprisal from drawing 𝑥 from 𝑓 .
Then the above equation tells us that the KL divergence is an anticipated “excess surprise” that comes from anticipating
that 𝑥 is drawn from 𝑓 when it is actually drawn from 𝑔.

21.3 Two Beta distributions: running example

We’ll use Beta distributions extensively to illustrate concepts.

The Beta distribution is particularly convenient as it’s defined on [0, 1] and exhibits diverse shapes by appropriately choos-
ing its two parameters.

The density of a Beta distribution with parameters 𝑎 and 𝑏 is given by

𝑓(𝑧; 𝑎, 𝑏) = Γ(𝑎 + 𝑏)𝑧𝑎−1(1 − 𝑧)𝑏−1

Γ(𝑎)Γ(𝑏) where Γ(𝑝) ∶= ∫
∞

0
𝑥𝑝−1𝑒−𝑥𝑑𝑥

We introduce two Beta distributions 𝑓(𝑥) and 𝑔(𝑥), which we will use to illustrate the different divergence measures.
Let’s define parameters and density functions in Python

# Parameters in the two Beta distributions
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x** (a-1) * (1 - x) ** (b-1)

# The two density functions
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

# Plot the distributions
x_range = np.linspace(0.001, 0.999, 1000)
f_vals = [f(x) for x in x_range]
g_vals = [g(x) for x in x_range]

plt.figure(figsize=(10, 6))

(continues on next page)
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(continued from previous page)

plt.plot(x_range, f_vals, 'b-', linewidth=2, label=r'$f(x) \sim \text{Beta}(1,1)$')
plt.plot(x_range, g_vals, 'r-', linewidth=2, label=r'$g(x) \sim \text{Beta}(3,1.2)$')

# Fill overlap region
overlap = np.minimum(f_vals, g_vals)
plt.fill_between(x_range, 0, overlap, alpha=0.3, color='purple', label='overlap')

plt.xlabel('x')
plt.ylabel('density')
plt.legend()
plt.show()

21.4 Kullback–Leibler divergence

Our first divergence function is the Kullback–Leibler (KL) divergence.

For probability densities (or pmfs) 𝑓 and 𝑔 it is defined by

𝐷𝐾𝐿(𝑓‖𝑔) = 𝐾𝐿(𝑓, 𝑔) = ∫ 𝑓(𝑥) log 𝑓(𝑥)
𝑔(𝑥) 𝑑𝑥.

We can interpret 𝐷𝐾𝐿(𝑓‖𝑔) as the expected excess log loss (expected excess surprisal) incurred when we use 𝑔 while the
data are generated by 𝑓 .
It has several important properties:

• Non-negativity (Gibbs’ inequality): 𝐷𝐾𝐿(𝑓‖𝑔) ≥ 0 with equality if and only if 𝑓 = 𝑔 almost everywhere.
• Asymmetry: 𝐷𝐾𝐿(𝑓‖𝑔) ≠ 𝐷𝐾𝐿(𝑔‖𝑓) in general (hence it is not a metric)
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• Information decomposition: 𝐷𝐾𝐿(𝑓‖𝑔) = 𝐻(𝑓, 𝑔) − 𝐻(𝑓), where 𝐻(𝑓, 𝑔) is the cross entropy and 𝐻(𝑓) is the
Shannon entropy of 𝑓 .

• Chain rule: For joint distributions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), 𝐷𝐾𝐿(𝑓(𝑥, 𝑦)‖𝑔(𝑥, 𝑦)) = 𝐷𝐾𝐿(𝑓(𝑥)‖𝑔(𝑥)) +
𝐸𝑓 [𝐷𝐾𝐿(𝑓(𝑦|𝑥)‖𝑔(𝑦|𝑥))]

KL divergence plays a central role in statistical inference, including model selection and hypothesis testing.

Likelihood Ratio Processes describes a link between KL divergence and the expected log likelihood ratio, and the lecture
A Problem that Stumped Milton Friedman connects it to the test performance of the sequential probability ratio test.

Let’s compute the KL divergence between our example distributions 𝑓 and 𝑔.
def compute_KL(f, g):

"""
Compute KL divergence KL(f, g) via numerical integration
"""
def integrand(w):

fw = f(w)
gw = g(w)
return fw * np.log(fw / gw)

val, _ = quad(integrand, 1e-5, 1-1e-5)
return val

# Compute KL divergences between our example distributions
kl_fg = compute_KL(f, g)
kl_gf = compute_KL(g, f)

print(f"KL(f, g) = {kl_fg:.4f}")
print(f"KL(g, f) = {kl_gf:.4f}")

KL(f, g) = 0.7590
KL(g, f) = 0.3436

The asymmetry of KL divergence has important practical implications.

𝐷𝐾𝐿(𝑓‖𝑔) penalizes regions where 𝑓 > 0 but 𝑔 is close to zero, reflecting the cost of using 𝑔 to model 𝑓 and vice versa.

21.5 Jensen-Shannon divergence

Sometimes we want a symmetric measure of divergence that captures the difference between two distributions without
favoring one over the other.

This often arises in applications like clustering, where we want to compare distributions without assuming one is the true
model.

The Jensen-Shannon (JS) divergence symmetrizes KL divergence by comparing both distributions to their mixture:

𝐽𝑆(𝑓, 𝑔) = 1
2𝐷𝐾𝐿(𝑓‖𝑚) + 1

2𝐷𝐾𝐿(𝑔‖𝑚), 𝑚 = 1
2(𝑓 + 𝑔).

where 𝑚 is a mixture distribution that averages 𝑓 and 𝑔
Let’s also visualize the mixture distribution 𝑚:

def m(x):
return 0.5 * (f(x) + g(x))

(continues on next page)
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m_vals = [m(x) for x in x_range]

plt.figure(figsize=(10, 6))
plt.plot(x_range, f_vals, 'b-', linewidth=2, label=r'$f(x)$')
plt.plot(x_range, g_vals, 'r-', linewidth=2, label=r'$g(x)$')
plt.plot(x_range, m_vals, 'g--', linewidth=2, label=r'$m(x) = \frac{1}{2}(f(x) + g(x))

↪$')

plt.xlabel('x')
plt.ylabel('density')
plt.legend()
plt.show()

The JS divergence has several useful properties:

• Symmetry: 𝐽𝑆(𝑓, 𝑔) = 𝐽𝑆(𝑔, 𝑓).
• Boundedness: 0 ≤ 𝐽𝑆(𝑓, 𝑔) ≤ log 2.
• Its square root

√
𝐽𝑆 is a metric (Jensen–Shannon distance) on the space of probability distributions.

• JS divergence equals the mutual information between a binary random variable 𝑍 ∼ Bernoulli(1/2) indicating the
source and a sample 𝑋 drawn from 𝑓 if 𝑍 = 0 or from 𝑔 if 𝑍 = 1.

The Jensen–Shannon divergence plays a key role in the optimization of certain generative models, as it is bounded,
symmetric, and smoother than KL divergence, often providing more stable gradients for training.

Let’s compute the JS divergence between our example distributions 𝑓 and 𝑔
def compute_JS(f, g):

"""Compute Jensen-Shannon divergence."""
def m(w):

return 0.5 * (f(w) + g(w))
(continues on next page)
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js_div = 0.5 * compute_KL(f, m) + 0.5 * compute_KL(g, m)
return js_div

js_div = compute_JS(f, g)
print(f"Jensen-Shannon divergence JS(f,g) = {js_div:.4f}")

Jensen-Shannon divergence JS(f,g) = 0.0984

We can easily generalize to more than two distributions using the generalized Jensen-Shannon divergence with weights
𝛼 = (𝛼𝑖)𝑛

𝑖=1:

𝐽𝑆𝛼(𝑓1, … , 𝑓𝑛) = 𝐻 (
𝑛

∑
𝑖=1

𝛼𝑖𝑓𝑖) −
𝑛

∑
𝑖=1

𝛼𝑖𝐻(𝑓𝑖)

where:

• 𝛼𝑖 ≥ 0 and ∑𝑛
𝑖=1 𝛼𝑖 = 1, and

• 𝐻(𝑓) = − ∫ 𝑓(𝑥) log 𝑓(𝑥)𝑑𝑥 is the Shannon entropy of distribution 𝑓

21.6 Chernoff entropy

Chernoff entropy originates from early applications of the theory of large deviations, which refines central limit approx-
imations by providing exponential decay rates for rare events.

For densities 𝑓 and 𝑔 the Chernoff entropy is

𝐶(𝑓, 𝑔) = − log min
𝜙∈(0,1)

∫ 𝑓𝜙(𝑥)𝑔1−𝜙(𝑥) 𝑑𝑥.

Remarks:

• The inner integral is the Chernoff coefficient.

• At 𝜙 = 1/2 it becomes the Bhattacharyya coefficient ∫ √𝑓𝑔.
• In binary hypothesis testing with 𝑇 iid observations, the optimal error probability decays as 𝑒−𝐶(𝑓,𝑔)𝑇 .

We will see an example of the third point in the lecture Likelihood Ratio Processes, where we study the Chernoff entropy
in the context of model selection.

Let’s compute the Chernoff entropy between our example distributions 𝑓 and 𝑔.
def chernoff_integrand(ϕ, f, g):

"""Integral entering Chernoff entropy for a given ϕ."""
def integrand(w):

return f(w)**ϕ * g(w)**(1-ϕ)
result, _ = quad(integrand, 1e-5, 1-1e-5)
return result

def compute_chernoff_entropy(f, g):
"""Compute Chernoff entropy C(f,g)."""
def objective(ϕ):

return chernoff_integrand(ϕ, f, g)
result = minimize_scalar(objective, bounds=(1e-5, 1-1e-5), method='bounded')
min_value = result.fun

(continues on next page)

21.6. Chernoff entropy 379

https://en.wikipedia.org/wiki/Large_deviations_theory


Intermediate Quantitative Economics with Python

(continued from previous page)

ϕ_optimal = result.x
chernoff_entropy = -np.log(min_value)
return chernoff_entropy, ϕ_optimal

C_fg, ϕ_optimal = compute_chernoff_entropy(f, g)
print(f"Chernoff entropy C(f,g) = {C_fg:.4f}")
print(f"Optimal ϕ = {ϕ_optimal:.4f}")

Chernoff entropy C(f,g) = 0.1212
Optimal ϕ = 0.5969

21.7 Comparing divergence measures

We now compare these measures across several pairs of Beta distributions

Pair (f, g) KL(f, g) KL(g, f) JS C
Beta(1, 1),Beta(1.1, 1.05) 0.0028 0.0026 0.0007 0.0007
Beta(1, 1),Beta(1.2, 1.1) 0.0105 0.0092 0.0024 0.0025
Beta(1, 1),Beta(0.9, 0.8) 0.0143 0.0166 0.0038 0.0039
Beta(1, 1),Beta(1.5, 1.2) 0.0589 0.0437 0.0121 0.0126
Beta(1, 1),Beta(0.7, 0.6) 0.0673 0.0924 0.0186 0.0201
Beta(1, 1),Beta(2, 1.5) 0.1781 0.1081 0.0309 0.0339
Beta(1, 1),Beta(0.5, 0.5) 0.1448 0.2190 0.0400 0.0461
Beta(1, 1),Beta(2.5, 1.8) 0.3323 0.1731 0.0502 0.0577
Beta(1, 1),Beta(0.3, 0.4) 0.3317 0.5572 0.0869 0.1203
Beta(1, 1),Beta(3, 1.2) 0.7590 0.3436 0.0984 0.1212
Beta(1, 1),Beta(0.3, 0.3) 0.3935 0.6516 0.1008 0.1456
Beta(1, 1),Beta(4, 1) 1.6134 0.6362 0.1733 0.2341
Beta(1, 1),Beta(0.1, 0.2) 0.9811 1.0036 0.1783 0.4556
Beta(1, 1),Beta(5, 1) 2.3901 0.8094 0.2162 0.3128

We can clearly see co-movement across the divergence measures as we vary the parameters of the Beta distributions.

Next we visualize relationships among KL, JS, and Chernoff entropy.

kl_fg_values = [float(result['KL(f, g)']) for result in results]
js_values = [float(result['JS']) for result in results]
chernoff_values = [float(result['C']) for result in results]

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

axes[0].scatter(kl_fg_values, js_values, alpha=0.7, s=60)
axes[0].set_xlabel('KL divergence KL(f, g)')
axes[0].set_ylabel('JS divergence')
axes[0].set_title('JS divergence vs KL divergence')

axes[1].scatter(js_values, chernoff_values, alpha=0.7, s=60)
axes[1].set_xlabel('JS divergence')
axes[1].set_ylabel('Chernoff entropy')
axes[1].set_title('Chernoff entropy vs JS divergence')

(continues on next page)
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plt.tight_layout()
plt.show()

We now generate plots illustrating how overlap visually diminishes as divergence measures increase.

param_grid = [
((1, 1), (1, 1)),
((1, 1), (1.5, 1.2)),
((1, 1), (2, 1.5)),
((1, 1), (3, 1.2)),
((1, 1), (0.3, 0.3)),
((1, 1), (5, 1))

]
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21.8 KL divergence and maximum-likelihood estimation

Given a sample of 𝑛 observations 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, the empirical distribution is

𝑝𝑒(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝛿(𝑥 − 𝑥𝑖)

where 𝛿(𝑥 − 𝑥𝑖) is the Dirac delta function centered at 𝑥𝑖:

𝛿(𝑥 − 𝑥𝑖) = {+∞ if 𝑥 = 𝑥𝑖
0 if 𝑥 ≠ 𝑥𝑖

• Discrete probability measure: Assigns probability 1
𝑛 to each observed data point

• Empirical expectation: ⟨𝑋⟩𝑝𝑒
= 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖 = ̄𝜇

• Support: Only on the observed data points {𝑥1, 𝑥2, … , 𝑥𝑛}
The KL divergence from the empirical distribution 𝑝𝑒 to a parametric model 𝑝𝜃(𝑥) is:

𝐷𝐾𝐿(𝑝𝑒 ∥ 𝑝𝜃) = ∫ 𝑝𝑒(𝑥) log 𝑝𝑒(𝑥)
𝑝𝜃(𝑥)𝑑𝑥
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Using the mathematics of the Dirac delta function, it follows that

𝐷𝐾𝐿(𝑝𝑒 ∥ 𝑝𝜃) =
𝑛

∑
𝑖=1

1
𝑛 log

( 1
𝑛 )

𝑝𝜃(𝑥𝑖)

= 1
𝑛

𝑛
∑
𝑖=1

log
1
𝑛 − 1

𝑛
𝑛

∑
𝑖=1

log 𝑝𝜃(𝑥𝑖)

= − log𝑛 − 1
𝑛

𝑛
∑
𝑖=1

log 𝑝𝜃(𝑥𝑖)

Since the log-likelihood function for parameter 𝜃 is:

ℓ(𝜃; 𝑋) =
𝑛

∑
𝑖=1

log 𝑝𝜃(𝑥𝑖),

it follows that maximum likelihood chooses parameters to minimize

𝐷𝐾𝐿(𝑝𝑒 ∥ 𝑝𝜃)

Thus, MLE is equivalent to minimizing the KL divergence from the empirical distribution to the statistical model 𝑝𝜃.

21.9 Related lectures

This lecture has introduced tools that we’ll encounter elsewhere.

• Other quantecon lectures that apply connections between divergence measures and statistical inference include
Likelihood Ratio Processes, A Problem that Stumped Milton Friedman, and Incorrect Models.

• Statistical divergence functions also take center stage in Heterogeneous Beliefs and Financial Markets that studies
Lawrence Blume and David Easley’s model of heterogeneous beliefs and financial markets.
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CHAPTER

TWENTYTWO

LIKELIHOOD RATIO PROCESSES

Contents

• Likelihood Ratio Processes

– Overview

– Likelihood Ratio Process

– Nature permanently draws from density g

– Peculiar property

– Nature permanently draws from density f

– Likelihood ratio test

– Hypothesis testing and classification

– Markov chains

– Related lectures

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

22.1 Overview

This lecture describes likelihood ratio processes and some of their uses.

We’ll study the same setting that is also used in this lecture on exchangeability.

Among the things that we’ll learn are

• How a likelihood ratio process is a key ingredient in frequentist hypothesis testing

• How a receiver operator characteristic curve summarizes information about a false alarm probability and power
in frequentist hypothesis testing

• How a statistician can combine frequentist probabilities of type I and type II errors to form posterior probabilities
of mistakes in a model selection or in an individual-classification problem
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• How to use a Kullback-Leibler divergence to quantify the difference between two probability distributions with the
same support

• How during World War II the United States Navy devised a decision rule for doing quality control on lots of
ammunition, a topic that sets the stage for this lecture

• A peculiar property of likelihood ratio processes

Let’s start by importing some Python tools.

import matplotlib.pyplot as plt
import numpy as np
from numba import vectorize, jit
from math import gamma
from scipy.integrate import quad
from scipy.optimize import brentq, minimize_scalar
from scipy.stats import beta as beta_dist
import pandas as pd
from IPython.display import display, Math
import quantecon as qe

22.2 Likelihood Ratio Process

A nonnegative random variable 𝑊 has one of two probability density functions, either 𝑓 or 𝑔.
Before the beginning of time, nature once and for all decides whether she will draw a sequence of IID draws from either
𝑓 or 𝑔.
We let 𝑞 be the density that nature chose once and for all, so that 𝑞 is either 𝑓 or 𝑔, permanently.
Nature knows which density it permanently draws from, but we the observers do not.

We know both 𝑓 and 𝑔 but we don’t know which density nature chose.

But we want to know.

To do that, we use observations.

We observe a sequence {𝑤𝑡}𝑇
𝑡=1 of 𝑇 IID draws that we know came from either 𝑓 or 𝑔.

We want to use these observations to infer whether nature chose 𝑓 or 𝑔.
A likelihood ratio process is a useful tool for this task.

To begin, we define a key component of a likelihood ratio process, namely, the time 𝑡 likelihood ratio as the random
variable

ℓ(𝑤𝑡) = 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

, 𝑡 ≥ 1.

We assume that 𝑓 and 𝑔 both put positive probabilities on the same intervals of possible realizations of the random variable
𝑊 .

That means that under the 𝑔 density, ℓ(𝑤𝑡) = 𝑓(𝑤𝑡)
𝑔(𝑤𝑡) is a nonnegative random variable with mean 1.

A likelihood ratio process for sequence {𝑤𝑡}
∞
𝑡=1 is defined as

𝐿 (𝑤𝑡) =
𝑡

∏
𝑖=1

ℓ(𝑤𝑖),

where 𝑤𝑡 = {𝑤1, … , 𝑤𝑡} is a history of observations up to and including time 𝑡.
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Sometimes for shorthand we’ll write 𝐿𝑡 = 𝐿(𝑤𝑡).
Notice that the likelihood process satisfies the recursion

𝐿(𝑤𝑡) = ℓ(𝑤𝑡)𝐿(𝑤𝑡−1).

The likelihood ratio and its logarithm are key tools for making inferences using a classic frequentist approach due to
Neyman and Pearson [Neyman and Pearson, 1933].

To help us appreciate how things work, the following Python code evaluates 𝑓 and 𝑔 as two different Beta distributions,
then computes and simulates an associated likelihood ratio process by generating a sequence 𝑤𝑡 from one of the two
probability distributions, for example, a sequence of IID draws from 𝑔.
# Parameters for the two Beta distributions
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):

"""Beta distribution density function."""
r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x** (a-1) * (1 - x) ** (b-1)

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

def create_beta_density(a, b):
"""Create a beta density function with specified parameters."""
return jit(lambda x: p(x, a, b))

def likelihood_ratio(w, f_func, g_func):
"""Compute likelihood ratio for observation(s) w."""
return f_func(w) / g_func(w)

@jit
def simulate_likelihood_ratios(a, b, f_func, g_func, T=50, N=500):

"""
Generate N sets of T observations of the likelihood ratio.
"""
l_arr = np.empty((N, T))
for i in range(N):

for j in range(T):
w = np.random.beta(a, b)
l_arr[i, j] = f_func(w) / g_func(w)

return l_arr

def simulate_sequences(distribution, f_func, g_func,
F_params=(1, 1), G_params=(3, 1.2), T=50, N=500):

"""
Generate N sequences of T observations from specified distribution.
"""
if distribution == 'f':

a, b = F_params
elif distribution == 'g':

a, b = G_params
else:

raise ValueError("distribution must be 'f' or 'g'")

l_arr = simulate_likelihood_ratios(a, b, f_func, g_func, T, N)

(continues on next page)
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l_seq = np.cumprod(l_arr, axis=1)
return l_arr, l_seq

def plot_likelihood_paths(l_seq, title="Likelihood ratio paths",
ylim=None, n_paths=None):

"""Plot likelihood ratio paths."""
N, T = l_seq.shape
n_show = n_paths or min(N, 100)

plt.figure(figsize=(10, 6))
for i in range(n_show):

plt.plot(range(T), l_seq[i, :], color='b', lw=0.8, alpha=0.5)

if ylim:
plt.ylim(ylim)

plt.title(title)
plt.xlabel('t')
plt.ylabel('$L(w^t)$')
plt.show()

22.3 Nature permanently draws from density g

We first simulate the likelihood ratio process when nature permanently draws from 𝑔.
# Simulate when nature draws from g
l_arr_g, l_seq_g = simulate_sequences('g', f, g, (F_a, F_b), (G_a, G_b))
plot_likelihood_paths(l_seq_g,

title="$L(w^{t})$ paths when nature draws from g",
ylim=[0, 3])
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Evidently, as sample length 𝑇 grows, most probability mass shifts toward zero

To see this more clearly, we plot over time the fraction of paths 𝐿 (𝑤𝑡) that fall in the interval [0, 0.01].
N, T = l_arr_g.shape
plt.plot(range(T), np.sum(l_seq_g <= 0.01, axis=0) / N)
plt.show()
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Despite the evident convergence of most probability mass to a very small interval near 0, the unconditional mean of
𝐿 (𝑤𝑡) under probability density 𝑔 is identically 1 for all 𝑡.
To verify this assertion, first notice that as mentioned earlier the unconditional mean 𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔] is 1 for all 𝑡:

𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔] = ∫ 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

𝑔 (𝑤𝑡) 𝑑𝑤𝑡

= ∫ 𝑓 (𝑤𝑡) 𝑑𝑤𝑡

= 1,

which immediately implies

𝐸 [𝐿 (𝑤1) ∣ 𝑞 = 𝑔] = 𝐸 [ℓ (𝑤1) ∣ 𝑞 = 𝑔]
= 1.

Because 𝐿(𝑤𝑡) = ℓ(𝑤𝑡)𝐿(𝑤𝑡−1) and {𝑤𝑡}𝑡
𝑡=1 is an IID sequence, we have

𝐸 [𝐿 (𝑤𝑡) ∣ 𝑞 = 𝑔] = 𝐸 [𝐿 (𝑤𝑡−1) ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔]
= 𝐸 [𝐿 (𝑤𝑡−1) 𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔, 𝑤𝑡−1] ∣ 𝑞 = 𝑔]
= 𝐸 [𝐿 (𝑤𝑡−1) 𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔] ∣ 𝑞 = 𝑔]
= 𝐸 [𝐿 (𝑤𝑡−1) ∣ 𝑞 = 𝑔]

for any 𝑡 ≥ 1.
Mathematical induction implies 𝐸 [𝐿 (𝑤𝑡) ∣ 𝑞 = 𝑔] = 1 for all 𝑡 ≥ 1.
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22.4 Peculiar property

How can 𝐸 [𝐿 (𝑤𝑡) ∣ 𝑞 = 𝑔] = 1 possibly be true when most probability mass of the likelihood ratio process is piling up
near 0 as 𝑡 → +∞?

The answer is that as 𝑡 → +∞, the distribution of 𝐿𝑡 becomes more and more fat-tailed: enough mass shifts to larger
and larger values of 𝐿𝑡 to make the mean of 𝐿𝑡 continue to be one despite most of the probability mass piling up near 0.
To illustrate this peculiar property, we simulate many paths and calculate the unconditional mean of 𝐿 (𝑤𝑡) by averaging
across these many paths at each 𝑡.
l_arr_g, l_seq_g = simulate_sequences('g',

f, g, (F_a, F_b), (G_a, G_b), N=50000)

It would be useful to use simulations to verify that unconditional means𝐸 [𝐿 (𝑤𝑡)] equal unity by averaging across sample
paths.

But it would be too computer-time-consuming for us to do that here simply by applying a standardMonte Carlo simulation
approach.

The reason is that the distribution of 𝐿 (𝑤𝑡) is extremely skewed for large values of 𝑡.
Because the probability density in the right tail is close to 0, it just takes too much computer time to sample enough points
from the right tail.

We explain the problem in more detail in this lecture.

There we describe an alternative way to compute the mean of a likelihood ratio by computing the mean of a different
random variable by sampling from a different probability distribution.

22.5 Nature permanently draws from density f

Now suppose that before time 0 nature permanently decided to draw repeatedly from density 𝑓 .
While the mean of the likelihood ratio ℓ (𝑤𝑡) under density 𝑔 is 1, its mean under the density 𝑓 exceeds one.

To see this, we compute

𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑓] = ∫ 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

𝑓 (𝑤𝑡) 𝑑𝑤𝑡

= ∫ 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

𝑔 (𝑤𝑡) 𝑑𝑤𝑡

= ∫ ℓ (𝑤𝑡)
2 𝑔 (𝑤𝑡) 𝑑𝑤𝑡

= 𝐸 [ℓ (𝑤𝑡)
2 ∣ 𝑞 = 𝑔]

= 𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔]2 + 𝑉 𝑎𝑟 (ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔)
> 𝐸 [ℓ (𝑤𝑡) ∣ 𝑞 = 𝑔]2 = 1

This in turn implies that the unconditional mean of the likelihood ratio process 𝐿(𝑤𝑡) diverges toward +∞.

Simulations below confirm this conclusion.

Please note the scale of the 𝑦 axis.
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# Simulate when nature draws from f
l_arr_f, l_seq_f = simulate_sequences('f', f, g,

(F_a, F_b), (G_a, G_b), N=50000)

N, T = l_arr_f.shape
plt.plot(range(T), np.mean(l_seq_f, axis=0))
plt.show()

We also plot the probability that 𝐿 (𝑤𝑡) falls into the interval [10000, ∞) as a function of time and watch how fast
probability mass diverges to +∞.

plt.plot(range(T), np.sum(l_seq_f > 10000, axis=0) / N)
plt.show()
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22.6 Likelihood ratio test

We now describe how to employ the machinery of Neyman and Pearson [Neyman and Pearson, 1933] to test the hypoth-
esis that history 𝑤𝑡 is generated by repeated IID draws from density 𝑓 .
Denote 𝑞 as the data generating process, so that 𝑞 = 𝑓 or 𝑔.
Upon observing a sample {𝑊𝑖}𝑡

𝑖=1, we want to decide whether nature is drawing from 𝑔 or from 𝑓 by performing a
(frequentist) hypothesis test.

We specify

• Null hypothesis 𝐻0: 𝑞 = 𝑓 ,
• Alternative hypothesis 𝐻1: 𝑞 = 𝑔.

Neyman and Pearson proved that the best way to test this hypothesis is to use a likelihood ratio test that takes the form:

• accept 𝐻0 if 𝐿(𝑊 𝑡) > 𝑐,
• reject 𝐻0 if 𝐿(𝑊 𝑡) < 𝑐,

where 𝑐 is a given discrimination threshold.
Setting 𝑐 = 1 is a common choice.
We’ll discuss consequences of other choices of 𝑐 below.
This test is best in the sense that it is uniformly most powerful.

To understand what this means, we have to define probabilities of two important events that allow us to characterize a
test associated with a given threshold 𝑐.
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The two probabilities are:

• Probability of a Type I error in which we reject 𝐻0 when it is true:

𝛼 ≡ Pr {𝐿 (𝑤𝑡) < 𝑐 ∣ 𝑞 = 𝑓}

• Probability of a Type II error in which we accept 𝐻0 when it is false:

𝛽 ≡ Pr {𝐿 (𝑤𝑡) > 𝑐 ∣ 𝑞 = 𝑔}

These two probabilities underlie the following two concepts:

• Probability of false alarm (= significance level = probability of Type I error):

𝛼 ≡ Pr {𝐿 (𝑤𝑡) < 𝑐 ∣ 𝑞 = 𝑓}

• Probability of detection (= power = 1 minus probability of Type II error):

1 − 𝛽 ≡ Pr {𝐿 (𝑤𝑡) < 𝑐 ∣ 𝑞 = 𝑔}

The Neyman-Pearson Lemma states that among all possible tests, a likelihood ratio test maximizes the probability of
detection for a given probability of false alarm.

Another way to say the same thing is that among all possible tests, a likelihood ratio test maximizes power for a given
significance level.

We want a small probability of false alarm and a large probability of detection.

With sample size 𝑡 fixed, we can change our two probabilities by adjusting 𝑐.
A troublesome “that’s life” fact is that these two probabilities move in the same direction as we vary the critical value 𝑐.
Without specifying quantitative losses from making Type I and Type II errors, there is little that we can say about how
we should trade off probabilities of the two types of mistakes.

We do know that increasing sample size 𝑡 improves statistical inference.
Below we plot some informative figures that illustrate this.

We also present a classical frequentist method for choosing a sample size 𝑡.
Let’s start with a case in which we fix the threshold 𝑐 at 1.
c = 1

Below we plot empirical distributions of logarithms of the cumulative likelihood ratios simulated above, which are gen-
erated by either 𝑓 or 𝑔.
Taking logarithms has no effect on calculating the probabilities because the log is a monotonic transformation.

As 𝑡 increases, the probabilities of making Type I and Type II errors both decrease, which is good.
This is because most of the probability mass of log(𝐿(𝑤𝑡)) moves toward −∞ when 𝑔 is the data generating process,
while log(𝐿(𝑤𝑡)) goes to ∞ when data are generated by 𝑓 .
That disparate behavior of log(𝐿(𝑤𝑡)) under 𝑓 and 𝑔 is what makes it possible eventually to distinguish 𝑞 = 𝑓 from
𝑞 = 𝑔.
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def plot_log_histograms(l_seq_f, l_seq_g, c=1, time_points=[1, 7, 14, 21]):
"""Plot log likelihood ratio histograms."""
fig, axs = plt.subplots(2, 2, figsize=(12, 8))

for i, t in enumerate(time_points):
nr, nc = i // 2, i % 2

axs[nr, nc].axvline(np.log(c), color="k", ls="--")

hist_f, x_f = np.histogram(np.log(l_seq_f[:, t]), 200, density=True)
hist_g, x_g = np.histogram(np.log(l_seq_g[:, t]), 200, density=True)

axs[nr, nc].plot(x_f[1:], hist_f, label="dist under f")
axs[nr, nc].plot(x_g[1:], hist_g, label="dist under g")

# Fill error regions
for j, (x, hist, label) in enumerate(

zip([x_f, x_g], [hist_f, hist_g],
["Type I error", "Type II error"])):
ind = x[1:] <= np.log(c) if j == 0 else x[1:] > np.log(c)
axs[nr, nc].fill_between(x[1:][ind], hist[ind],

alpha=0.5, label=label)

axs[nr, nc].legend()
axs[nr, nc].set_title(f"t={t}")

plt.show()

plot_log_histograms(l_seq_f, l_seq_g, c=c)
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In the above graphs,

• the blue areas are related to but not equal to probabilities 𝛼 of a type I error because they are integrals of log𝐿𝑡,
not integrals of 𝐿𝑡, over rejection region 𝐿𝑡 < 1

• the orange areas are related to but not equal to probabilities 𝛽 of a type II error because they are integrals of log𝐿𝑡,
not integrals of 𝐿𝑡, over acceptance region 𝐿𝑡 > 1

When we hold 𝑐 fixed at 𝑐 = 1, the following graph shows that
• the probability of detection monotonically increases with increases in 𝑡
• the probability of a false alarm monotonically decreases with increases in 𝑡.

def compute_error_probabilities(l_seq_f, l_seq_g, c=1):
"""
Compute Type I and Type II error probabilities.
"""
N, T = l_seq_f.shape

# Type I error (false alarm) - reject H0 when true
PFA = np.array([np.sum(l_seq_f[:, t] < c) / N for t in range(T)])

# Type II error - accept H0 when false
beta = np.array([np.sum(l_seq_g[:, t] >= c) / N for t in range(T)])

# Probability of detection (power)
PD = np.array([np.sum(l_seq_g[:, t] < c) / N for t in range(T)])

return {
'alpha': PFA,
'beta': beta,
'PD': PD,
'PFA': PFA

}

def plot_error_probabilities(error_dict, T, c=1, title_suffix=""):
"""Plot error probabilities over time."""
plt.figure(figsize=(10, 6))
plt.plot(range(T), error_dict['PD'], label="Probability of detection")
plt.plot(range(T), error_dict['PFA'], label="Probability of false alarm")
plt.xlabel("t")
plt.ylabel("Probability")
plt.title(f"Error Probabilities (c={c}){title_suffix}")
plt.legend()
plt.show()

error_probs = compute_error_probabilities(l_seq_f, l_seq_g, c=c)
N, T = l_seq_f.shape
plot_error_probabilities(error_probs, T, c)
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For a given sample size 𝑡, the threshold 𝑐 uniquely pins down probabilities of both types of error.
If for a fixed 𝑡 we now free up and move 𝑐, we will sweep out the probability of detection as a function of the probability
of false alarm.

This produces a receiver operating characteristic curve (ROC curve).

Below, we plot receiver operating characteristic curves for different sample sizes 𝑡.
def plot_roc_curves(l_seq_f, l_seq_g, t_values=[1, 5, 9, 13], N=None):

"""Plot ROC curves for different sample sizes."""
if N is None:

N = l_seq_f.shape[0]

PFA = np.arange(0, 100, 1)

plt.figure(figsize=(10, 6))
for t in t_values:

percentile = np.percentile(l_seq_f[:, t], PFA)
PD = [np.sum(l_seq_g[:, t] < p) / N for p in percentile]
plt.plot(PFA / 100, PD, label=f"t={t}")

plt.scatter(0, 1, label="perfect detection")
plt.plot([0, 1], [0, 1], color='k', ls='--', label="random detection")

plt.arrow(0.5, 0.5, -0.15, 0.15, head_width=0.03)
plt.text(0.35, 0.7, "better")
plt.xlabel("Probability of false alarm")
plt.ylabel("Probability of detection")
plt.legend()
plt.title("ROC Curve")
plt.show()

(continues on next page)
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(continued from previous page)

plot_roc_curves(l_seq_f, l_seq_g, t_values=range(1, 15, 4), N=N)

Notice that as 𝑡 increases, we are assured a larger probability of detection and a smaller probability of false alarm asso-
ciated with a given discrimination threshold 𝑐.
For a given sample size 𝑡, both 𝛼 and 𝛽 change as we vary 𝑐.
As we increase 𝑐

• 𝛼 ≡ Pr {𝐿 (𝑤𝑡) < 𝑐 ∣ 𝑞 = 𝑓} increases
• 𝛽 ≡ Pr {𝐿 (𝑤𝑡) > 𝑐 ∣ 𝑞 = 𝑔} decreases

As 𝑡 → +∞, we approach the perfect detection curve that is indicated by a right angle hinging on the blue dot.

For a given sample size 𝑡, the discrimination threshold 𝑐 determines a point on the receiver operating characteristic curve.
It is up to the test designer to trade off probabilities of making the two types of errors.

But we know how to choose the smallest sample size to achieve given targets for the probabilities.

Typically, frequentists aim for a high probability of detection that respects an upper bound on the probability of false
alarm.

Below we show an example in which we fix the probability of false alarm at 0.05.
The required sample size for making a decision is then determined by a target probability of detection, for example, 0.9,
as depicted in the following graph.

PFA = 0.05
PD = np.empty(T)

(continues on next page)
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(continued from previous page)

for t in range(T):

c = np.percentile(l_seq_f[:, t], PFA * 100)
PD[t] = np.sum(l_seq_g[:, t] < c) / N

plt.plot(range(T), PD)
plt.axhline(0.9, color="k", ls="--")

plt.xlabel("t")
plt.ylabel("Probability of detection")
plt.title(f"Probability of false alarm={PFA}")
plt.show()

The United States Navy evidently used a procedure like this to select a sample size 𝑡 for doing quality control tests during
World War II.

A Navy Captain who had been ordered to perform tests of this kind had doubts about it that he presented to Milton
Friedman, as we describe in this lecture.
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22.6.1 A third distribution ℎ

Now let’s consider a case in which neither 𝑔 nor 𝑓 generates the data.

Instead, a third distribution ℎ does.

Let’s study how accumulated likelihood ratios 𝐿 behave when ℎ governs the data.

A key tool here is called Kullback–Leibler divergence we studied in Statistical Divergence Measures.

In our application, we want to measure how much 𝑓 or 𝑔 diverges from ℎ
Two Kullback–Leibler divergences pertinent for us are 𝐾𝑓 and 𝐾𝑔 defined as

𝐾𝑓 = 𝐷𝐾𝐿(ℎ‖𝑓) = 𝐾𝐿(ℎ, 𝑓) = 𝐸ℎ [log ℎ(𝑤)
𝑓(𝑤)]

= ∫ log(ℎ(𝑤)
𝑓(𝑤)) ℎ(𝑤)𝑑𝑤.

𝐾𝑔 = 𝐷𝐾𝐿(ℎ‖𝑔) = 𝐾𝐿(ℎ, 𝑔) = 𝐸ℎ [log ℎ(𝑤)
𝑔(𝑤) ]

= ∫ log(ℎ(𝑤)
𝑔(𝑤) ) ℎ(𝑤)𝑑𝑤.

Let’s compute the Kullback–Leibler discrepancies using the same code in Statistical Divergence Measures.

def compute_KL(f, g):
"""
Compute KL divergence KL(f, g)
"""
integrand = lambda w: f(w) * np.log(f(w) / g(w))
val, _ = quad(integrand, 1e-5, 1-1e-5)
return val

def compute_KL_h(h, f, g):
"""
Compute KL divergences with respect to reference distribution h
"""
Kf = compute_KL(h, f)
Kg = compute_KL(h, g)
return Kf, Kg

22.6.2 A helpful formula

There is a mathematical relationship between likelihood ratios and KL divergence.

When data is generated by distribution ℎ, the expected log likelihood ratio is:
1
𝑡 𝐸ℎ[log𝐿𝑡] = 𝐾𝑔 − 𝐾𝑓 (22.1)

where 𝐿𝑡 = ∏𝑡
𝑗=1

𝑓(𝑤𝑗)
𝑔(𝑤𝑗) is the likelihood ratio process.

Equation (22.1) tells us that:

• When 𝐾𝑔 < 𝐾𝑓 (i.e., 𝑔 is closer to ℎ than 𝑓 is), the expected log likelihood ratio is negative, so 𝐿 (𝑤𝑡) → 0.
• When 𝐾𝑔 > 𝐾𝑓 (i.e., 𝑓 is closer to ℎ than 𝑔 is), the expected log likelihood ratio is positive, so 𝐿 (𝑤𝑡) → +∞.
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Let’s verify this using simulation.

In the simulation, we generate multiple paths using Beta distributions 𝑓 , 𝑔, and ℎ, and compute the paths of log(𝐿(𝑤𝑡)).
First, we write a function to compute the likelihood ratio process

def compute_likelihood_ratios(sequences, f, g):
"""Compute likelihood ratios and cumulative products."""
l_ratios = f(sequences) / g(sequences)
L_cumulative = np.cumprod(l_ratios, axis=1)
return l_ratios, L_cumulative

We consider three cases: (1) ℎ is closer to 𝑓 , (2) 𝑓 and 𝑔 are approximately equidistant from ℎ, and (3) ℎ is closer to 𝑔.

Note that

• In the first figure, log𝐿(𝑤𝑡) diverges to ∞ because 𝐾𝑔 > 𝐾𝑓 .

• In the second figure, we still have 𝐾𝑔 > 𝐾𝑓 , but the difference is smaller, so 𝐿(𝑤𝑡) diverges to infinity at a slower
pace.

• In the last figure, log𝐿(𝑤𝑡) diverges to −∞ because 𝐾𝑔 < 𝐾𝑓 .

• The black dotted line, 𝑡 (𝐷𝐾𝐿(ℎ‖𝑔) − 𝐷𝐾𝐿(ℎ‖𝑓)), closely fits the paths verifying (22.1).
These observations align with the theory.

In Heterogeneous Beliefs and Financial Markets, we will see an application of these ideas.
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22.7 Hypothesis testing and classification

This section discusses another application of likelihood ratio processes.

We describe how a statistician can combine frequentist probabilities of type I and type II errors in order to

• compute an anticipated frequency of selecting a wrong model based on a sample length 𝑇
• compute an anticipated error rate in a classification problem

We consider a situation in which nature generates data by mixing known densities 𝑓 and 𝑔 with known mixing parameter
𝜋−1 ∈ (0, 1) so that the random variable 𝑤 is drawn from the density

ℎ(𝑤) = 𝜋−1𝑓(𝑤) + (1 − 𝜋−1)𝑔(𝑤)

We assume that the statistician knows the densities 𝑓 and 𝑔 and also the mixing parameter 𝜋−1.

Below, we’ll set 𝜋−1 = .5, although much of the analysis would follow through with other settings of 𝜋−1 ∈ (0, 1).
We assume that 𝑓 and 𝑔 both put positive probabilities on the same intervals of possible realizations of the random variable
𝑊 .

In the simulations below, we specify that 𝑓 is a Beta(1, 1) distribution and that 𝑔 is Beta(3, 1.2) distribution.
We consider two alternative timing protocols.

• Timing protocol 1 is for the model selection problem

• Timing protocol 2 is for the individual classification problem

Timing Protocol 1: Nature flips a coin only once at time 𝑡 = −1 and with probability 𝜋−1 generates a sequence {𝑤𝑡}𝑇
𝑡=1

of IID draws from 𝑓 and with probability 1 − 𝜋−1 generates a sequence {𝑤𝑡}𝑇
𝑡=1 of IID draws from 𝑔.

Timing Protocol 2. Nature flips a coin often. At each time 𝑡 ≥ 0, nature flips a coin and with probability 𝜋−1 draws 𝑤𝑡
from 𝑓 and with probability 1 − 𝜋−1 draws 𝑤𝑡 from 𝑔.
Here is Python code that we’ll use to implement timing protocol 1 and 2

def protocol_1(π_minus_1, T, N=1000, F_params=(1, 1), G_params=(3, 1.2)):
"""
Simulate Protocol 1: Nature decides once at t=-1 which model to use.
"""
F_a, F_b = F_params
G_a, G_b = G_params

# Single coin flip for the true model
true_models_F = np.random.rand(N) < π_minus_1
sequences = np.empty((N, T))

n_f = np.sum(true_models_F)
n_g = N - n_f

if n_f > 0:
sequences[true_models_F, :] = np.random.beta(F_a, F_b, (n_f, T))

if n_g > 0:
sequences[~true_models_F, :] = np.random.beta(G_a, G_b, (n_g, T))

return sequences, true_models_F

def protocol_2(π_minus_1, T, N=1000, F_params=(1, 1), G_params=(3, 1.2)):
"""

(continues on next page)
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(continued from previous page)

Simulate Protocol 2: Nature decides at each time step which model to use.
"""
F_a, F_b = F_params
G_a, G_b = G_params

# Coin flips for each time step
true_models_F = np.random.rand(N, T) < π_minus_1
sequences = np.empty((N, T))

n_f = np.sum(true_models_F)
n_g = N * T - n_f

if n_f > 0:
sequences[true_models_F] = np.random.beta(F_a, F_b, n_f)

if n_g > 0:
sequences[~true_models_F] = np.random.beta(G_a, G_b, n_g)

return sequences, true_models_F

Remark: Under timing protocol 2, the {𝑤𝑡}𝑇
𝑡=1 is a sequence of IID draws from ℎ(𝑤). Under timing protocol 1, the

{𝑤𝑡}𝑇
𝑡=1 is not IID. It is conditionally IID – meaning that with probability 𝜋−1 it is a sequence of IID draws from

𝑓(𝑤) and with probability 1 − 𝜋−1 it is a sequence of IID draws from 𝑔(𝑤). For more about this, see this lecture about
exchangeability.

We again deploy a likelihood ratio process with time 𝑡 component being the likelihood ratio

ℓ(𝑤𝑡) = 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

, 𝑡 ≥ 1.

The likelihood ratio process for sequence {𝑤𝑡}
∞
𝑡=1 is

𝐿 (𝑤𝑡) =
𝑡

∏
𝑖=1

ℓ(𝑤𝑖),

For shorthand we’ll write 𝐿𝑡 = 𝐿(𝑤𝑡).

22.7.1 Model selection mistake probability

We first study a problem that assumes timing protocol 1.

Consider a decision maker who wants to know whether model 𝑓 or model 𝑔 governs a data set of length 𝑇 observations.

The decision makers has observed a sequence {𝑤𝑡}𝑇
𝑡=1.

On the basis of that observed sequence, a likelihood ratio test selects model 𝑓 when 𝐿𝑇 ≥ 1 and model 𝑔 when 𝐿𝑇 < 1.
When model 𝑓 generates the data, the probability that the likelihood ratio test selects the wrong model is

𝑝𝑓 = Prob(𝐿𝑇 < 1∣𝑓) = 𝛼𝑇 .

When model 𝑔 generates the data, the probability that the likelihood ratio test selects the wrong model is

𝑝𝑔 = Prob(𝐿𝑇 ≥ 1∣𝑔) = 𝛽𝑇 .

We can construct a probability that the likelihood ratio selects the wrong model by assigning a Bayesian prior probability
of 𝜋−1 = .5 that nature selects model 𝑓 then averaging 𝑝𝑓 and 𝑝𝑔 to form the Bayesian posterior probability of a detection
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error equal to

𝑝(wrong decision) = 1
2(𝛼𝑇 + 𝛽𝑇 ). (22.2)

Now let’s simulate timing protocol 1 and compute the error probabilities

def compute_protocol_1_errors(π_minus_1, T_max, N_simulations, f_func, g_func,
F_params=(1, 1), G_params=(3, 1.2)):

"""
Compute error probabilities for Protocol 1.
"""
sequences, true_models = protocol_1(

π_minus_1, T_max, N_simulations, F_params, G_params)
l_ratios, L_cumulative = compute_likelihood_ratios(sequences,

f_func, g_func)

T_range = np.arange(1, T_max + 1)

mask_f = true_models
mask_g = ~true_models

L_f = L_cumulative[mask_f, :]
L_g = L_cumulative[mask_g, :]

α_T = np.mean(L_f < 1, axis=0)
β_T = np.mean(L_g >= 1, axis=0)
error_prob = 0.5 * (α_T + β_T)

return {
'T_range': T_range,
'alpha': α_T,
'beta': β_T,
'error_prob': error_prob,
'L_cumulative': L_cumulative,
'true_models': true_models

}

The following code visualizes the error probabilities for timing protocol 1
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At T=30:
α_30 = 0.0055
β_30 = 0.0022
Model selection error probability = 0.0039

Notice how the model selection error probability approaches zero as 𝑇 grows.

22.7.2 Classification

We now consider a problem that assumes timing protocol 2.

A decision maker wants to classify components of an observed sequence {𝑤𝑡}𝑇
𝑡=1 as having been drawn from either 𝑓 or

𝑔.
The decision maker uses the following classification rule:

𝑤𝑡 is from 𝑓 if 𝑙𝑡 > 1
𝑤𝑡 is from 𝑔 if 𝑙𝑡 ≤ 1.

Under this rule, the expected misclassification rate is

𝑝(misclassification) = 1
2( ̃𝛼𝑡 + ̃𝛽𝑡) (22.3)

where ̃𝛼𝑡 = Prob(𝑙𝑡 < 1 ∣ 𝑓) and ̃𝛽𝑡 = Prob(𝑙𝑡 ≥ 1 ∣ 𝑔).
Now let’s write some code to simulate it

def compute_protocol_2_errors(π_minus_1, T_max, N_simulations, f_func, g_func,
F_params=(1, 1), G_params=(3, 1.2)):

"""
Compute error probabilities for Protocol 2.
"""
sequences, true_models = protocol_2(π_minus_1,

T_max, N_simulations, F_params, G_params)
l_ratios, _ = compute_likelihood_ratios(sequences, f_func, g_func)

T_range = np.arange(1, T_max + 1)

accuracy = np.empty(T_max)
for t in range(T_max):

predictions = (l_ratios[:, t] >= 1)
actual = true_models[:, t]
accuracy[t] = np.mean(predictions == actual)

return {
'T_range': T_range,
'accuracy': accuracy,
'l_ratios': l_ratios,
'true_models': true_models

}

Since for each 𝑡, the decision boundary is the same, the decision boundary can be computed as
root = brentq(lambda w: f(w) / g(w) - 1, 0.001, 0.999)

we can plot the distributions of 𝑓 and 𝑔 and the decision boundary
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To the left of the green vertical line 𝑔 < 𝑓 , so 𝑙𝑡 > 1; therefore a 𝑤𝑡 that falls to the left of the green line is classified as
a type 𝑓 individual.

• The shaded red area equals 𝛽 – the probability of classifying someone as a type 𝑔 individual when it is really a type
𝑓 individual.

To the right of the green vertical line 𝑔 > 𝑓 , so 𝑙𝑡 < 1; therefore a 𝑤𝑡 that falls to the right of the green line is classified
as a type 𝑔 individual.

• The shaded blue area equals 𝛼 – the probability of classifying someone as a type 𝑓 when it is really a type 𝑔
individual.

This gives us clues about how to compute the theoretical classification error probability

# Compute theoretical tilde α_t and tilde β_t
def α_integrand(w):

"""Integrand for tilde α_t = P(l_t < 1 | f)"""
return f(w) if f(w) / g(w) < 1 else 0

def β_integrand(w):
"""Integrand for tilde β_t = P(l_t >= 1 | g)"""
return g(w) if f(w) / g(w) >= 1 else 0

(continues on next page)
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(continued from previous page)

# Compute the integrals
α_theory, _ = quad(α_integrand, 0, 1, limit=100)
β_theory, _ = quad(β_integrand, 0, 1, limit=100)

theory_error = 0.5 * (α_theory + β_theory)

print(f"theoretical tilde α_t = {α_theory:.4f}")
print(f"theoretical tilde β_t = {β_theory:.4f}")
print(f"theoretical classification error probability = {theory_error:.4f}")

theoretical tilde α_t = 0.4752
theoretical tilde β_t = 0.1836
theoretical classification error probability = 0.3294

Now we simulate timing protocol 2 and compute the classification error probability.

In the next cell, we also compare the theoretical classification accuracy to the empirical classification accuracy

def analyze_protocol_2(π_minus_1, T_max, N_simulations, f_func, g_func,
theory_error=None, F_params=(1, 1), G_params=(3, 1.2)):

"""Analyze Protocol 2."""
result = compute_protocol_2_errors(π_minus_1, T_max, N_simulations,

f_func, g_func, F_params, G_params)

# Plot results
plt.figure(figsize=(10, 6))
plt.plot(result['T_range'], result['accuracy'],

'b-', linewidth=2, label='empirical accuracy')

if theory_error is not None:
plt.axhline(1 - theory_error, color='r', linestyle='--',

label=f'theoretical accuracy = {1 - theory_error:.4f}')

plt.xlabel('$t$')
plt.ylabel('accuracy')
plt.legend()
plt.ylim(0.5, 1.0)
plt.show()

return result

# Analyze Protocol 2
result_p2 = analyze_protocol_2(π_minus_1, T_max, N_simulations, f, g,

theory_error, (F_a, F_b), (G_a, G_b))
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Let’s watch decisions made by the two timing protocols as more and more observations accrue.

def compare_protocols(result1, result2):
"""Compare results from both protocols."""
plt.figure(figsize=(10, 6))

plt.plot(result1['T_range'], result1['error_prob'], linewidth=2,
label='Protocol 1 (Model Selection)')

plt.plot(result2['T_range'], 1 - result2['accuracy'],
linestyle='--', linewidth=2,
label='Protocol 2 (classification)')

plt.xlabel('$T$')
plt.ylabel('error probability')
plt.legend()
plt.show()

compare_protocols(result_p1, result_p2)
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From the figure above, we can see:

• For both timing protocols, the error probability starts at the same level, subject to a little randomness.

• For timing protocol 1, the error probability decreases as the sample size increases because we are making just one
decision – i.e., selecting whether 𝑓 or 𝑔 governs all individuals. More data provides better evidence.

• For timing protocol 2, the error probability remains constant because we are makingmany decisions – one classi-
fication decision for each observation.

Remark: Think about how laws of large numbers are applied to compute error probabilities for the model selection
problem and the classification problem.

22.7.3 Error probability and divergence measures

A plausible guess is that the ability of a likelihood ratio to distinguish distributions 𝑓 and 𝑔 depends on how “different”
they are.

We have learnt some measures of “difference” between distributions in Statistical Divergence Measures.

Let’s now study two more measures of “difference” between distributions that are useful in the context of model selection
and classification.

Recall that Chernoff entropy between probability densities 𝑓 and 𝑔 is defined as:

𝐶(𝑓, 𝑔) = − log min
𝜙∈(0,1)

∫ 𝑓𝜙(𝑥)𝑔1−𝜙(𝑥)𝑑𝑥

An upper bound on model selection error probability is

𝑒−𝐶(𝑓,𝑔)𝑇 .

Let’s compute Chernoff entropy numerically with some Python code
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def chernoff_integrand(ϕ, f, g):
"""
Compute the integrand for Chernoff entropy
"""
def integrand(w):

return f(w)**ϕ * g(w)**(1-ϕ)

result, _ = quad(integrand, 1e-5, 1-1e-5)
return result

def compute_chernoff_entropy(f, g):
"""
Compute Chernoff entropy C(f,g)
"""
def objective(ϕ):

return chernoff_integrand(ϕ, f, g)

# Find the minimum over ϕ in (0,1)
result = minimize_scalar(objective,

bounds=(1e-5, 1-1e-5),
method='bounded')

min_value = result.fun
ϕ_optimal = result.x

chernoff_entropy = -np.log(min_value)
return chernoff_entropy, ϕ_optimal

C_fg, ϕ_optimal = compute_chernoff_entropy(f, g)
print(f"Chernoff entropy C(f,g) = {C_fg:.4f}")
print(f"Optimal ϕ = {ϕ_optimal:.4f}")

Chernoff entropy C(f,g) = 0.1212
Optimal ϕ = 0.5969

Now let’s examine how 𝑒−𝐶(𝑓,𝑔)𝑇 behaves as a function of 𝑇 and compare it to the model selection error probability

T_range = np.arange(1, T_max+1)
chernoff_bound = np.exp(-C_fg * T_range)

# Plot comparison
fig, ax = plt.subplots(figsize=(10, 6))

ax.semilogy(T_range, chernoff_bound, 'r-', linewidth=2,
label=f'$e^{{-C(f,g)T}}$')

ax.semilogy(T_range, result_p1['error_prob'], 'b-', linewidth=2,
label='Model selection error probability')

ax.set_xlabel('T')
ax.set_ylabel('error probability (log scale)')
ax.legend()
plt.tight_layout()
plt.show()
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Evidently, 𝑒−𝐶(𝑓,𝑔)𝑇 is an upper bound on the error rate.

In {doc}divergence_measures`, we also studied Jensen-Shannon divergence as a symmetric measure of distance be-
tween distributions.

We can use Jensen-Shannon divergence tomeasure the distance between distributions 𝑓 and 𝑔 and compute how it covaries
with the model selection error probability.

We also compute Jensen-Shannon divergence numerically with some Python code

def compute_JS(f, g):
"""
Compute Jensen-Shannon divergence
"""
def m(w):

return 0.5 * (f(w) + g(w))

js_div = 0.5 * compute_KL(f, m) + 0.5 * compute_KL(g, m)
return js_div

Now let’s return to our guess that the error probability at large sample sizes is related to the Chernoff entropy between
two distributions.

We verify this by computing the correlation between the log of the error probability at 𝑇 = 50 under Timing Protocol 1
and the divergence measures.

In the simulation below, nature draws 𝑁/2 sequences from 𝑔 and 𝑁/2 sequences from 𝑓 .

Note

Nature does this rather than flipping a fair coin to decide whether to draw from 𝑔 or 𝑓 once and for all before each
simulation of length 𝑇 .
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We use the following pairs of Beta distributions for 𝑓 and 𝑔 as test cases
distribution_pairs = [

# (f_params, g_params)
((1, 1), (0.1, 0.2)),
((1, 1), (0.3, 0.3)),
((1, 1), (0.3, 0.4)),
((1, 1), (0.5, 0.5)),
((1, 1), (0.7, 0.6)),
((1, 1), (0.9, 0.8)),
((1, 1), (1.1, 1.05)),
((1, 1), (1.2, 1.1)),
((1, 1), (1.5, 1.2)),
((1, 1), (2, 1.5)),
((1, 1), (2.5, 1.8)),
((1, 1), (3, 1.2)),
((1, 1), (4, 1)),
((1, 1), (5, 1))

]

Now let’s run the simmulation

# Parameters for simulation
T_large = 50
N_sims = 5000
N_half = N_sims // 2

# Initialize arrays
n_pairs = len(distribution_pairs)
kl_fg_vals = np.zeros(n_pairs)
kl_gf_vals = np.zeros(n_pairs)
js_vals = np.zeros(n_pairs)
chernoff_vals = np.zeros(n_pairs)
error_probs = np.zeros(n_pairs)
pair_names = []

for i, ((f_a, f_b), (g_a, g_b)) in enumerate(distribution_pairs):
# Create density functions
f = jit(lambda x, a=f_a, b=f_b: p(x, a, b))
g = jit(lambda x, a=g_a, b=g_b: p(x, a, b))

# Compute divergence measures
kl_fg_vals[i] = compute_KL(f, g)
kl_gf_vals[i] = compute_KL(g, f)
js_vals[i] = compute_JS(f, g)
chernoff_vals[i], _ = compute_chernoff_entropy(f, g)

# Generate samples
sequences_f = np.random.beta(f_a, f_b, (N_half, T_large))
sequences_g = np.random.beta(g_a, g_b, (N_half, T_large))

# Compute likelihood ratios and cumulative products
_, L_cumulative_f = compute_likelihood_ratios(sequences_f, f, g)
_, L_cumulative_g = compute_likelihood_ratios(sequences_g, f, g)

# Get final values
L_cumulative_f = L_cumulative_f[:, -1]
L_cumulative_g = L_cumulative_g[:, -1]

(continues on next page)
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# Calculate error probabilities
error_probs[i] = 0.5 * (np.mean(L_cumulative_f < 1) +

np.mean(L_cumulative_g >= 1))
pair_names.append(f"Beta({f_a},{f_b}) and Beta({g_a},{g_b})")

cor_data = {
'kl_fg': kl_fg_vals,
'kl_gf': kl_gf_vals,
'js': js_vals,
'chernoff': chernoff_vals,
'error_prob': error_probs,
'names': pair_names,
'T': T_large}

Now let’s visualize the correlations

Evidently, Chernoff entropy and Jensen-Shannon entropy each covary tightly with the model selection error probability.

We’ll encounter related ideas in A Problem that Stumped Milton Friedman very soon.

22.8 Markov chains

Let’s now look at a likelihood ratio process for a sequence of random variables that is not independently and identically
distributed.

Here we assume that the sequence is generated by a Markov chain on a finite state space.

We consider two𝑛-state irreducible and aperiodicMarkov chainmodels on the same state space {1, 2, … , 𝑛}with positive
transition matrices 𝑃 (𝑓), 𝑃 (𝑔) and initial distributions 𝜋(𝑓)

0 , 𝜋(𝑔)
0 .

We assume that nature samples from chain 𝑓 .
For a sample path (𝑥0, 𝑥1, … , 𝑥𝑇 ), let 𝑁𝑖𝑗 count transitions from state 𝑖 to 𝑗.
The likelihood process under model 𝑚 ∈ {𝑓, 𝑔} is

𝐿(𝑚)
𝑇 = 𝜋(𝑚)

0,𝑥0

𝑛
∏
𝑖=1

𝑛
∏
𝑗=1

(𝑃 (𝑚)
𝑖𝑗 )

𝑁𝑖𝑗
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Hence,

log𝐿(𝑚)
𝑇 = log𝜋(𝑚)

0,𝑥0
+ ∑

𝑖,𝑗
𝑁𝑖𝑗 log𝑃 (𝑚)

𝑖𝑗

The log-likelihood ratio is

log
𝐿(𝑓)

𝑇
𝐿(𝑔)

𝑇
= log

𝜋(𝑓)
0,𝑥0

𝜋(𝑔)
0,𝑥0

+ ∑
𝑖,𝑗

𝑁𝑖𝑗 log
𝑃 (𝑓)

𝑖𝑗

𝑃 (𝑔)
𝑖𝑗

(22.4)

22.8.1 KL divergence rate

By the ergodic theorem for irreducible, aperiodic Markov chains, we have

𝑁𝑖𝑗
𝑇

𝑎.𝑠.−−→ 𝜋(𝑓)
𝑖 𝑃 (𝑓)

𝑖𝑗 as 𝑇 → ∞

where 𝜋(𝑓) is the stationary distribution satisfying 𝜋(𝑓) = 𝜋(𝑓)𝑃 (𝑓).

Therefore,

1
𝑇 log

𝐿(𝑓)
𝑇

𝐿(𝑔)
𝑇

= 1
𝑇 log

𝜋(𝑓)
0,𝑥0

𝜋(𝑔)
0,𝑥0

+ 1
𝑇 ∑

𝑖,𝑗
𝑁𝑖𝑗 log

𝑃 (𝑓)
𝑖𝑗

𝑃 (𝑔)
𝑖𝑗

Taking the limit as 𝑇 → ∞, we have:

• The first term: 1
𝑇 log

𝜋(𝑓)
0,𝑥0

𝜋(𝑔)
0,𝑥0

→ 0

• The second term: 1
𝑇 ∑𝑖,𝑗 𝑁𝑖𝑗 log

𝑃 (𝑓)
𝑖𝑗

𝑃 (𝑔)
𝑖𝑗

𝑎.𝑠.−−→ ∑𝑖,𝑗 𝜋(𝑓)
𝑖 𝑃 (𝑓)

𝑖𝑗 log
𝑃 (𝑓)

𝑖𝑗
𝑃 (𝑔)

𝑖𝑗

Define the KL divergence rate as

ℎ𝐾𝐿(𝑓, 𝑔) =
𝑛

∑
𝑖=1

𝜋(𝑓)
𝑖

𝑛
∑
𝑗=1

𝑃 (𝑓)
𝑖𝑗 log

𝑃 (𝑓)
𝑖𝑗

𝑃 (𝑔)
𝑖𝑗⏟⏟⏟⏟⏟⏟⏟

=∶𝐾𝐿(𝑃 (𝑓)
𝑖⋅ ,𝑃 (𝑔)

𝑖⋅ )

where 𝐾𝐿(𝑃 (𝑓)
𝑖⋅ , 𝑃 (𝑔)

𝑖⋅ ) is the row-wise KL divergence.

By the ergodic theorem, we have

1
𝑇 log

𝐿(𝑓)
𝑇

𝐿(𝑔)
𝑇

𝑎.𝑠.−−→ ℎ𝐾𝐿(𝑓, 𝑔) as 𝑇 → ∞

Taking expectations and using the dominated convergence theorem, we obtain

1
𝑇 𝐸𝑓 [log 𝐿(𝑓)

𝑇
𝐿(𝑔)

𝑇
] → ℎ𝐾𝐿(𝑓, 𝑔) as 𝑇 → ∞

Here we invite readers to pause and compare this result with (22.1).

Let’s confirm this in the simulation below.
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22.8.2 Simulations

Let’s implement simulations to illustrate these concepts with a three-state Markov chain.

We start by writing functions to compute the stationary distribution and the KL divergence rate for Markov chain models.

Now let’s create an example with two different 3-state Markov chains.

We are now ready to simulate paths and visualize how likelihood ratios evolve.

We verify 1
𝑇 𝐸𝑓 [log 𝐿(𝑓)

𝑇
𝐿(𝑔)

𝑇
] = ℎ𝐾𝐿(𝑓, 𝑔) starting from the stationary distribution by plotting both the empirical average

and the line predicted by the theory

# Define example Markov chain transition matrices
P_f = np.array([[0.7, 0.2, 0.1],

[0.3, 0.5, 0.2],
[0.1, 0.3, 0.6]])

P_g = np.array([[0.5, 0.3, 0.2],
[0.2, 0.6, 0.2],
[0.2, 0.2, 0.6]])

markov_results = analyze_markov_chains(P_f, P_g)

Stationary distribution (f): [0.41176471 0.32352941 0.26470588]
Stationary distribution (g): [0.28571429 0.38095238 0.33333333]

KL divergence rate h(f, g): 0.0588
KL divergence rate h(g, f): 0.0563
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22.9 Related lectures

Likelihood processes play an important role in Bayesian learning, as described in Likelihood Ratio Processes and Bayesian
Learning and as applied in Job Search VII: Search with Learning.

Likelihood ratio processes are central to Lawrence Blume and David Easley’s answer to their question “If you’re so smart,
why aren’t you rich?” [Blume and Easley, 2006], the subject of the lectureHeterogeneous Beliefs and Financial Markets.

Likelihood ratio processes also appear in Additive and Multiplicative Functionals, which contains another illustration of
the peculiar property of likelihood ratio processes described above.

22.10 Exercises

Exercise 22.10.1

Consider the setting where nature generates data from a third density ℎ.
Let {𝑤𝑡}𝑇

𝑡=1 be IID draws from ℎ, and let 𝐿𝑡 = 𝐿(𝑤𝑡) be the likelihood ratio process defined as in the lecture.
Show that:

1
𝑡 𝐸ℎ[log𝐿𝑡] = 𝐾𝑔 − 𝐾𝑓

with finite 𝐾𝑔, 𝐾𝑓 , 𝐸ℎ| log 𝑓(𝑊)| < ∞ and 𝐸ℎ| log 𝑔(𝑊)| < ∞.

Hint: Start by expressing log𝐿𝑡 as a sum of log ℓ(𝑤𝑖) terms and compare with the definition of 𝐾𝑓 and 𝐾𝑔.

Solution to Exercise 22.10.1

Since 𝑤1, … , 𝑤𝑡 are IID draws from ℎ, we can write

log𝐿𝑡 = log
𝑡

∏
𝑖=1

ℓ(𝑤𝑖) =
𝑡

∑
𝑖=1

log ℓ(𝑤𝑖) =
𝑡

∑
𝑖=1

log
𝑓(𝑤𝑖)
𝑔(𝑤𝑖)

Taking the expectation under ℎ

𝐸ℎ[log𝐿𝑡] = 𝐸ℎ [
𝑡

∑
𝑖=1

log
𝑓(𝑤𝑖)
𝑔(𝑤𝑖)

] =
𝑡

∑
𝑖=1

𝐸ℎ [log 𝑓(𝑤𝑖)
𝑔(𝑤𝑖)

]

Since the 𝑤𝑖 are identically distributed

𝐸ℎ[log𝐿𝑡] = 𝑡 ⋅ 𝐸ℎ [log 𝑓(𝑤)
𝑔(𝑤) ]

where 𝑤 ∼ ℎ.
Therefore

1
𝑡 𝐸ℎ[log𝐿𝑡] = 𝐸ℎ [log 𝑓(𝑤)

𝑔(𝑤) ] = 𝐸ℎ[log 𝑓(𝑤)] − 𝐸ℎ[log 𝑔(𝑤)]

Now, from the definition of Kullback-Leibler divergence

𝐾𝑓 = ∫ ℎ(𝑤) log ℎ(𝑤)
𝑓(𝑤)𝑑𝑤 = 𝐸ℎ[logℎ(𝑤)] − 𝐸ℎ[log 𝑓(𝑤)]
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This gives us

𝐸ℎ[log 𝑓(𝑤)] = 𝐸ℎ[logℎ(𝑤)] − 𝐾𝑓

Similarly

𝐸ℎ[log 𝑔(𝑤)] = 𝐸ℎ[logℎ(𝑤)] − 𝐾𝑔

Substituting back

1
𝑡 𝐸ℎ[log𝐿𝑡] = 𝐸ℎ[log 𝑓(𝑤)] − 𝐸ℎ[log 𝑔(𝑤)]

= [𝐸ℎ[logℎ(𝑤)] − 𝐾𝑓 ] − [𝐸ℎ[logℎ(𝑤)] − 𝐾𝑔]
= 𝐾𝑔 − 𝐾𝑓

Exercise 22.10.2

Building on Exercise 22.10.1, use the result to explain what happens to 𝐿𝑡 as 𝑡 → ∞ in the following cases:

1. When 𝐾𝑔 > 𝐾𝑓 (i.e., 𝑓 is “closer” to ℎ than 𝑔 is)
2. When 𝐾𝑔 < 𝐾𝑓 (i.e., 𝑔 is “closer” to ℎ than 𝑓 is)

Relate your answer to the simulation results shown in this section.

Solution to Exercise 22.10.2

From Exercise 22.10.1, we know that:

1
𝑡 𝐸ℎ[log𝐿𝑡] = 𝐾𝑔 − 𝐾𝑓

Case 1: When 𝐾𝑔 > 𝐾𝑓

Here, 𝑓 is “closer” to ℎ than 𝑔 is. Since 𝐾𝑔 − 𝐾𝑓 > 0

𝐸ℎ[log𝐿𝑡] = 𝑡 ⋅ (𝐾𝑔 − 𝐾𝑓) → +∞ as 𝑡 → ∞

By the Law of Large Numbers, 1
𝑡 log𝐿𝑡 → 𝐾𝑔 − 𝐾𝑓 > 0 almost surely.

Therefore 𝐿𝑡 → +∞ almost surely.

Case 2: When 𝐾𝑔 < 𝐾𝑓

Here, 𝑔 is “closer” to ℎ than 𝑓 is. Since 𝐾𝑔 − 𝐾𝑓 < 0

𝐸ℎ[log𝐿𝑡] = 𝑡 ⋅ (𝐾𝑔 − 𝐾𝑓) → −∞ as 𝑡 → ∞

Therefore by similar reasoning 𝐿𝑡 → 0 almost surely.
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– Nature and agents’ beliefs

– A socialist risk-sharing arrangement
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– If you’re so smart, …
– Competitive equilibrium prices

– Simulations

– Related lectures

– Exercises

23.1 Overview

A likelihood ratio process lies behind Lawrence Blume and David Easley’s answer to their question “If you’re so smart,
why aren’t you rich?” [Blume and Easley, 2006].

Blume and Easley constructed formal models to study how differences of opinions about probabilities governing risky
income processes would influence outcomes and be reflected in prices of stocks, bonds, and insurance policies that indi-
viduals use to share and hedge risks.

Note

[Alchian, 1950] and [Friedman, 1953] conjectured that, by rewarding traders with more realistic probability models,
competitive markets in financial securities put wealth in the hands of better informed traders and help make prices of
risky assets reflect realistic probability assessments.
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Here we’ll provide an example that illustrates basic components of Blume and Easley’s analysis.

We’ll focus only on their analysis of an environment with complete markets in which trades in all conceivable risky
securities are possible.

We’ll study two alternative arrangements:

• perfect socialism in which individuals surrender their endowments of consumption goods each period to a central
planner who then dictatorially allocates those goods

• a decentralized system of competitive markets in which selfish price-taking individuals voluntarily trade with each
other in competitive markets

The fundamental theorems of welfare economics will apply and assure us that these two arrangements end up producing
exactly the same allocation of consumption goods to individuals provided that the social planner assigns an appropriate
set of Pareto weights.

Note

You can learn about how the two welfare theorems are applied in modern macroeconomic models in this lecture on
a planning problem and this lecture on a related competitive equilibrium. This quantecon lecture presents a recursive
formulation of complete markets models with homogeneous beliefs.

Let’s start by importing some Python tools.

import matplotlib.pyplot as plt
import numpy as np
from numba import vectorize, jit, prange
from math import gamma
from scipy.integrate import quad

23.2 Review: likelihood ratio processes

We’ll begin by reminding ourselves definitions and properties of likelihood ratio processes.

A nonnegative random variable 𝑊 has one of two probability density functions, either 𝑓 or 𝑔.
Before the beginning of time, nature once and for all decides whether she will draw a sequence of IID draws from either
𝑓 or 𝑔.
We let 𝑞 be the density that nature chose once and for all, so that 𝑞 is either 𝑓 or 𝑔, permanently.
Nature knows which density it permanently draws from, but we the observers do not.

We know both 𝑓 and 𝑔 but we don’t know which density nature chose.

But we want to know.

To do that, we use observations.

We observe a sequence {𝑤𝑡}𝑇
𝑡=1 of 𝑇 IID draws that we know came from either 𝑓 or 𝑔.

We want to use these observations to infer whether nature chose 𝑓 or 𝑔.
A likelihood ratio process is a useful tool for this task.
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To begin, we define a key component of a likelihood ratio process, namely, the time 𝑡 likelihood ratio as the random
variable

ℓ(𝑤𝑡) = 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

, 𝑡 ≥ 1.

We assume that 𝑓 and 𝑔 both put positive probabilities on the same intervals of possible realizations of the random variable
𝑊 .

That means that under the 𝑔 density, ℓ(𝑤𝑡) = 𝑓(𝑤𝑡)
𝑔(𝑤𝑡) is a nonnegative random variable with mean 1.

A likelihood ratio process for sequence {𝑤𝑡}
∞
𝑡=1 is defined as

𝐿 (𝑤𝑡) =
𝑡

∏
𝑖=1

ℓ(𝑤𝑖),

where 𝑤𝑡 = {𝑤1, … , 𝑤𝑡} is a history of observations up to and including time 𝑡.
Sometimes for shorthand we’ll write 𝐿𝑡 = 𝐿(𝑤𝑡).
Notice that the likelihood process satisfies the recursion

𝐿(𝑤𝑡) = ℓ(𝑤𝑡)𝐿(𝑤𝑡−1).

The likelihood ratio and its logarithm are key tools for making inferences using a classic frequentist approach due to
Neyman and Pearson [Neyman and Pearson, 1933].

To help us appreciate how things work, the following Python code evaluates 𝑓 and 𝑔 as two different Beta distributions,
then computes and simulates an associated likelihood ratio process by generating a sequence 𝑤𝑡 from one of the two
probability distributions, for example, a sequence of IID draws from 𝑔.
# Parameters in the two Beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x** (a-1) * (1 - x) ** (b-1)

# The two density functions.
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

@jit
def simulate(a, b, T=50, N=500):

'''
Generate N sets of T observations of the likelihood ratio,
return as N x T matrix.
'''

l_arr = np.empty((N, T))

for i in range(N):
for j in range(T):

w = np.random.beta(a, b)
l_arr[i, j] = f(w) / g(w)

return l_arr
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23.3 Blume and Easley’s setting

Let the random variable 𝑠𝑡 ∈ (0, 1) at time 𝑡 = 0, 1, 2, … be distributed according to the same Beta distribution with
parameters 𝜃 = {𝜃1, 𝜃2}.
We’ll denote this probability density as

𝜋(𝑠𝑡|𝜃)

Below, we’ll often just write 𝜋(𝑠𝑡) instead of 𝜋(𝑠𝑡|𝜃) to save space.
Let 𝑠𝑡 ≡ 𝑦1

𝑡 be the endowment of a nonstorable consumption good that a person we’ll call “agent 1” receives at time 𝑡.
Let a history 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠0] be a sequence of i.i.d. random variables with joint distribution

𝜋𝑡(𝑠𝑡) = 𝜋(𝑠𝑡)𝜋(𝑠𝑡−1) ⋯ 𝜋(𝑠0)

So in our example, the history 𝑠𝑡 is a comprehensive record of agent 1’s endowments of the consumption good from time
0 up to time 𝑡.
If agent 1 were to live on an island by himself, agent 1’s consumption 𝑐1(𝑠𝑡) at time 𝑡 is

𝑐1(𝑠𝑡) = 𝑦1
𝑡 = 𝑠𝑡.

But in our model, agent 1 is not alone.

23.4 Nature and agents’ beliefs

Nature draws i.i.d. sequences {𝑠𝑡}∞
𝑡=0 from 𝜋𝑡(𝑠𝑡).

• so 𝜋 without a superscript is nature’s model

• but in addition to nature, there are other entities inside our model – artificial people that we call “agents”

• each agent has a sequence of probability distributions over 𝑠𝑡 for 𝑡 = 0, …
• agent 𝑖 thinks that nature draws i.i.d. sequences {𝑠𝑡}∞

𝑡=0 from {𝜋𝑖
𝑡(𝑠𝑡)}∞

𝑡=0

– agent 𝑖 is mistaken unless 𝜋𝑖
𝑡(𝑠𝑡) = 𝜋𝑡(𝑠𝑡)

Note

A rational expectations model would set 𝜋𝑖
𝑡(𝑠𝑡) = 𝜋𝑡(𝑠𝑡) for all agents 𝑖.

There are two agents named 𝑖 = 1 and 𝑖 = 2.
At time 𝑡, agent 1 receives an endowment

𝑦1
𝑡 = 𝑠𝑡

of a nonstorable consumption good, while agent 2 receives an endowment of

𝑦2
𝑡 = 1 − 𝑠𝑡

The aggregate endowment of the consumption good is

𝑦1
𝑡 + 𝑦2

𝑡 = 1

422 Chapter 23. Heterogeneous Beliefs and Financial Markets



Intermediate Quantitative Economics with Python

at each date 𝑡 ≥ 0.
At date 𝑡 agent 𝑖 consumes 𝑐𝑖

𝑡(𝑠𝑡) of the good.
A (non wasteful) feasible allocation of the aggregate endowment of 1 each period satisfies

𝑐1
𝑡 + 𝑐2

𝑡 = 1.

23.5 A socialist risk-sharing arrangement

In order to share risks, a benevolent social planner dictates a history-dependent consumption allocation that takes the
form of a sequence of functions

𝑐𝑖
𝑡 = 𝑐𝑖

𝑡(𝑠𝑡)
that satisfy

𝑐1
𝑡 (𝑠𝑡) + 𝑐2

𝑡 (𝑠𝑡) = 1 (23.1)

for all 𝑠𝑡 for all 𝑡 ≥ 0.
To design a socially optimal allocation, the social planner wants to know what agent 1 believes about the endowment
sequence and how they feel about bearing risks.

As for the endowment sequences, agent 𝑖 believes that nature draws i.i.d. sequences from joint densities

𝜋𝑖
𝑡(𝑠𝑡) = 𝜋𝑖(𝑠𝑡)𝜋𝑖(𝑠𝑡−1) ⋯ 𝜋𝑖(𝑠0)

As for attitudes toward bearing risks, agent 𝑖 has a one-period utility function
𝑢(𝑐𝑖

𝑡) = ln(𝑐𝑖
𝑡)

with marginal utility of consumption in period 𝑡

𝑢′(𝑐𝑖
𝑡) = 1

𝑐𝑖
𝑡

Putting its beliefs about its random endowment sequence and its attitudes toward bearing risks together, agent 𝑖 has
intertemporal utility function

𝑉 𝑖 =
∞

∑
𝑡=0

∑
𝑠𝑡

𝛿𝑡𝑢(𝑐𝑖
𝑡(𝑠𝑡))𝜋𝑖

𝑡(𝑠𝑡), (23.2)

where 𝛿 ∈ (0, 1) is an intertemporal discount factor, and 𝑢(⋅) is a strictly increasing, concave one-period utility function.

23.6 Social planner’s allocation problem

The benevolent dictator has all the information it requires to choose a consumption allocation that maximizes the social
welfare criterion

𝑊 = 𝜆𝑉 1 + (1 − 𝜆)𝑉 2 (23.3)

where 𝜆 ∈ [0, 1] is a Pareto weight that tells how much the planner likes agent 1 and 1 − 𝜆 is a Pareto weight that tells
how much the social planner likes agent 2.
Setting 𝜆 = .5 expresses “egalitarian” social preferences.
Notice how social welfare criterion (23.3) takes into account both agents’ preferences as represented by formula (23.2).

This means that the social planner knows and respects
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• each agent’s one period utility function 𝑢(⋅) = ln(⋅)
• each agent 𝑖’s probability model {𝜋𝑖

𝑡(𝑠𝑡)}∞
𝑡=0

Consequently, we anticipate that these objects will appear in the social planner’s rule for allocating the aggregate endow-
ment each period.

First-order necessary conditions for maximizing welfare criterion (23.3) subject to the feasibility constraint (23.1) are

𝜋2
𝑡 (𝑠𝑡)

𝜋1
𝑡 (𝑠𝑡)

(1/𝑐2
𝑡 (𝑠𝑡))

(1/𝑐1
𝑡 (𝑠𝑡)) = 𝜆

1 − 𝜆

which can be rearranged to become

𝑐1
𝑡 (𝑠𝑡)

𝑐2
𝑡 (𝑠𝑡) = 𝜆

1 − 𝜆𝑙𝑡(𝑠𝑡) (23.4)

where

𝑙𝑡(𝑠𝑡) = 𝜋1
𝑡 (𝑠𝑡)

𝜋2
𝑡 (𝑠𝑡)

is the likelihood ratio of agent 1’s joint density to agent 2’s joint density.

Using

𝑐1
𝑡 (𝑠𝑡) + 𝑐2

𝑡 (𝑠𝑡) = 1

we can rewrite allocation rule (23.4) as

𝑐1
𝑡 (𝑠𝑡)

1 − 𝑐1
𝑡 (𝑠𝑡) = 𝜆

1 − 𝜆𝑙𝑡(𝑠𝑡)

or

𝑐1
𝑡 (𝑠𝑡) = 𝜆

1 − 𝜆𝑙𝑡(𝑠𝑡)(1 − 𝑐1
𝑡 (𝑠𝑡))

which implies that the social planner’s allocation rule is

𝑐1
𝑡 (𝑠𝑡) = 𝜆𝑙𝑡(𝑠𝑡)

1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡) (23.5)

If we define a temporary or continuation Pareto weight process as

𝜆𝑡(𝑠𝑡) = 𝜆𝑙𝑡(𝑠𝑡)
1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡) ,

then we can represent the social planner’s allocation rule as

𝑐1
𝑡 (𝑠𝑡) = 𝜆𝑡(𝑠𝑡).

23.7 If you’re so smart, …

Let’s compute some values of limiting allocations (23.5) for some interesting possible limiting values of the likelihood
ratio process 𝑙𝑡(𝑠𝑡):

𝑙∞(𝑠∞) = 1; 𝑐1
∞ = 𝜆
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• In the above case, both agents are equally smart (or equally not smart) and the consumption allocation stays put at
a 𝜆, 1 − 𝜆 split between the two agents.

𝑙∞(𝑠∞) = 0; 𝑐1
∞ = 0

• In the above case, agent 2 is “smarter” than agent 1, and agent 1’s share of the aggregate endowment converges to
zero.

𝑙∞(𝑠∞) = ∞; 𝑐1
∞ = 1

• In the above case, agent 1 is smarter than agent 2, and agent 1’s share of the aggregate endowment converges to 1.

Note

These three cases are somehow telling us about how relative wealths of the agents evolve as time passes.

• when the two agents are equally smart and 𝜆 ∈ (0, 1), agent 1’s wealth share stays at 𝜆 perpetually.

• when agent 1 is smarter and 𝜆 ∈ (0, 1), agent 1 eventually “owns” the entire continuation endowment and agent
2 eventually “owns” nothing.

• when agent 2 is smarter and 𝜆 ∈ (0, 1), agent 2 eventually “owns” the entire continuation endowment and agent
1 eventually “owns” nothing. Continuation wealths can be defined precisely after we introduce a competitive
equilibrium price system below.

Soon we’ll do some simulations that will shed further light on possible outcomes.

But before we do that, let’s take a detour and study some “shadow prices” for the social planning problem that can readily
be converted to “equilibrium prices” for a competitive equilibrium.

Doing this will allow us to connect our analysis with an argument of [Alchian, 1950] and [Friedman, 1953] that compet-
itive market processes can make prices of risky assets better reflect realistic probability assessments.

23.8 Competitive equilibrium prices

Two fundamental welfare theorems for general equilibrium models lead us to anticipate that there is a connection be-
tween the allocation that solves the social planning problem we have been studying and the allocation in a competitive
equilibrium with complete markets in history-contingent commodities.

Note

For the two welfare theorems and their history, see https://en.wikipedia.org/wiki/Fundamental_theorems_of_
welfare_economics. Again, for applications to a classic macroeconomic growth model, see this lecture on a plan-
ning problem and this lecture on a related competitive equilibrium

Such a connection prevails for our model.

We’ll sketch it now.

In a competitive equilibrium, there is no social planner that dictatorially collects everybody’s endowments and then real-
locates them.

Instead, there is a comprehensive centralized market that meets at one point in time.

There are prices at which price-taking agents can buy or sell whatever goods that they want.
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Trade is multilateral in the sense that that there is a “Walrasian auctioneer” who lives outside the model and whose job is
to verify that each agent’s budget constraint is satisfied.

That budget constraint involves the total value of the agent’s endowment stream and the total value of its consumption
stream.

These values are computed at price vectors that the agents take as given – they are “price-takers” who assume that they
can buy or sell whatever quantities that they want at those prices.

Suppose that at time −1, before time 0 starts, agent 𝑖 can purchase one unit 𝑐𝑡(𝑠𝑡) of consumption at time 𝑡 after history
𝑠𝑡 at price 𝑝𝑡(𝑠𝑡).
Notice that there is (very long) vector of prices.

• there is one price 𝑝𝑡(𝑠𝑡) for each history 𝑠𝑡 at every date 𝑡 = 0, 1, … ,.
• so there are as many prices as there are histories and dates.

These prices determined at time −1 before the economy starts.
The market meets once at time −1.
At times 𝑡 = 0, 1, 2, … trades made at time −1 are executed.

• in the background, there is an “enforcement” procedure that forces agents to carry out the exchanges or “deliveries”
that they agreed to at time −1.

We want to study how agents’ beliefs influence equilibrium prices.

Agent 𝑖 faces a single intertemporal budget constraint
∞

∑
𝑡=0

∑
𝑠𝑡

𝑝𝑡(𝑠𝑡)𝑐𝑖
𝑡(𝑠𝑡) ≤

∞
∑
𝑡=0

∑
𝑠𝑡

𝑝𝑡(𝑠𝑡)𝑦𝑖
𝑡(𝑠𝑡) (23.6)

According to budget constraint (23.6), trade ismultilateral in the following sense

• we can imagine that agent 𝑖 first sells his random endowment stream {𝑦𝑖
𝑡(𝑠𝑡)} and then uses the proceeds (i.e., his

“wealth”) to purchase a random consumption stream {𝑐𝑖
𝑡(𝑠𝑡)}.

Agent 𝑖 puts a Lagrangemultiplier𝜇𝑖 on (23.6) and once-and-for-all chooses a consumption plan {𝑐𝑖
𝑡(𝑠𝑡)}∞

𝑡=0 to maximize
criterion (23.2) subject to budget constraint (23.6).

This means that the agent 𝑖 chooses many objects, namely, 𝑐𝑖
𝑡(𝑠𝑡) for all 𝑠𝑡 for 𝑡 = 0, 1, 2, ….

For convenience, let’s remind ourselves of criterion 𝑉 𝑖 defined in (23.2):

𝑉 𝑖 =
∞

∑
𝑡=0

∑
𝑠𝑡

𝛿𝑡𝑢(𝑐𝑖
𝑡(𝑠𝑡))𝜋𝑖

𝑡(𝑠𝑡)

First-order necessary conditions for maximizing objective 𝑉 𝑖 defined in (23.2) with respect to 𝑐𝑖
𝑡(𝑠𝑡) are

𝛿𝑡𝑢′(𝑐𝑖
𝑡(𝑠𝑡))𝜋𝑖

𝑡(𝑠𝑡) = 𝜇𝑖𝑝𝑡(𝑠𝑡),

which we can rearrange to obtain

𝑝𝑡(𝑠𝑡) = 𝛿𝑡𝜋𝑖
𝑡(𝑠𝑡)

𝜇𝑖𝑐𝑖
𝑡(𝑠𝑡) (23.7)

for 𝑖 = 1, 2.
If we divide equation (23.7) for agent 1 by the appropriate version of equation (23.7) for agent 2, use 𝑐2

𝑡 (𝑠𝑡) = 1−𝑐1
𝑡 (𝑠𝑡),

and do some algebra, we’ll obtain

𝑐1
𝑡 (𝑠𝑡) = 𝜇1𝑙𝑡(𝑠𝑡)

𝜇2 + 𝜇1𝑙𝑡(𝑠𝑡) . (23.8)
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We now engage in an extended “guess-and-verify” exercise that involves matching objects in our competitive equilibrium
with objects in our social planning problem.

• we’ll match consumption allocations in the planning problem with equilibrium consumption allocations in the com-
petitive equilibrium

• we’ll match “shadow” prices in the planning problem with competitive equilibrium prices.

Notice that if we set 𝜇1 = 1 − 𝜆 and 𝜇2 = 𝜆, then formula (23.8) agrees with formula (23.5).
• doing this amounts to choosing a numeraire or normalization for the price system {𝑝𝑡(𝑠𝑡)}∞

𝑡=0

Note

For information about how a numeraire must be chosen to pin down the absolute price level in a model like ours that
determines only relative prices, see https://en.wikipedia.org/wiki/Numéraire.

If we substitute formula (23.8) for 𝑐1
𝑡 (𝑠𝑡) into formula (23.7) and rearrange, we obtain

𝑝𝑡(𝑠𝑡) = 𝛿𝑡

𝜆(1 − 𝜆)𝜋2
𝑡 (𝑠𝑡)[1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)]

or

𝑝𝑡(𝑠𝑡) = 𝛿𝑡

𝜆(1 − 𝜆)[(1 − 𝜆)𝜋2
𝑡 (𝑠𝑡) + 𝜆𝜋1

𝑡 (𝑠𝑡)] (23.9)

According to formula (23.9), we have the following possible limiting cases:

• when 𝑙∞ = 0, 𝑐1
∞ = 0 and tails of competitive equilibrium prices reflect agent 2’s probability model 𝜋2

𝑡 (𝑠𝑡)
according to 𝑝𝑡(𝑠𝑡) ∝ 𝛿𝑡𝜋2

𝑡 (𝑠𝑡)
• when 𝑙∞ = ∞, 𝑐1

∞ = 1 and tails of competitive equilibrium prices reflect agent 1’s probability model 𝜋1
𝑡 (𝑠𝑡)

according to 𝑝𝑡(𝑠𝑡) ∝ 𝛿𝑡𝜋1
𝑡 (𝑠𝑡)

• for small 𝑡’s, competitive equilibrium prices reflect both agents’ probability models.

We leave the verification of the shadow prices to the reader since it follows from the same reasoning.

23.9 Simulations

Now let’s implement some simulations when agent 1 believes marginal density

𝜋1(𝑠𝑡) = 𝑓(𝑠𝑡)

and agent 2 believes marginal density

𝜋2(𝑠𝑡) = 𝑔(𝑠𝑡)

where 𝑓 and 𝑔 are Beta distributions like ones that we used in earlier sections of this lecture.
Meanwhile, we’ll assume that nature believes a marginal density

𝜋(𝑠𝑡) = ℎ(𝑠𝑡)

where ℎ(𝑠𝑡) is perhaps a mixture of 𝑓 and 𝑔.
First, we write a function to compute the likelihood ratio process
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def compute_likelihood_ratios(sequences, f, g):
"""Compute likelihood ratios and cumulative products."""
l_ratios = f(sequences) / g(sequences)
L_cumulative = np.cumprod(l_ratios, axis=1)
return l_ratios, L_cumulative

Let’s compute the Kullback–Leibler discrepancies by quadrature integration.

def compute_KL(f, g):
"""
Compute KL divergence KL(f, g)
"""
integrand = lambda w: f(w) * np.log(f(w) / g(w))
val, _ = quad(integrand, 1e-5, 1-1e-5)
return val

We also create a helper function to compute KL divergence with respect to a reference distribution ℎ
def compute_KL_h(h, f, g):

"""
Compute KL divergence with reference distribution h
"""

Kf = compute_KL(h, f)
Kg = compute_KL(h, g)

return Kf, Kg

Let’s write a Python function that computes agent 1’s consumption share

def simulate_blume_easley(sequences, f_belief=f, g_belief=g, λ=0.5):
"""Simulate Blume-Easley model consumption shares."""
l_ratios, l_cumulative = compute_likelihood_ratios(sequences, f_belief, g_belief)
c1_share = λ * l_cumulative / (1 - λ + λ * l_cumulative)
return l_cumulative, c1_share

Now let’s use this function to generate sequences in which

• nature draws from 𝑓 each period, or

• nature draws from 𝑔 each period, or
• nature flips a fair coin each period to decide whether to draw from 𝑓 or 𝑔

λ = 0.5
T = 100
N = 10000

# Nature follows f, g, or mixture
s_seq_f = np.random.beta(F_a, F_b, (N, T))
s_seq_g = np.random.beta(G_a, G_b, (N, T))

h = jit(lambda x: 0.5 * f(x) + 0.5 * g(x))
model_choices = np.random.rand(N, T) < 0.5
s_seq_h = np.empty((N, T))
s_seq_h[model_choices] = np.random.beta(F_a, F_b, size=model_choices.sum())
s_seq_h[~model_choices] = np.random.beta(G_a, G_b, size=(~model_choices).sum())

(continues on next page)
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(continued from previous page)

l_cum_f, c1_f = simulate_blume_easley(s_seq_f)
l_cum_g, c1_g = simulate_blume_easley(s_seq_g)
l_cum_h, c1_h = simulate_blume_easley(s_seq_h)

Before looking at the figure below, have some fun by guessing whether agent 1 or agent 2 will have a larger and larger
consumption share as time passes in our three cases.

To make better guesses, let’s visualize instances of the likelihood ratio processes in the three cases.

fig, axes = plt.subplots(2, 3, figsize=(15, 10))

titles = ["Nature = f", "Nature = g", "Nature = mixture"]
data_pairs = [(l_cum_f, c1_f), (l_cum_g, c1_g), (l_cum_h, c1_h)]

for i, ((l_cum, c1), title) in enumerate(zip(data_pairs, titles)):
# Likelihood ratios
ax = axes[0, i]
for j in range(min(50, l_cum.shape[0])):

ax.plot(l_cum[j, :], alpha=0.3, color='blue')
ax.set_yscale('log')
ax.set_xlabel('time')
ax.set_ylabel('Likelihood ratio $l_t$')
ax.set_title(title)
ax.axhline(y=1, color='red', linestyle='--', alpha=0.5)

# Consumption shares
ax = axes[1, i]
for j in range(min(50, c1.shape[0])):

ax.plot(c1[j, :], alpha=0.3, color='green')
ax.set_xlabel('time')
ax.set_ylabel("Agent 1's consumption share")
ax.set_ylim([0, 1])
ax.axhline(y=λ, color='red', linestyle='--', alpha=0.5)

plt.tight_layout()
plt.show()
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In the left panel, nature chooses 𝑓 . Agent 1’s consumption reaches 1 very quickly.
In the middle panel, nature chooses 𝑔. Agent 1’s consumption ratio tends to move towards 0 but not as fast as in the first
case.

In the right panel, nature flips coins each period. We see a very similar pattern to the processes in the left panel.

The figures in the top panel remind us of the discussion in this section.

We invite readers to revisit that section and try to infer the relationships among 𝐷𝐾𝐿(𝑓‖𝑔), 𝐷𝐾𝐿(𝑔‖𝑓), 𝐷𝐾𝐿(ℎ‖𝑓), and
𝐷𝐾𝐿(ℎ‖𝑔).
Let’s compute values of KL divergence

shares = [np.mean(c1_f[:, -1]), np.mean(c1_g[:, -1]), np.mean(c1_h[:, -1])]
Kf_g, Kg_f = compute_KL(f, g), compute_KL(g, f)
Kf_h, Kg_h = compute_KL_h(h, f, g)

print(f"Final shares: f={shares[0]:.3f}, g={shares[1]:.3f}, mix={shares[2]:.3f}")
print(f"KL divergences: \nKL(f,g)={Kf_g:.3f}, KL(g,f)={Kg_f:.3f}")
print(f"KL(h,f)={Kf_h:.3f}, KL(h,g)={Kg_h:.3f}")

Final shares: f=1.000, g=0.000, mix=0.924
KL divergences:
KL(f,g)=0.759, KL(g,f)=0.344
KL(h,f)=0.073, KL(h,g)=0.281

We find that 𝐾𝐿(𝑓, 𝑔) > 𝐾𝐿(𝑔, 𝑓) and 𝐾𝐿(ℎ, 𝑔) > 𝐾𝐿(ℎ, 𝑓).
The first inequality tells us that the average “surprise” from having belief 𝑔 when nature chooses 𝑓 is greater than the
“surprise” from having belief 𝑓 when nature chooses 𝑔.
This explains the difference between the first two panels we noted above.

430 Chapter 23. Heterogeneous Beliefs and Financial Markets



Intermediate Quantitative Economics with Python

The second inequality tells us that agent 1’s belief distribution 𝑓 is closer to nature’s pick than agent 2’s belief 𝑔.
To make this idea more concrete, let’s compare two cases:

• agent 1’s belief distribution 𝑓 is close to agent 2’s belief distribution 𝑔;
• agent 1’s belief distribution 𝑓 is far from agent 2’s belief distribution 𝑔.

We use the two distributions visualized below

def plot_distribution_overlap(ax, x_range, f_vals, g_vals,
f_label='f', g_label='g',
f_color='blue', g_color='red'):

"""Plot two distributions with their overlap region."""
ax.plot(x_range, f_vals, color=f_color, linewidth=2, label=f_label)
ax.plot(x_range, g_vals, color=g_color, linewidth=2, label=g_label)

overlap = np.minimum(f_vals, g_vals)
ax.fill_between(x_range, 0, overlap, alpha=0.3, color='purple', label='Overlap')
ax.set_xlabel('x')
ax.set_ylabel('Density')
ax.legend()

# Define close and far belief distributions
f_close = jit(lambda x: p(x, 1, 1))
g_close = jit(lambda x: p(x, 1.1, 1.05))

f_far = jit(lambda x: p(x, 1, 1))
g_far = jit(lambda x: p(x, 3, 1.2))

# Visualize the belief distributions
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

x_range = np.linspace(0.001, 0.999, 200)

# Close beliefs
f_close_vals = [f_close(x) for x in x_range]
g_close_vals = [g_close(x) for x in x_range]
plot_distribution_overlap(ax1, x_range, f_close_vals, g_close_vals,

f_label='f (Beta(1, 1))', g_label='g (Beta(1.1, 1.05))')
ax1.set_title(f'Close Beliefs')

# Far beliefs
f_far_vals = [f_far(x) for x in x_range]
g_far_vals = [g_far(x) for x in x_range]
plot_distribution_overlap(ax2, x_range, f_far_vals, g_far_vals,

f_label='f (Beta(1, 1))', g_label='g (Beta(3, 1.2))')
ax2.set_title(f'Far Beliefs')

plt.tight_layout()
plt.show()
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Let’s draw the same consumption ratio plots as above for agent 1.

We replace the simulation paths with median and percentiles to make the figure cleaner.

Staring at the figure below, can we infer the relation between 𝐾𝐿(𝑓, 𝑔) and 𝐾𝐿(𝑔, 𝑓)?
From the right panel, can we infer the relation between 𝐾𝐿(ℎ, 𝑔) and 𝐾𝐿(ℎ, 𝑓)?
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
nature_params = {'close': [(1, 1), (1.1, 1.05), (2, 1.5)],

'far': [(1, 1), (3, 1.2), (2, 1.5)]}
nature_labels = ["Nature = f", "Nature = g", "Nature = h"]
colors = {'close': 'blue', 'far': 'red'}

threshold = 1e-5 # "close to zero" cutoff

for row, (f_belief, g_belief, label) in enumerate([
(f_close, g_close, 'close'),
(f_far, g_far, 'far')]):

for col, nature_label in enumerate(nature_labels):
params = nature_params[label][col]
s_seq = np.random.beta(params[0], params[1], (1000, 200))
_, c1 = simulate_blume_easley(s_seq, f_belief, g_belief, λ)

median_c1 = np.median(c1, axis=0)
p10, p90 = np.percentile(c1, [10, 90], axis=0)

ax = axes[row, col]
color = colors[label]
ax.plot(median_c1, color=color, linewidth=2, label='Median')
ax.fill_between(range(len(median_c1)), p10, p90, alpha=0.3, color=color,␣

↪label='10–90%')
ax.set_xlabel('time')
ax.set_ylabel("Agent 1's share")
ax.set_ylim([0, 1])
ax.set_title(nature_label)
ax.axhline(y=λ, color='gray', linestyle='--', alpha=0.5)
below = np.where(median_c1 < threshold)[0]
above = np.where(median_c1 > 1-threshold)[0]
if below.size > 0: first_zero = (below[0], True)
elif above.size > 0: first_zero = (above[0], False)

(continues on next page)
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(continued from previous page)

else: first_zero = None
if first_zero is not None:

ax.axvline(x=first_zero[0], color='black', linestyle='--',
alpha=0.7,
label=fr'Median $\leq$ {threshold}' if first_zero[1]
else fr'Median $\geq$ 1-{threshold}')

ax.legend()

plt.tight_layout()
plt.show()

Holding to our guesses, let’s calculate the four values

# Close case
Kf_g, Kg_f = compute_KL(f_close, g_close), compute_KL(g_close, f_close)
Kf_h, Kg_h = compute_KL_h(h, f_close, g_close)

print(f"KL divergences (close): \nKL(f,g)={Kf_g:.3f}, KL(g,f)={Kg_f:.3f}")
print(f"KL(h,f)={Kf_h:.3f}, KL(h,g)={Kg_h:.3f}")

# Far case
Kf_g, Kg_f = compute_KL(f_far, g_far), compute_KL(g_far, f_far)
Kf_h, Kg_h = compute_KL_h(h, f_far, g_far)

print(f"KL divergences (far): \nKL(f,g)={Kf_g:.3f}, KL(g,f)={Kg_f:.3f}")
print(f"KL(h,f)={Kf_h:.3f}, KL(h,g)={Kg_h:.3f}")

KL divergences (close):

(continues on next page)
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KL(f,g)=0.003, KL(g,f)=0.003
KL(h,f)=0.073, KL(h,g)=0.061
KL divergences (far):
KL(f,g)=0.759, KL(g,f)=0.344
KL(h,f)=0.073, KL(h,g)=0.281

We find that in the first case, 𝐾𝐿(𝑓, 𝑔) ≈ 𝐾𝐿(𝑔, 𝑓) and both are relatively small, so although either agent 1 or agent 2
will eventually consume everything, convergence displayed in the first two panels on the top is pretty slow.

In the first two panels at the bottom, we see convergence occurring faster (as indicated by the black dashed line) because
the divergence gaps 𝐾𝐿(𝑓, 𝑔) and 𝐾𝐿(𝑔, 𝑓) are larger.
Since 𝐾𝐿(𝑓, 𝑔) > 𝐾𝐿(𝑔, 𝑓), we see faster convergence in the first panel at the bottom when nature chooses 𝑓 than in
the second panel where nature chooses 𝑔.
This ties in nicely with (22.1).

23.10 Related lectures

Complete markets models with homogeneous beliefs, a kind often used in macroeconomics and finance, are studied in
this quantecon lecture Competitive Equilibria with Arrow Securities.

[Blume et al., 2018] discuss a paternalistic case against complete markets. Their analysis assumes that a social planner
should disregard individuals preferences in the sense that it should disregard the subjective belief components of their
preferences.

Likelihood processes play an important role in Bayesian learning, as described in Likelihood Ratio Processes and Bayesian
Learning and as applied in Job Search VII: Search with Learning.

Likelihood ratio processes appear again in Additive and Multiplicative Functionals.

23.11 Exercises

Exercise 23.11.1

Starting from (23.7), show that the competitive equilibrium prices can be expressed as

𝑝𝑡(𝑠𝑡) = 𝛿𝑡

𝜆(1 − 𝜆)𝜋2
𝑡 (𝑠𝑡)[1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)]

Solution to Exercise 23.11.1

Starting from

𝑝𝑡(𝑠𝑡) = 𝛿𝑡𝜋𝑖
𝑡(𝑠𝑡)

𝜇𝑖𝑐𝑖
𝑡(𝑠𝑡) , 𝑖 = 1, 2.

Since both expressions equal the same price, we can equate them

𝜋1
𝑡 (𝑠𝑡)

𝜇1𝑐1
𝑡 (𝑠𝑡) = 𝜋2

𝑡 (𝑠𝑡)
𝜇2𝑐2

𝑡 (𝑠𝑡)
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Rearranging gives

𝑐1
𝑡 (𝑠𝑡)

𝑐2
𝑡 (𝑠𝑡) = 𝜇2

𝜇1
𝑙𝑡(𝑠𝑡)

where 𝑙𝑡(𝑠𝑡) ≡ 𝜋1
𝑡 (𝑠𝑡)/𝜋2

𝑡 (𝑠𝑡) is the likelihood ratio process.
Using 𝑐2

𝑡 (𝑠𝑡) = 1 − 𝑐1
𝑡 (𝑠𝑡):

𝑐1
𝑡 (𝑠𝑡)

1 − 𝑐1
𝑡 (𝑠𝑡) = 𝜇2

𝜇1
𝑙𝑡(𝑠𝑡)

Solving for 𝑐1
𝑡 (𝑠𝑡)

𝑐1
𝑡 (𝑠𝑡) = 𝜇2𝑙𝑡(𝑠𝑡)

𝜇1 + 𝜇2𝑙𝑡(𝑠𝑡)

The planner’s solution gives

𝑐1
𝑡 (𝑠𝑡) = 𝜆𝑙𝑡(𝑠𝑡)

1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)

To match agent 1’s choice in a competitive equilibrium with the planner’s choice for agent 1, the following equality
must hold

𝜇2
𝜇1

= 𝜆
1 − 𝜆

Hence we have

𝜇1 = 1 − 𝜆, 𝜇2 = 𝜆

With 𝜇1 = 1 − 𝜆 and 𝑐1
𝑡 (𝑠𝑡) = 𝜆𝑙𝑡(𝑠𝑡)

1−𝜆+𝜆𝑙𝑡(𝑠𝑡) , we have

𝑝𝑡(𝑠𝑡) = 𝛿𝑡𝜋1
𝑡 (𝑠𝑡)

(1 − 𝜆)𝑐1
𝑡 (𝑠𝑡)

= 𝛿𝑡𝜋1
𝑡 (𝑠𝑡)

(1 − 𝜆) ⋅ 1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)
𝜆𝑙𝑡(𝑠𝑡)

= 𝛿𝑡𝜋1
𝑡 (𝑠𝑡)

(1 − 𝜆)𝜆𝑙𝑡(𝑠𝑡) [1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)].

Since 𝜋1
𝑡 (𝑠𝑡) = 𝑙𝑡(𝑠𝑡)𝜋2

𝑡 (𝑠𝑡), we have

𝑝𝑡(𝑠𝑡) = 𝛿𝑡𝑙𝑡(𝑠𝑡)𝜋2
𝑡 (𝑠𝑡)

(1 − 𝜆)𝜆𝑙𝑡(𝑠𝑡) [1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)]

= 𝛿𝑡𝜋2
𝑡 (𝑠𝑡)

(1 − 𝜆)𝜆[1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)]

= 𝛿𝑡

𝜆(1 − 𝜆)𝜋2
𝑡 (𝑠𝑡)[1 − 𝜆 + 𝜆𝑙𝑡(𝑠𝑡)].

Exercise 23.11.2
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In this exercise, we’ll study two agents, each of whom updates its posterior probability as data arrive.

• each agent applies Bayes’ law in the way studied in Likelihood Ratio Processes and Bayesian Learning.

The following two models are on the table

𝑓(𝑠𝑡) = 𝑓(𝑠1)𝑓(𝑠2) ⋯ 𝑓(𝑠𝑡)

and

𝑔(𝑠𝑡) = 𝑔(𝑠1)𝑔(𝑠2) ⋯ 𝑔(𝑠𝑡)

as is an associated likelihood ratio process

𝐿(𝑠𝑡) = 𝑓(𝑠𝑡)
𝑔(𝑠𝑡) .

Let 𝜋0 ∈ (0, 1) be a prior probability and

𝜋𝑡 = 𝜋0𝐿(𝑠𝑡)
𝜋0𝐿(𝑠𝑡) + (1 − 𝜋0) .

Each of our two agents deploys its own version of the mixture model

𝑚(𝑠𝑡) = 𝜋𝑡𝑓(𝑠𝑡) + (1 − 𝜋𝑡)𝑔(𝑠𝑡) (23.10)

We’ll endow each type of consumer with model (23.10).

• The two agents share the same 𝑓 and 𝑔, but
• they have different initial priors, say 𝜋1

0 and 𝜋2
0

Thus, consumer 𝑖’s probability model is

𝑚𝑖(𝑠𝑡) = 𝜋𝑖
𝑡𝑓(𝑠𝑡) + (1 − 𝜋𝑖

𝑡)𝑔(𝑠𝑡) (23.11)

We now hand probability models (23.11) for 𝑖 = 1, 2 to the social planner.
We want to deduce allocation 𝑐𝑖(𝑠𝑡), 𝑖 = 1, 2, and watch what happens when

• nature’s model is 𝑓
• nature’s model is 𝑔

We expect that consumers will eventually learn the “truth”, but that one of them will learn faster.

To explore things, please set 𝑓 ∼ Beta(1.5, 1) and 𝑔 ∼ Beta(1, 1.5).
Please write Python code that answers the following questions.

• How do consumption shares evolve?

• Which agent learns faster when nature follows 𝑓?
• Which agent learns faster when nature follows 𝑔?
• How does a difference in initial priors 𝜋1

0 and 𝜋2
0 affect the convergence speed?

Solution to Exercise 23.11.2
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First, let’s write helper functions that compute model components including each agent’s subjective belief function.
def bayesian_update(π_0, L_t):

"""
Bayesian update of belief probability given likelihood ratio.
"""
return (π_0 * L_t) / (π_0 * L_t + (1 - π_0))

def mixture_density_belief(s_seq, f_func, g_func, π_seq):
"""
Compute the mixture density beliefs m^i(s^t) for agent i.
"""
f_vals = f_func(s_seq)
g_vals = g_func(s_seq)
return π_seq * f_vals + (1 - π_seq) * g_vals

Now let’s write code that simulates the Blume-Easley model with our two agents.
def simulate_learning_blume_easley(sequences, f_belief, g_belief,

π_0_1, π_0_2, λ=0.5):
"""
Simulate Blume-Easley model with learning agents.
"""
N, T = sequences.shape

# Initialize arrays to store results
π_1_seq = np.full((N, T), np.nan)
π_2_seq = np.full((N, T), np.nan)
c1_share = np.full((N, T), np.nan)
l_agents_seq = np.full((N, T), np.nan)

π_1_seq[:, 0] = π_0_1
π_2_seq[:, 0] = π_0_2

for n in range(N):
# Initialize cumulative likelihood ratio for beliefs
L_cumul = 1.0

# Initialize likelihood ratio between agent densities
l_agents_cumul = 1.0

for t in range(1, T):
s_t = sequences[n, t]

# Compute likelihood ratio for this observation
l_t = f_belief(s_t) / g_belief(s_t)

# Update cumulative likelihood ratio
L_cumul *= l_t

# Bayesian update of beliefs
π_1_t = bayesian_update(π_0_1, L_cumul)
π_2_t = bayesian_update(π_0_2, L_cumul)

# Store beliefs
π_1_seq[n, t] = π_1_t
π_2_seq[n, t] = π_2_t

# Compute mixture densities for each agent
m1_t = π_1_t * f_belief(s_t) + (1 - π_1_t) * g_belief(s_t)
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m2_t = π_2_t * f_belief(s_t) + (1 - π_2_t) * g_belief(s_t)

# Update cumulative likelihood ratio between agents
l_agents_cumul *= (m1_t / m2_t)
l_agents_seq[n, t] = l_agents_cumul

# c_t^1(s^t) = λ * l_t(s^t) / (1 - λ + λ * l_t(s^t))
# where l_t(s^t) is the cumulative likelihood ratio between agents
c1_share[n, t] = λ * l_agents_cumul / (1 - λ + λ * l_agents_cumul)

return {
'π_1': π_1_seq,
'π_2': π_2_seq,
'c1_share': c1_share,
'l_agents': l_agents_seq

}

Let’s run simulations for different scenarios.

We use 𝜆 = 0.5, 𝑇 = 40, and 𝑁 = 1000.
λ = 0.5
T = 40
N = 1000

F_a, F_b = 1.5, 1
G_a, G_b = 1, 1.5

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

We’ll start with different initial priors 𝜋𝑖
0 ∈ (0, 1) and widen the gap between them.

# Different initial priors
π_0_scenarios = [

(0.3, 0.7),
(0.7, 0.3),
(0.1, 0.9),

]

Now we can run simulations for different scenarios
# Nature follows f
s_seq_f = np.random.beta(F_a, F_b, (N, T))

# Nature follows g
s_seq_g = np.random.beta(G_a, G_b, (N, T))

results_f = {}
results_g = {}

for i, (π_0_1, π_0_2) in enumerate(π_0_scenarios):
# When nature follows f
results_f[i] = simulate_learning_blume_easley(

s_seq_f, f, g, π_0_1, π_0_2, λ)
# When nature follows g
results_g[i] = simulate_learning_blume_easley(

s_seq_g, f, g, π_0_1, π_0_2, λ)

Let’s visualize the results
def plot_learning_results(results, π_0_scenarios, nature_type, truth_value):

"""
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Plot beliefs and consumption shares for learning agents.
"""

fig, axes = plt.subplots(3, 2, figsize=(10, 15))

scenario_labels = [
rf'$\pi_0^1 = {π_0_1}, \pi_0^2 = {π_0_2}$'
for π_0_1, π_0_2 in π_0_scenarios

]

for row, (scenario_idx, scenario_label) in enumerate(
zip(range(3), scenario_labels)):

res = results[scenario_idx]

# Plot beliefs
ax = axes[row, 0]
π_1_med = np.median(res['π_1'], axis=0)
π_2_med = np.median(res['π_2'], axis=0)
ax.plot(π_1_med, 'C0', label=r'agent 1', linewidth=2)
ax.plot(π_2_med, 'C1', label=r'agent 2', linewidth=2)
ax.axhline(y=truth_value, color='gray', linestyle='--',

alpha=0.5, label=f'truth ({nature_type})')
ax.set_title(f'Beliefs when nature = {nature_type}\n{scenario_label}')
ax.set_ylabel(r'median $\pi_i^t$')
ax.set_ylim([-0.05, 1.05])
ax.legend()

# Plot consumption shares
ax = axes[row, 1]
c1_med = np.median(res['c1_share'], axis=0)
ax.plot(c1_med, 'g-', linewidth=2, label='median')
ax.axhline(y=0.5, color='gray', linestyle='--',

alpha=0.5)
ax.set_title(f'Agent 1 consumption share (Nature = {nature_type})')
ax.set_ylabel('consumption share')
ax.set_ylim([0, 1])
ax.legend()

# Add x-labels
for col in range(2):

axes[row, col].set_xlabel('$t$')

plt.tight_layout()
return fig, axes

Now we’ll plot outcome when nature follows f:

fig_f, axes_f = plot_learning_results(
results_f, π_0_scenarios, 'f', 1.0)

plt.show()
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We can see that the agent with the more accurate belief gets higher consumption share.

Moreover, the further apart are initial beliefs, the longer it takes for the consumption ratio to converge.

The longer it takes for the “less accurate” agent to learn, the lower its ultimate consumption share.

Now let’s plot outcomes when nature follows g:

fig_g, axes_g = plot_learning_results(results_g, π_0_scenarios, 'g', 0.0)
plt.show()
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We observe symmetrical outcomes.

Exercise 23.11.3

In the previous exercise, we purposefully set the two beta distributions to be relatively close to each other.

That made it challenging to distinguish the distributions.

Now let’s study outcomes when the distributions are further apart.

Let’s set 𝑓 ∼ Beta(2, 5) and 𝑔 ∼ Beta(5, 2).
Please use the Python code you have written to study outcomes.

Solution to Exercise 23.11.3

Here is one solution

λ = 0.5
T = 40
N = 1000

F_a, F_b = 2, 5
G_a, G_b = 5, 2

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

π_0_scenarios = [
(0.3, 0.7),
(0.7, 0.3),
(0.1, 0.9),

]

s_seq_f = np.random.beta(F_a, F_b, (N, T))
s_seq_g = np.random.beta(G_a, G_b, (N, T))

results_f = {}
results_g = {}

for i, (π_0_1, π_0_2) in enumerate(π_0_scenarios):
# When nature follows f
results_f[i] = simulate_learning_blume_easley(

s_seq_f, f, g, π_0_1, π_0_2, λ)
# When nature follows g
results_g[i] = simulate_learning_blume_easley(

s_seq_g, f, g, π_0_1, π_0_2, λ)

Now let’s visualize the results

fig_f, axes_f = plot_learning_results(results_f, π_0_scenarios, 'f', 1.0)
plt.show()
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fig_g, axes_g = plot_learning_results(results_g, π_0_scenarios, 'g', 0.0)
plt.show()
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Evidently, because the two distributions are further apart, it is easier to distinguish them.

So learning occurs more quickly.

So do consumption shares.

Exercise 23.11.4

Two agents have different beliefs about three possible models.

Assume 𝑓(𝑥) ≥ 0, 𝑔(𝑥) ≥ 0, and ℎ(𝑥) ≥ 0 for 𝑥 ∈ 𝑋 with:

• ∫𝑋 𝑓(𝑥)𝑑𝑥 = 1
• ∫𝑋 𝑔(𝑥)𝑑𝑥 = 1
• ∫𝑋 ℎ(𝑥)𝑑𝑥 = 1

We’ll consider two agents:

• Agent 1: 𝜋𝑔
0 = 1 − 𝜋𝑓

0 , 𝜋𝑓
0 ∈ (0, 1), 𝜋ℎ

0 = 0 (attaches positive probability only to models 𝑓 and 𝑔)
• Agent 2: 𝜋𝑔

0 = 𝜋𝑓
0 = 1/3, 𝜋ℎ

0 = 1/3 (attaches equal weights to all three models)
Let 𝑓 and 𝑔 be two beta distributions with 𝑓 ∼ Beta(3, 2) and 𝑔 ∼ Beta(2, 3), and set ℎ = 𝜋𝑓

0 𝑓 + (1 − 𝜋𝑓
0 )𝑔 with

𝜋𝑓
0 = 0.5.

Bayes’ Law tells us that posterior probabilities on models 𝑓 and 𝑔 evolve according to

𝜋𝑓(𝑠𝑡) ∶= 𝜋𝑓
0 𝑓(𝑠𝑡)

𝜋𝑓
0 𝑓(𝑠𝑡) + 𝜋𝑔

0𝑔(𝑠𝑡) + (1 − 𝜋𝑓
0 − 𝜋𝑔

0)ℎ(𝑠𝑡)

and

𝜋𝑔(𝑠𝑡) ∶= 𝜋𝑔
0𝑔(𝑠𝑡)

𝜋𝑓
0 𝑓(𝑠𝑡) + 𝜋𝑔

0𝑔(𝑠𝑡) + (1 − 𝜋𝑓
0 − 𝜋𝑔

0)ℎ(𝑠𝑡)

Please simulate and visualize evolutions of posterior probabilities and consumption allocations when:

• Nature permanently draws from 𝑓
• Nature permanently draws from 𝑔

Solution to Exercise 23.11.4

Let’s implement this three-model case with two agents having different beliefs.

Let’s define 𝑓 and 𝑔 far apart, with ℎ being a mixture of 𝑓 and 𝑔.
F_a, F_b = 3, 2
G_a, G_b = 2, 3
λ = 0.5
π_f_0 = 0.5

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))
h = jit(lambda x: π_f_0 * f(x) + (1 - π_f_0) * g(x))
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Now we can define the belief updating for the model
@jit(parallel=True)
def compute_posterior_three_models(

s_seq, f_func, g_func, h_func, π_f_0, π_g_0):
"""
Compute posterior probabilities for three models.
"""
N, T = s_seq.shape
π_h_0 = 1 - π_f_0 - π_g_0

π_f = np.zeros((N, T))
π_g = np.zeros((N, T))
π_h = np.zeros((N, T))

for n in prange(N):
# Initialize with priors
π_f[n, 0] = π_f_0
π_g[n, 0] = π_g_0
π_h[n, 0] = π_h_0

# Compute cumulative likelihoods
f_cumul = 1.0
g_cumul = 1.0
h_cumul = 1.0

for t in range(1, T):
s_t = s_seq[n, t]

# Update cumulative likelihoods
f_cumul *= f_func(s_t)
g_cumul *= g_func(s_t)
h_cumul *= h_func(s_t)

# Compute posteriors using Bayes' rule
denominator = π_f_0 * f_cumul + π_g_0 * g_cumul + π_h_0 * h_cumul

π_f[n, t] = π_f_0 * f_cumul / denominator
π_g[n, t] = π_g_0 * g_cumul / denominator
π_h[n, t] = π_h_0 * h_cumul / denominator

return π_f, π_g, π_h

Let’s also write simulation code along the lines of earlier exercises
@jit
def bayesian_update_three_models(π_f_0, π_g_0, L_f, L_g, L_h):

"""Bayesian update for three models."""
π_h_0 = 1 - π_f_0 - π_g_0
denom = π_f_0 * L_f + π_g_0 * L_g + π_h_0 * L_h
return π_f_0 * L_f / denom, π_g_0 * L_g / denom, π_h_0 * L_h / denom

@jit
def compute_mixture_density(π_f, π_g, π_h, f_val, g_val, h_val):

"""Compute mixture density for an agent."""
return π_f * f_val + π_g * g_val + π_h * h_val

@jit(parallel=True)
def simulate_three_model_allocation(sequences, f_func, g_func, h_func,

π_f_0_1, π_g_0_1, π_f_0_2, π_g_0_2, λ=0.5):

448 Chapter 23. Heterogeneous Beliefs and Financial Markets



Intermediate Quantitative Economics with Python

"""
Simulate Blume-Easley model with learning agents and three models.
"""
N, T = sequences.shape

# Initialize arrays to store results
beliefs_1 = {k: np.full((N, T), np.nan) for k in ['π_f', 'π_g', 'π_h']}
beliefs_2 = {k: np.full((N, T), np.nan) for k in ['π_f', 'π_g', 'π_h']}
c1_share = np.full((N, T), np.nan)
l_agents_seq = np.full((N, T), np.nan)

# Set initial beliefs
beliefs_1['π_f'][:, 0] = π_f_0_1
beliefs_1['π_g'][:, 0] = π_g_0_1
beliefs_1['π_h'][:, 0] = 1 - π_f_0_1 - π_g_0_1
beliefs_2['π_f'][:, 0] = π_f_0_2
beliefs_2['π_g'][:, 0] = π_g_0_2
beliefs_2['π_h'][:, 0] = 1 - π_f_0_2 - π_g_0_2

for n in range(N):
# Initialize cumulative likelihoods
L_cumul = {'f': 1.0, 'g': 1.0, 'h': 1.0}
l_agents_cumul = 1.0

# Calculate initial consumption share at t=0
l_agents_seq[n, 0] = 1.0
c1_share[n, 0] = λ * 1.0 / (1 - λ + λ * 1.0) # This equals λ

for t in range(1, T):
s_t = sequences[n, t]

# Compute densities for current observation
densities = {

'f': f_func(s_t),
'g': g_func(s_t),
'h': h_func(s_t)

}

# Update cumulative likelihoods
for model in L_cumul:

L_cumul[model] *= densities[model]

# Bayesian updates for both agents
π_f_1, π_g_1, π_h_1 = bayesian_update_three_models(

π_f_0_1, π_g_0_1, L_cumul['f'], L_cumul['g'], L_cumul['h'])
π_f_2, π_g_2, π_h_2 = bayesian_update_three_models(

π_f_0_2, π_g_0_2, L_cumul['f'], L_cumul['g'], L_cumul['h'])

# Store beliefs
beliefs_1['π_f'][n, t] = π_f_1
beliefs_1['π_g'][n, t] = π_g_1
beliefs_1['π_h'][n, t] = π_h_1
beliefs_2['π_f'][n, t] = π_f_2
beliefs_2['π_g'][n, t] = π_g_2
beliefs_2['π_h'][n, t] = π_h_2

# Compute mixture densities
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m1_t = compute_mixture_density(
π_f_1, π_g_1, π_h_1, densities['f'],
densities['g'], densities['h'])

m2_t = compute_mixture_density(
π_f_2, π_g_2, π_h_2, densities['f'],
densities['g'], densities['h'])

# Update cumulative likelihood ratio between agents
l_agents_cumul *= (m1_t / m2_t)
l_agents_seq[n, t] = l_agents_cumul

# Consumption share for agent 1
c1_share[n, t] = λ * l_agents_cumul / (1 - λ + λ * l_agents_cumul)

return {
'π_f_1': beliefs_1['π_f'],
'π_g_1': beliefs_1['π_g'],
'π_h_1': beliefs_1['π_h'],
'π_f_2': beliefs_2['π_f'],
'π_g_2': beliefs_2['π_g'],
'π_h_2': beliefs_2['π_h'],
'c1_share': c1_share,
'l_agents': l_agents_seq

}

The following code cell defines a plotting function to show evolutions of beliefs and consumption ratios

Now let’s run the simulation.

In the simulation below, agent 1 assigns positive probabilities only to 𝑓 and 𝑔, while agent 2 puts equal weights on all
three models.

T = 100
N = 1000

# Generate sequences for nature f and g
s_seq_f = np.random.beta(F_a, F_b, (N, T))
s_seq_g = np.random.beta(G_a, G_b, (N, T))

# Run simulations
results_f = simulate_three_model_allocation(s_seq_f,

f, g, h, π_f_0, 1-π_f_0,
1/3, 1/3, λ)

results_g = simulate_three_model_allocation(s_seq_g,
f, g, h, π_f_0, 1-π_f_0,
1/3, 1/3, λ)

Plots below show the evolution of beliefs for each model (f, g, h) separately.

First we show the figure when nature chooses 𝑓

plot_belief_evolution(results_f, nature='f', figsize=(15, 5))
plt.show()
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Agent 1’s posterior beliefs are depicted in blue and agent 2’s posterior beliefs are depicted in orange.

Evidently, when nature draws from 𝑓 , agent 1 learns faster than agent 2, who, unlike agent 1, attaches a positive prior
probability to model ℎ:

• In the leftmost panel, both agents’ beliefs for 𝜋(𝑓) converge toward 1 (the truth)

• Agent 2’s belief in model ℎ (rightmost panel) gradually converges to 0 after an initial rise

Now let’s plot the belief evolution when nature chooses 𝑔:

plot_belief_evolution(results_g, nature='g', figsize=(15, 5))
plt.show()

Again, agent 1 learns faster than agent 2.

Before reading the next figure, please guess how consumption shares evolve.

Remember that agent 1 reaches the correct model faster than agent 2

plot_consumption_dynamics(results_f, results_g, λ=0.5, figsize=(14, 5))
plt.show()
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As we expected, agent 1 has a higher consumption share compared to agent 2.

In this exercise, the “truth” is among possible outcomes according to both agents.

Agent 2’s model is “more general” because it allows a possibility – that nature is drawing from ℎ – that agent 1’s model
does not include.

Agent 1 learns more quickly because he uses a simpler model.

Exercise 23.11.5

Now consider two agents with extreme priors about three models.

Consider the same setup as the previous exercise, but now:

• Agent 1: 𝜋𝑔
0 = 𝜋𝑓

0 = 𝜖
2 > 0, where 𝜖 is close to 0 (e.g., 𝜖 = 0.01)

• Agent 2: 𝜋𝑔
0 = 𝜋𝑓

0 = 0 (rigid belief in model ℎ)
Choose ℎ to be close but not equal to either 𝑓 or 𝑔 as measured by KL divergence. For example, set ℎ ∼ Beta(1.2, 1.1)
and 𝑓 ∼ Beta(1, 1).
Please simulate and visualize evolutions of posterior probabilities and consumption allocations when:

• Nature permanently draws from 𝑓
• Nature permanently draws from 𝑔

Solution to Exercise 23.11.5

To explore this exercise, we increase 𝑇 to 1000.

Let’s specify 𝑓, 𝑔, and ℎ and verify that ℎ and 𝑓 are closer than ℎ and 𝑔
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2
H_a, H_b = 1.2, 1.1

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))
h = jit(lambda x: p(x, H_a, H_b))

Kh_f = compute_KL(h, f)
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Kh_g = compute_KL(h, g)
Kf_h = compute_KL(f, h)
Kg_h = compute_KL(g, h)

print(f"KL divergences:")
print(f"KL(h,f) = {Kh_f:.4f}, KL(h,g) = {Kh_g:.4f}")
print(f"KL(f,h) = {Kf_h:.4f}, KL(g,h) = {Kg_h:.4f}")

KL divergences:
KL(h,f) = 0.0092, KL(h,g) = 0.5514
KL(f,h) = 0.0105, KL(g,h) = 0.2919

Now we can set the belief models for the two agents

ε = 0.01
λ = 0.5

# Agent 1: π_f = ε/2, π_g = ε/2, π_h = 1-ε
# (almost rigid about h)
π_f_1 = ε/2
π_g_1 = ε/2

# Agent 2: π_f = 0, π_g = 0, π_h = 1
# (fully rigid about h)
π_f_2 = 1e-10
π_g_2 = 1e-10

Now we can run the simulation

T = 1000
N = 1000

# Generate sequences for different nature scenarios
s_seq_f = np.random.beta(F_a, F_b, (N, T))
s_seq_g = np.random.beta(G_a, G_b, (N, T))

# Run simulations for both scenarios
results_f = simulate_three_model_allocation(

s_seq_f,
f, g, h,
π_f_1, π_g_1, π_f_2, π_g_2, λ)

results_g = simulate_three_model_allocation(
s_seq_g,
f, g, h,
π_f_1, π_g_1, π_f_2, π_g_2, λ)

Let’s plot the belief evolution when nature chooses 𝑓

plot_belief_evolution(results_f, nature='f', figsize=(15, 5))
plt.show()
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Observe how slowly agent 1 learns the truth in the leftmost panel showing 𝜋(𝑓).

Also note that agent 2 is not updating.

This is because we have specified that 𝑓 is very difficult to distinguish from ℎ as measured by 𝐾𝐿(𝑓, ℎ).

The rigidity regarding ℎ prevents agent 2 from updating its beliefs when observing a very similar model 𝑓

Now let’s plot the belief evolution when nature chooses 𝑔

plot_belief_evolution(results_g, nature='g', figsize=(15, 5))
plt.show()

When nature draws from 𝑔, it is further away from ℎ as measured by the KL divergence.

This helps both agents learn the truth more quickly.

plot_consumption_dynamics(results_f, results_g,
λ=0.5, figsize=(14, 5))

plt.show()
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In the consumption dynamics plot, notice that agent 1’s consumption share converges to 1 both when nature perma-
nently draws from 𝑓 and when nature permanently draws from 𝑔.
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CHAPTER

TWENTYFOUR

LIKELIHOOD PROCESSES FOR VAR MODELS

Contents

• Likelihood Processes For VAR Models

– Overview

– VAR model setup

– Likelihood ratio process

– Example 1: two AR(1) processes

– Example 2: bivariate VAR models

– Application: Samuelson multiplier-accelerator

24.1 Overview

This lecture extends our analysis of likelihood ratio processes to Vector Autoregressions (VARs).

We’ll

• Construct likelihood functions for VAR models

• Form likelihood ratio processes for comparing two VAR models

• Visualize the evolution of likelihood ratios over time

• Connect VAR likelihood ratios to the Samuelson multiplier-accelerator model

Our analysis builds on concepts from:

• Likelihood Ratio Processes

• Linear State Space Models

• Samuelson Multiplier-Accelerator

Let’s start by importing helpful libraries:

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg
from scipy.stats import multivariate_normal as mvn

(continues on next page)
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(continued from previous page)

from quantecon import LinearStateSpace
import quantecon as qe
from numba import jit
from typing import NamedTuple, Optional, Tuple
from collections import namedtuple

24.2 VAR model setup

Consider a VAR model of the form:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑥0 ∼ 𝒩(𝜇0, Σ0)

where:

• 𝑥𝑡 is an 𝑛 × 1 state vector
• 𝑤𝑡+1 ∼ 𝒩(0, 𝐼) is an 𝑚 × 1 vector of shocks
• 𝐴 is an 𝑛 × 𝑛 transition matrix

• 𝐶 is an 𝑛 × 𝑚 volatility matrix

Let’s define the necessary data structures for the VAR model

VARModel = namedtuple('VARModel', ['A', 'C', 'μ_0', 'Σ_0',
'CC', 'CC_inv', 'log_det_CC',
'Σ_0_inv', 'log_det_Σ_0'])

def compute_stationary_var(A, C):
"""
Compute stationary mean and covariance for VAR model
"""
n = A.shape[0]

# Check stability
eigenvalues = np.linalg.eigvals(A)
if np.max(np.abs(eigenvalues)) >= 1:

raise ValueError("VAR is not stationary")

μ_0 = np.zeros(n)

# Stationary covariance: solve discrete Lyapunov equation
# Σ_0 = A @ Σ_0 @ A.T + C @ C.T
CC = C @ C.T
Σ_0 = linalg.solve_discrete_lyapunov(A, CC)

return μ_0, Σ_0

def create_var_model(A, C, μ_0=None, Σ_0=None, stationary=True):
"""
Create a VAR model with parameters and precomputed matrices
"""
A = np.asarray(A)
C = np.asarray(C)
n = A.shape[0]
CC = C @ C.T

(continues on next page)
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(continued from previous page)

if stationary:
μ_0_comp, Σ_0_comp = compute_stationary_var(A, C)

else:
μ_0_comp = μ_0 if μ_0 is not None else np.zeros(n)
Σ_0_comp = Σ_0 if Σ_0 is not None else np.eye(n)

# Check if CC is singular
det_CC = np.linalg.det(CC)
if np.abs(det_CC) < 1e-10:

# Use pseudo-inverse for singular case
CC_inv = np.linalg.pinv(CC)
CC_reg = CC + 1e-10 * np.eye(CC.shape[0])
log_det_CC = np.log(np.linalg.det(CC_reg))

else:
CC_inv = np.linalg.inv(CC)
log_det_CC = np.log(det_CC)

# Same check for Σ_0
det_Σ_0 = np.linalg.det(Σ_0_comp)
if np.abs(det_Σ_0) < 1e-10:

Σ_0_inv = np.linalg.pinv(Σ_0_comp)
Σ_0_reg = Σ_0_comp + 1e-10 * np.eye(Σ_0_comp.shape[0])
log_det_Σ_0 = np.log(np.linalg.det(Σ_0_reg))

else:
Σ_0_inv = np.linalg.inv(Σ_0_comp)
log_det_Σ_0 = np.log(det_Σ_0)

return VARModel(A=A, C=C, μ_0=μ_0_comp, Σ_0=Σ_0_comp,
CC=CC, CC_inv=CC_inv, log_det_CC=log_det_CC,
Σ_0_inv=Σ_0_inv, log_det_Σ_0=log_det_Σ_0)

24.2.1 Joint distribution

The joint probability distribution 𝑓(𝑥𝑇 , 𝑥𝑇 −1, … , 𝑥0) can be factored as:

𝑓(𝑥𝑇 , … , 𝑥0) = 𝑓(𝑥𝑇 |𝑥𝑇 −1)𝑓(𝑥𝑇 −1|𝑥𝑇 −2) ⋯ 𝑓(𝑥1|𝑥0)𝑓(𝑥0)

Since the VAR is Markovian, 𝑓(𝑥𝑡+1|𝑥𝑡, … , 𝑥0) = 𝑓(𝑥𝑡+1|𝑥𝑡).

24.2.2 Conditional densities

Given the Gaussian structure, the conditional distribution 𝑓(𝑥𝑡+1|𝑥𝑡) is Gaussian with:
• Mean: 𝐴𝑥𝑡

• Covariance: 𝐶𝐶′

The log conditional density is

log 𝑓(𝑥𝑡+1|𝑥𝑡) = −𝑛
2 log(2𝜋) − 1

2 log det(𝐶𝐶′) − 1
2(𝑥𝑡+1 − 𝐴𝑥𝑡)′(𝐶𝐶′)−1(𝑥𝑡+1 − 𝐴𝑥𝑡) (24.1)
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def log_likelihood_transition(x_next, x_curr, model):
"""
Compute log likelihood of transition from x_curr to x_next
"""
x_next = np.atleast_1d(x_next)
x_curr = np.atleast_1d(x_curr)
n = len(x_next)
diff = x_next - model.A @ x_curr
return -0.5 * (n * np.log(2 * np.pi) + model.log_det_CC +

diff @ model.CC_inv @ diff)

The log density of the initial state is:

log 𝑓(𝑥0) = −𝑛
2 log(2𝜋) − 1

2 log det(Σ0) − 1
2(𝑥0 − 𝜇0)′Σ−1

0 (𝑥0 − 𝜇0)

def log_likelihood_initial(x_0, model):
"""
Compute log likelihood of initial state
"""
x_0 = np.atleast_1d(x_0)
n = len(x_0)
diff = x_0 - model.μ_0
return -0.5 * (n * np.log(2 * np.pi) + model.log_det_Σ_0 +

diff @ model.Σ_0_inv @ diff)

Now let’s group the likelihood computations into a single function that computes the log likelihood of an entire path

def log_likelihood_path(X, model):
"""
Compute log likelihood of entire path
"""

T = X.shape[0] - 1
log_L = log_likelihood_initial(X[0], model)

for t in range(T):
log_L += log_likelihood_transition(X[t+1], X[t], model)

return log_L

def simulate_var(model, T, N_paths=1):
"""
Simulate paths from the VAR model
"""
n = model.A.shape[0]
m = model.C.shape[1]
paths = np.zeros((N_paths, T+1, n))

for i in range(N_paths):
# Draw initial state
x = mvn.rvs(mean=model.μ_0, cov=model.Σ_0)
x = np.atleast_1d(x)
paths[i, 0] = x

# Simulate forward
for t in range(T):

w = np.random.randn(m)

(continues on next page)
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x = model.A @ x + model.C @ w
paths[i, t+1] = x

return paths if N_paths > 1 else paths[0]

24.3 Likelihood ratio process

Now let’s compute likelihood ratio processes for comparing two VAR models.

For a VAR model with state vector 𝑥𝑡, the log likelihood ratio at time 𝑡 is

ℓ𝑡 = log
𝑝𝑓(𝑥𝑡|𝑥𝑡−1)
𝑝𝑔(𝑥𝑡|𝑥𝑡−1)

where 𝑝𝑓 and 𝑝𝑔 are the conditional densities under models 𝑓 and 𝑔 respectively.
The cumulative log likelihood ratio process is

𝐿𝑡 =
𝑡

∑
𝑠=1

ℓ𝑠 =
𝑡

∑
𝑠=1

log
𝑝𝑓(𝑥𝑠|𝑥𝑠−1)
𝑝𝑔(𝑥𝑠|𝑥𝑠−1)

where 𝑝𝑓(𝑥𝑡|𝑥𝑡−1) and 𝑝𝑔(𝑥𝑡|𝑥𝑡−1) are given by their respective conditional densities defined in (24.1).
Let’s write those equations in Python

def compute_likelihood_ratio_var(paths, model_f, model_g):
"""
Compute likelihood ratio process for VAR models
"""
if paths.ndim == 2:

paths = paths[np.newaxis, :]

N_paths, T_plus_1, n = paths.shape
T = T_plus_1 - 1
log_L_ratios = np.zeros((N_paths, T+1))

for i in range(N_paths):
X = paths[i]

# Initial log likelihood ratio
log_L_f_0 = log_likelihood_initial(X[0], model_f)
log_L_g_0 = log_likelihood_initial(X[0], model_g)
log_L_ratios[i, 0] = log_L_f_0 - log_L_g_0

# Recursive computation
for t in range(1, T+1):

log_L_f_t = log_likelihood_transition(X[t], X[t-1], model_f)
log_L_g_t = log_likelihood_transition(X[t], X[t-1], model_g)

# Update log likelihood ratio
log_diff = log_L_f_t - log_L_g_t

log_L_prev = log_L_ratios[i, t-1]
log_L_new = log_L_prev + log_diff
log_L_ratios[i, t] = log_L_new

(continues on next page)

24.3. Likelihood ratio process 461



Intermediate Quantitative Economics with Python

(continued from previous page)

return log_L_ratios if N_paths > 1 else log_L_ratios[0]

24.4 Example 1: two AR(1) processes

Let’s start with a simple example comparing two univariate AR(1) processes with 𝐴𝑓 = 0.8, 𝐴𝑔 = 0.5, and 𝐶𝑓 = 0.3,
𝐶𝑔 = 0.4
# Model f: AR(1) with persistence ρ = 0.8
A_f = np.array([[0.8]])
C_f = np.array([[0.3]])

# Model g: AR(1) with persistence ρ = 0.5
A_g = np.array([[0.5]])
C_g = np.array([[0.4]])

# Create VAR models
model_f = create_var_model(A_f, C_f)
model_g = create_var_model(A_g, C_g)

Let’s generate 100 paths of length 200 from model 𝑓 and compute the likelihood ratio processes

# Simulate from model f
T = 200
N_paths = 100
paths_from_f = simulate_var(model_f, T, N_paths)

L_ratios_f = compute_likelihood_ratio_var(paths_from_f, model_f, model_g)

fig, ax = plt.subplots()

for i in range(min(20, N_paths)):
ax.plot(L_ratios_f[i], alpha=0.3, color='C0', lw=2)

ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5)
ax.set_ylabel(r'$\log L_t$')
ax.set_title('log likelihood ratio processes (nature = f)')

plt.tight_layout()
plt.show()
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As we expected, the likelihood ratio processes goes to +∞ as 𝑇 increases, indicating that model 𝑓 is chosen correctly by
our algorithm.

24.5 Example 2: bivariate VAR models

Now let’s consider an example with bivariate VAR models with

𝐴𝑓 = [0.7 0.2
0.1 0.6] , 𝐶𝑓 = [0.3 0.1

0.1 0.3]

and

𝐴𝑔 = [0.5 0.3
0.2 0.5] , 𝐶𝑔 = [0.4 0.0

0.0 0.4]

A_f = np.array([[0.7, 0.2],
[0.1, 0.6]])

C_f = np.array([[0.3, 0.1],
[0.1, 0.3]])

A_g = np.array([[0.5, 0.3],
[0.2, 0.5]])

C_g = np.array([[0.4, 0.0],

(continues on next page)
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[0.0, 0.4]])

# Create VAR models
model2_f = create_var_model(A_f, C_f)
model2_g = create_var_model(A_g, C_g)

# Check stationarity
print("model f eigenvalues:", np.linalg.eigvals(A_f))
print("model g eigenvalues:", np.linalg.eigvals(A_g))

model f eigenvalues: [0.8 0.5]
model g eigenvalues: [0.74494897 0.25505103]

Let’s generate 50 paths of length 50 from both models and compute the likelihood ratio processes

# Simulate from both models
T = 50
N_paths = 50

paths_from_f = simulate_var(model2_f, T, N_paths)
paths_from_g = simulate_var(model2_g, T, N_paths)

# Compute likelihood ratios
L_ratios_ff = compute_likelihood_ratio_var(paths_from_f, model2_f, model2_g)
L_ratios_gf = compute_likelihood_ratio_var(paths_from_g, model2_f, model2_g)

We can see that for paths generated from model 𝑓 , the likelihood ratio processes tend to go to +∞, while for paths from
model 𝑔, they tend to go to −∞.

# Visualize the results
fig, axes = plt.subplots(1, 2, figsize=(12, 5))

ax = axes[0]
for i in range(min(20, N_paths)):

ax.plot(L_ratios_ff[i], alpha=0.5, color='C0', lw=2)
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5, lw=2)
ax.set_title(r'$\log L_t$ (nature = f)')
ax.set_ylabel(r'$\log L_t$')

ax = axes[1]
for i in range(min(20, N_paths)):

ax.plot(L_ratios_gf[i], alpha=0.5, color='C1', lw=2)
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5, lw=2)
ax.set_title(r'$\log L_t$ (nature = g)')
plt.tight_layout()
plt.show()
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Let’s apply a Neyman-Pearson frequentist decision rule described in Likelihood Ratio Processes that selects model 𝑓 when
log𝐿𝑇 ≥ 0 and model 𝑔 when log𝐿𝑇 < 0
fig, ax = plt.subplots()
T_values = np.arange(0, T+1)
accuracy_f = np.zeros(len(T_values))
accuracy_g = np.zeros(len(T_values))

for i, t in enumerate(T_values):
# Correct selection when data from f
accuracy_f[i] = np.mean(L_ratios_ff[:, t] > 0)
# Correct selection when data from g
accuracy_g[i] = np.mean(L_ratios_gf[:, t] < 0)

ax.plot(T_values, accuracy_f, 'C0', linewidth=2, label='accuracy (nature = f)')
ax.plot(T_values, accuracy_g, 'C1', linewidth=2, label='accuracy (nature = g)')
ax.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
ax.set_xlabel('T')
ax.set_ylabel('accuracy')
ax.legend()

plt.tight_layout()
plt.show()
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Evidently, the accuracy approaches 1 as 𝑇 increases, and it does so very quickly.

Let’s also check the type I and type II errors as functions of 𝑇
def model_selection_analysis(T_values, model_f, model_g, N_sim=500):

"""
Analyze model selection performance for different sample sizes
"""
errors_f = [] # Type I errors
errors_g = [] # Type II errors

for T in T_values:
# Simulate from model f
paths_f = simulate_var(model_f, T, N_sim//2)
L_ratios_f = compute_likelihood_ratio_var(paths_f, model_f, model_g)

# Simulate from model g
paths_g = simulate_var(model_g, T, N_sim//2)
L_ratios_g = compute_likelihood_ratio_var(paths_g, model_f, model_g)

# Decision rule: choose f if log L_T >= 0
errors_f.append(np.mean(L_ratios_f[:, -1] < 0))
errors_g.append(np.mean(L_ratios_g[:, -1] >= 0))

return np.array(errors_f), np.array(errors_g)

T_values = np.arange(1, 50, 1)

(continues on next page)
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errors_f, errors_g = model_selection_analysis(T_values, model2_f, model2_g, N_sim=400)

fig, ax = plt.subplots()

ax.plot(T_values, errors_f, 'C0', linewidth=2, label='type I error')
ax.plot(T_values, errors_g, 'C1', linewidth=2, label='type II error')
ax.plot(T_values, 0.5 * (errors_f + errors_g), 'g--',
linewidth=2, label='average error')
ax.set_xlabel('$T$')
ax.set_ylabel('error probability')
ax.set_title('model selection errors')
plt.tight_layout()
plt.show()

24.6 Application: Samuelson multiplier-accelerator

Now let’s connect to the Samuelson multiplier-accelerator model.

The model consists of:

• Consumption: 𝐶𝑡 = 𝛾 + 𝑎𝑌𝑡−1 where 𝑎 ∈ (0, 1) is the marginal propensity to consume
• Investment: 𝐼𝑡 = 𝑏(𝑌𝑡−1 − 𝑌𝑡−2) where 𝑏 > 0 is the accelerator coefficient
• Government spending: 𝐺𝑡 = 𝐺 (constant)
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We have the national income identity

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡

Equations yields the second-order difference equation:

𝑌𝑡 = (𝛾 + 𝐺) + (𝑎 + 𝑏)𝑌𝑡−1 − 𝑏𝑌𝑡−2 + 𝜎𝜖𝑡

With 𝜌1 = 𝑎 + 𝑏 and 𝜌2 = −𝑏, we have:

𝑌𝑡 = (𝛾 + 𝐺) + 𝜌1𝑌𝑡−1 + 𝜌2𝑌𝑡−2 + 𝜎𝜖𝑡

To fit into our discussion, we write it into state-space representation.

To handle the constant term properly, we use an augmented state vector x𝑡 = [1, 𝑌𝑡, 𝑌𝑡−1]′:

x𝑡+1 = ⎡⎢
⎣

1
𝑌𝑡+1
𝑌𝑡

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
𝛾 + 𝐺 𝜌1 𝜌2

0 1 0
⎤⎥
⎦

⎡⎢
⎣

1
𝑌𝑡

𝑌𝑡−1

⎤⎥
⎦

+ ⎡⎢
⎣

0
𝜎
0
⎤⎥
⎦

𝜖𝑡+1

The observation equation extracts the economic variables:

y𝑡 = ⎡⎢
⎣

𝑌𝑡
𝐶𝑡
𝐼𝑡

⎤⎥
⎦

= ⎡⎢
⎣

𝛾 + 𝐺 𝜌1 𝜌2
𝛾 𝑎 0
0 𝑏 −𝑏

⎤⎥
⎦

⎡⎢
⎣

1
𝑌𝑡

𝑌𝑡−1

⎤⎥
⎦

This gives us:

• 𝑌𝑡 = (𝛾 + 𝐺) ⋅ 1 + 𝜌1𝑌𝑡−1 + 𝜌2𝑌𝑡−2 (total output)

• 𝐶𝑡 = 𝛾 ⋅ 1 + 𝑎𝑌𝑡−1 (consumption)

• 𝐼𝑡 = 𝑏(𝑌𝑡−1 − 𝑌𝑡−2) (investment)
def samuelson_to_var(a, b, γ, G, σ):

"""
Convert Samuelson model parameters to VAR form with augmented state

Samuelson model:
- Y_t = C_t + I_t + G
- C_t = γ + a*Y_{t-1}
- I_t = b*(Y_{t-1} - Y_{t-2})

Reduced form: Y_t = (γ+G) + (a+b)*Y_{t-1} - b*Y_{t-2} + σ*ε_t

State vector is [1, Y_t, Y_{t-1}]'
"""
ρ_1 = a + b
ρ_2 = -b

# State transition matrix for augmented state
A = np.array([[1, 0, 0],

[γ + G, ρ_1, ρ_2],
[0, 1, 0]])

# Shock loading matrix
C = np.array([[0],

[σ],
[0]])

(continues on next page)
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# Observation matrix (extracts Y_t, C_t, I_t)
G_obs = np.array([[γ + G, ρ_1, ρ_2], # Y_t

[γ, a, 0], # C_t
[0, b, -b]]) # I_t

return A, C, G_obs

We define functions in the code cell below to get the initial conditions and check stability

Let’s implement it and inspect the likelihood ratio processes induced by two Samuelson models with different parameters.

def create_samuelson_var_model(a, b, γ, G, σ, stationary_init=False,
y_0=None, y_m1=None):

"""
Create a VAR model from Samuelson parameters
"""
A, C, G_obs = samuelson_to_var(a, b, γ, G, σ)

μ_0, Σ_0 = get_samuelson_initial_conditions(
a, b, γ, G, y_0, y_m1, stationary_init

)

# Create VAR model
model = create_var_model(A, C, μ_0, Σ_0, stationary=False)
is_stable, roots, max_root, dynamics = check_samuelson_stability(a, b)
info = {

'a': a, 'b': b, 'γ': γ, 'G': G, 'σ': σ,
'ρ_1': a + b, 'ρ_2': -b,
'steady_state': (γ + G) / (1 - a - b),
'is_stable': is_stable,
'roots': roots,
'max_abs_root': max_root,
'dynamics': dynamics

}

return model, G_obs, info

def simulate_samuelson(model, G_obs, T, N_paths=1):
"""
Simulate Samuelson model
"""
# Simulate state paths
states = simulate_var(model, T, N_paths)

# Extract observables using G matrix
if N_paths == 1:

# Single path: states is (T+1, 3)
observables = (G_obs @ states.T).T

else:
# Multiple paths: states is (N_paths, T+1, 3)
observables = np.zeros((N_paths, T+1, 3))
for i in range(N_paths):

observables[i] = (G_obs @ states[i].T).T

return states, observables

Now let’s simulate two Samuelson models with different accelerator coefficients and plot their sample paths
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# Model f: Higher accelerator coefficient
a_f, b_f = 0.98, 0.9
γ_f, G_f, σ_f = 10, 10, 0.5

# Model g: Lower accelerator coefficient
a_g, b_g = 0.98, 0.85
γ_g, G_g, σ_g = 10, 10, 0.5

model_sam_f, G_obs_f, info_f = create_samuelson_var_model(
a_f, b_f, γ_f, G_f, σ_f,
stationary_init=False,
y_0=100, y_m1=95

)

model_sam_g, G_obs_g, info_g = create_samuelson_var_model(
a_g, b_g, γ_g, G_g, σ_g,
stationary_init=False,
y_0=100, y_m1=95

)

T = 50
N_paths = 50

# Get both states and observables
states_f, obs_f = simulate_samuelson(model_sam_f, G_obs_f, T, N_paths)
states_g, obs_g = simulate_samuelson(model_sam_g, G_obs_g, T, N_paths)

output_paths_f = obs_f[:, :, 0]
output_paths_g = obs_g[:, :, 0]

print("model f:")
print(f" ρ_1 = a + b = {info_f['ρ_1']:.2f}")
print(f" ρ_2 = -b = {info_f['ρ_2']:.2f}")
print(f" roots: {info_f['roots']}")
print(f" dynamics: {info_f['dynamics']}")

print("\nmodel g:")
print(f" ρ_1 = a + b = {info_g['ρ_1']:.2f}")
print(f" ρ_2 = -b = {info_g['ρ_2']:.2f}")
print(f" roots: {info_g['roots']}")
print(f" dynamics: {info_g['dynamics']}")

fig, ax = plt.subplots(1, 1)

for i in range(min(20, N_paths)):
ax.plot(output_paths_f[i], alpha=0.6, color='C0', linewidth=0.8)
ax.plot(output_paths_g[i], alpha=0.6, color='C1', linewidth=0.8)

ax.set_xlabel('$t$')
ax.set_ylabel('$Y_t$')
ax.legend(['model f', 'model g'], loc='upper left')
plt.tight_layout()
plt.show()

model f:
ρ_1 = a + b = 1.88

(continues on next page)
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ρ_2 = -b = -0.90
roots: [0.94+0.12806248j 0.94-0.12806248j]
dynamics: Damped oscillations

model g:
ρ_1 = a + b = 1.83
ρ_2 = -b = -0.85
roots: [0.915+0.11302655j 0.915-0.11302655j]
dynamics: Damped oscillations

# Compute likelihood ratios
L_ratios_ff = compute_likelihood_ratio_var(states_f, model_sam_f, model_sam_g)
L_ratios_gf = compute_likelihood_ratio_var(states_g, model_sam_f, model_sam_g)

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

ax = axes[0]
for i in range(min(20, N_paths)):

ax.plot(L_ratios_ff[i], alpha=0.5, color='C0', lw=0.8)
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5)
ax.set_title(r'$\log L_t$ (nature = f)')
ax.set_ylabel(r'$\log L_t$')

ax = axes[1]
for i in range(min(20, N_paths)):

(continues on next page)
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ax.plot(L_ratios_gf[i], alpha=0.5, color='C1', lw=0.8)
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5)
ax.set_title(r'$\log L_t$ (nature = g)')
plt.show()

In the figure on the left, data are generated by 𝑓 and the likelihood ratio diverges to plus infinity.

In the figure on the right, data are generated by 𝑔 and the likelihood ratio diverges to negative infinity.
In both cases, we applied a lower and upper threshold for the log likelihood ratio process for numerical stability since they
grow unbounded very quickly.

In both cases, the likelihood ratio processes eventually lead us to select the correct model.
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TWENTYFIVE

MEAN OF A LIKELIHOOD RATIO PROCESS

Contents

• Mean of a Likelihood Ratio Process

– Overview

– Mathematical expectation of likelihood ratio

– Importance sampling

– Selecting a sampling distribution

– Approximating a cumulative likelihood ratio

– Distribution of sample mean

– Choosing a sampling distribution

25.1 Overview

In this lecture we described a peculiar property of a likelihood ratio process, namely, that its mean equals one for all 𝑡 ≥ 0
despite it’s converging to zero almost surely.

While it is easy to verify that peculiar properly analytically (i.e., in population), it is challenging to use a computer
simulation to verify it via an application of a law of large numbers that entails studying sample averages of repeated
simulations.

To confront this challenge, this lecture puts importance sampling to work to accelerate convergence of sample averages
to population means.

We use importance sampling to estimate the mean of a cumulative likelihood ratio 𝐿 (𝜔𝑡) = ∏𝑡
𝑖=1 ℓ (𝜔𝑖).

We start by importing some Python packages.

import numpy as np
from numba import jit, vectorize, prange
import matplotlib.pyplot as plt
from math import gamma
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25.2 Mathematical expectation of likelihood ratio

In this lecture, we studied a likelihood ratio ℓ (𝜔𝑡)

ℓ (𝜔𝑡) = 𝑓 (𝜔𝑡)
𝑔 (𝜔𝑡)

where 𝑓 and 𝑔 are densities for Beta distributions with parameters 𝐹𝑎, 𝐹𝑏, 𝐺𝑎, 𝐺𝑏.

Assume that an i.i.d. random variable 𝜔𝑡 ∈ Ω is generated by 𝑔.
The cumulative likelihood ratio 𝐿 (𝜔𝑡) is

𝐿 (𝜔𝑡) =
𝑡

∏
𝑖=1

ℓ (𝜔𝑖)

Our goal is to approximate the mathematical expectation 𝐸 [𝐿 (𝜔𝑡)] well.
In this lecture, we showed that 𝐸 [𝐿 (𝜔𝑡)] equals 1 for all 𝑡.
We want to check out how well this holds if we replace 𝐸 by with sample averages from simulations.

This turns out to be easier said than done because for Beta distributions assumed above, 𝐿 (𝜔𝑡) has a very skewed distri-
bution with a very long tail as 𝑡 → ∞.

This property makes it difficult efficiently and accurately to estimate the mean by standard Monte Carlo simulation
methods.

In this lecture we explore how a standard Monte Carlo method fails and how importance sampling provides a more
computationally efficient way to approximate the mean of the cumulative likelihood ratio.

We first take a look at the density functions f and g .

# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(w, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * w ** (a-1) * (1 - w) ** (b-1)

# The two density functions.
f = jit(lambda w: p(w, F_a, F_b))
g = jit(lambda w: p(w, G_a, G_b))

w_range = np.linspace(1e-2, 1-1e-5, 1000)

plt.plot(w_range, g(w_range), label='g')
plt.plot(w_range, f(w_range), label='f')
plt.xlabel(r'$\omega$')
plt.legend()
plt.title('density functions $f$ and $g$')
plt.show()
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The likelihood ratio is l(w)=f(w)/g(w).

l = jit(lambda w: f(w) / g(w))

plt.plot(w_range, l(w_range))
plt.title(r'$\ell(\omega)$')
plt.xlabel(r'$\omega$')
plt.show()
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The above plots shows that as 𝜔 → 0, 𝑓 (𝜔) is unchanged and 𝑔 (𝜔) → 0, so the likelihood ratio approaches infinity.
AMonte Carlo approximation of ̂𝐸 [𝐿 (𝜔𝑡)] = ̂𝐸 [∏𝑡

𝑖=1 ℓ (𝜔𝑖)]would repeatedly draw 𝜔 from 𝑔, calculate the likelihood
ratio ℓ(𝜔) = 𝑓(𝜔)

𝑔(𝜔) for each draw, then average these over all draws.

Because 𝑔(𝜔) → 0 as 𝜔 → 0, such a simulation procedure undersamples a part of the sample space [0, 1] that it is
important to visit often in order to do a good job of approximating the mathematical expectation of the likelihood ratio
ℓ(𝜔).
We illustrate this numerically below.

25.3 Importance sampling

We circumvent the issue by using a change of distribution called importance sampling.

Instead of drawing from 𝑔 to generate data during the simulation, we use an alternative distribution ℎ to generate draws
of 𝜔.
The idea is to design ℎ so that it oversamples the region of Ω where ℓ (𝜔𝑡) has large values but low density under 𝑔.
After we construct a sample in this way, we must then weight each realization by the likelihood ratio of 𝑔 and ℎ when we
compute the empirical mean of the likelihood ratio.

By doing this, we properly account for the fact that we are using ℎ and not 𝑔 to simulate data.
To illustrate, suppose were interested in 𝐸 [ℓ (𝜔)].
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We could simply compute:

̂𝐸𝑔 [ℓ (𝜔)] = 1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑤𝑔
𝑖 )

where 𝜔𝑔
𝑖 indicates that 𝜔𝑖 is drawn from 𝑔.

But using our insight from importance sampling, we could instead calculate the object:

̂𝐸ℎ [ℓ (𝜔) 𝑔(𝑤)
ℎ(𝑤)] = 1

𝑁
𝑁

∑
𝑖=1

ℓ(𝑤ℎ
𝑖 ) 𝑔(𝑤ℎ

𝑖 )
ℎ(𝑤ℎ

𝑖 )

where 𝑤𝑖 is now drawn from importance distribution ℎ.
Notice that the above two are exactly the same population objects:

𝐸𝑔 [ℓ (𝜔)] = ∫
Ω

ℓ(𝜔)𝑔(𝜔)𝑑𝜔 = ∫
Ω

ℓ(𝜔) 𝑔(𝜔)
ℎ(𝜔)ℎ(𝜔)𝑑𝜔 = 𝐸ℎ [ℓ (𝜔) 𝑔(𝜔)

ℎ(𝜔)]

25.4 Selecting a sampling distribution

Since we must use an ℎ that has larger mass in parts of the distribution to which 𝑔 puts low mass, we use ℎ =
𝐵𝑒𝑡𝑎(0.5, 0.5) as our importance distribution.
The plots compare 𝑔 and ℎ.
g_a, g_b = G_a, G_b
h_a, h_b = 0.5, 0.5

w_range = np.linspace(1e-5, 1-1e-5, 1000)

plt.plot(w_range, g(w_range), label=f'g=Beta({g_a}, {g_b})')
plt.plot(w_range, p(w_range, 0.5, 0.5), label=f'h=Beta({h_a}, {h_b})')
plt.title('real data generating process $g$ and importance distribution $h$')
plt.legend()
plt.ylim([0., 3.])
plt.show()
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25.5 Approximating a cumulative likelihood ratio

We now study how to use importance sampling to approximate 𝐸 [𝐿(𝜔𝑡)] = [∏𝑇
𝑖=1 ℓ (𝜔𝑖)].

As above, our plan is to draw sequences 𝜔𝑡 from 𝑞 and then re-weight the likelihood ratio appropriately:

̂𝐸𝑝 [𝐿 (𝜔𝑡)] = ̂𝐸𝑝 [
𝑇

∏
𝑡=1

ℓ (𝜔𝑡)] = ̂𝐸𝑞 [
𝑇

∏
𝑡=1

ℓ (𝜔𝑡)
𝑝 (𝜔𝑡)
𝑞 (𝜔𝑡)

] = 1
𝑁

𝑁
∑
𝑖=1

(
𝑇

∏
𝑡=1

ℓ(𝜔ℎ
𝑖,𝑡)

𝑝 (𝜔ℎ
𝑖,𝑡)

𝑞 (𝜔ℎ
𝑖,𝑡)

)

where the last equality uses 𝜔ℎ
𝑖,𝑡 drawn from the importance distribution 𝑞.

Here
𝑝(𝜔𝑞

𝑖,𝑡)
𝑞(𝜔𝑞

𝑖,𝑡) is the weight we assign to each data point 𝜔𝑞
𝑖,𝑡.

Below we prepare a Python function for computing the importance sampling estimates given any beta distributions 𝑝, 𝑞.
@jit(parallel=True)
def estimate(p_a, p_b, q_a, q_b, T=1, N=10000):

μ_L = 0
for i in prange(N):

L = 1
weight = 1
for t in range(T):

w = np.random.beta(q_a, q_b)

(continues on next page)
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(continued from previous page)

l = f(w) / g(w)

L *= l
weight *= p(w, p_a, p_b) / p(w, q_a, q_b)

μ_L += L * weight

μ_L /= N

return μ_L

Consider the case when 𝑇 = 1, which amounts to approximating 𝐸0 [ℓ (𝜔)]
For the standard Monte Carlo estimate, we can set 𝑝 = 𝑔 and 𝑞 = 𝑔.
estimate(g_a, g_b, g_a, g_b, T=1, N=10000)

0.9668016326465089

For our importance sampling estimate, we set 𝑞 = ℎ.
estimate(g_a, g_b, h_a, h_b, T=1, N=10000)

1.0055471268593548

Evidently, even at 𝑇 = 1, our importance sampling estimate is closer to 1 than is the Monte Carlo estimate.

Bigger differences arise when computing expectations over longer sequences, 𝐸0 [𝐿 (𝜔𝑡)].
Setting 𝑇 = 10, we find that the Monte Carlo method severely underestimates the mean while importance sampling still
produces an estimate close to its theoretical value of unity.

estimate(g_a, g_b, g_a, g_b, T=10, N=10000)

1.043181859763551

estimate(g_a, g_b, h_a, h_b, T=10, N=10000)

1.0156335470250861

The Monte Carlo method underestimates because the likelihood ratio 𝐿(𝜔𝑇 ) = ∏𝑇
𝑡=1

𝑓(𝜔𝑡)
𝑔(𝜔𝑡) has a highly skewed distri-

bution under 𝑔.
Most samples from 𝑔 produce small likelihood ratios, while the true mean requires occasional very large values that are
rarely sampled.

In our case, since 𝑔(𝜔) → 0 as 𝜔 → 0 while 𝑓(𝜔) remains constant, the Monte Carlo procedure undersamples precisely
where the likelihood ratio 𝑓(𝜔)

𝑔(𝜔) is largest.

As 𝑇 increases, this problem worsens exponentially, making standard Monte Carlo increasingly unreliable.

Importance sampling with 𝑞 = ℎ fixes this by sampling more uniformly from regions important to both 𝑓 and 𝑔.
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25.6 Distribution of sample mean

We next study the bias and efficiency of the Monte Carlo and importance sampling approaches.

The code below produces distributions of estimates using both Monte Carlo and importance sampling methods.

@jit(parallel=True)
def simulate(p_a, p_b, q_a, q_b, N_simu, T=1):

μ_L_p = np.empty(N_simu)
μ_L_q = np.empty(N_simu)

for i in prange(N_simu):
μ_L_p[i] = estimate(p_a, p_b, p_a, p_b, T=T)
μ_L_q[i] = estimate(p_a, p_b, q_a, q_b, T=T)

return μ_L_p, μ_L_q

Again, we first consider estimating 𝐸 [ℓ (𝜔)] by setting T=1.
We simulate 1000 times for each method.
N_simu = 1000
μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu)

# standard Monte Carlo (mean and std)
np.nanmean(μ_L_p), np.nanvar(μ_L_p)

(np.float64(0.996259252665045), np.float64(0.006847390896248332))

# importance sampling (mean and std)
np.nanmean(μ_L_q), np.nanvar(μ_L_q)

(np.float64(1.0000045381423799), np.float64(2.2922789637153626e-05))

Although both methods tend to provide a mean estimate of 𝐸 [ℓ (𝜔)] close to 1, the importance sampling estimates have
smaller variance.

Next, we present distributions of estimates for ̂𝐸 [𝐿 (𝜔𝑡)], in cases for 𝑇 = 1, 5, 10, 20.
fig, axs = plt.subplots(2, 2, figsize=(14, 10))

μ_range = np.linspace(0, 2, 100)

for i, t in enumerate([1, 5, 10, 20]):
row = i // 2
col = i % 2

μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu, T=t)
μ_hat_p, μ_hat_q = np.nanmean(μ_L_p), np.nanmean(μ_L_q)
σ_hat_p, σ_hat_q = np.nanvar(μ_L_p), np.nanvar(μ_L_q)

axs[row, col].set_xlabel('$μ_L$')
axs[row, col].set_ylabel('frequency')
axs[row, col].set_title(f'$T$={t}')
n_p, bins_p, _ = axs[row, col].hist(μ_L_p, bins=μ_range, color='r', alpha=0.5,␣

(continues on next page)
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(continued from previous page)

↪label='$g$ generating')
n_q, bins_q, _ = axs[row, col].hist(μ_L_q, bins=μ_range, color='b', alpha=0.5,␣

↪label='$h$ generating')
axs[row, col].legend(loc=4)

for n, bins, μ_hat, σ_hat in [[n_p, bins_p, μ_hat_p, σ_hat_p],
[n_q, bins_q, μ_hat_q, σ_hat_q]]:

idx = np.argmax(n)
axs[row, col].text(bins[idx], n[idx], r'$\hat{μ}$='+f'{μ_hat:.4g}'+r', $\hat

↪{σ}=$'+f'{σ_hat:.4g}')

plt.show()

The simulation exercises above show that the importance sampling estimates are unbiased under all 𝑇 while the standard
Monte Carlo estimates are biased downwards.

Evidently, the bias increases with increases in 𝑇 .
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25.7 Choosing a sampling distribution

Above, we arbitraily chose ℎ = 𝐵𝑒𝑡𝑎(0.5, 0.5) as the importance distribution.
Is there an optimal importance distribution?

In our particular case, since we know in advance that 𝐸0 [𝐿 (𝜔𝑡)] = 1, we can use that knowledge to our advantage.
Thus, suppose that we simply use ℎ = 𝑓 .
When estimating the mean of the likelihood ratio (T=1), we get:

̂𝐸𝑓 [ℓ(𝜔) 𝑔(𝜔)
𝑓(𝜔)] = ̂𝐸𝑓 [𝑓(𝜔)

𝑔(𝜔)
𝑔(𝜔)
𝑓(𝜔)] = 1

𝑁
𝑁

∑
𝑖=1

ℓ(𝑤𝑓
𝑖 ) 𝑔(𝑤𝑓

𝑖 )
𝑓(𝑤𝑓

𝑖 )
= 1

μ_L_p, μ_L_q = simulate(g_a, g_b, F_a, F_b, N_simu)

# importance sampling (mean and std)
np.nanmean(μ_L_q), np.nanvar(μ_L_q)

(np.float64(1.0), np.float64(0.0))

We could also use other distributions as our importance distribution.

Below we choose just a few and compare their sampling properties.

a_list = [0.5, 1., 2.]
b_list = [0.5, 1.2, 5.]

w_range = np.linspace(1e-5, 1-1e-5, 1000)

plt.plot(w_range, g(w_range), label=f'g=Beta({g_a}, {g_b})')
plt.plot(w_range, p(w_range, a_list[0], b_list[0]), label=f'$h_1$=Beta({a_list[0]},{b_

↪list[0]})')
plt.plot(w_range, p(w_range, a_list[1], b_list[1]), label=f'$h_2$=Beta({a_list[1]},{b_

↪list[1]})')
plt.plot(w_range, p(w_range, a_list[2], b_list[2]), label=f'$h_3$=Beta({a_list[2]},{b_

↪list[2]})')
plt.title('real data generating process $g$ and importance distribution $h$')
plt.legend()
plt.ylim([0., 3.])
plt.show()
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We consider two additional distributions.

As a reminder ℎ1 is the original 𝐵𝑒𝑡𝑎(0.5, 0.5) distribution that we used above.
ℎ2 is the 𝐵𝑒𝑡𝑎(1, 1.2) distribution.
Note how ℎ2 has a similar shape to 𝑔 at higher values of distribution but more mass at lower values.
Our hunch is that ℎ2 should be a good importance sampling distribution.

ℎ3 is the 𝐵𝑒𝑡𝑎(2, 5) distribution.
Note how ℎ3 has zero mass at values very close to 0 and at values close to 1.

Our hunch is that ℎ3 will be a poor importance sampling distribution.

We first simulate a plot the distribution of estimates for ̂𝐸 [𝐿 (𝜔𝑡)] using ℎ2 as the importance sampling distribution.

h_a = a_list[1]
h_b = b_list[1]

fig, axs = plt.subplots(1,2, figsize=(14, 10))

μ_range = np.linspace(0, 2, 100)

for i, t in enumerate([1, 20]):

μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu, T=t)
μ_hat_p, μ_hat_q = np.nanmean(μ_L_p), np.nanmean(μ_L_q)
σ_hat_p, σ_hat_q = np.nanvar(μ_L_p), np.nanvar(μ_L_q)

(continues on next page)
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axs[i].set_xlabel('$μ_L$')
axs[i].set_ylabel('frequency')
axs[i].set_title(f'$T$={t}')
n_p, bins_p, _ = axs[i].hist(μ_L_p, bins=μ_range, color='r', alpha=0.5, label='$g

↪$ generating')
n_q, bins_q, _ = axs[i].hist(μ_L_q, bins=μ_range, color='b', alpha=0.5, label='$h_

↪2$ generating')
axs[i].legend(loc=4)

for n, bins, μ_hat, σ_hat in [[n_p, bins_p, μ_hat_p, σ_hat_p],
[n_q, bins_q, μ_hat_q, σ_hat_q]]:

idx = np.argmax(n)
axs[i].text(bins[idx], n[idx], r'$\hat{μ}$='+f'{μ_hat:.4g}'+r', $\hat{σ}=$'+f'

↪{σ_hat:.4g}')

plt.show()

Our simulations suggest that indeed ℎ2 is a quite good importance sampling distribution for our problem.

Even at 𝑇 = 20, the mean is very close to 1 and the variance is small.
h_a = a_list[2]
h_b = b_list[2]

fig, axs = plt.subplots(1,2, figsize=(14, 10))

(continues on next page)
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μ_range = np.linspace(0, 2, 100)

for i, t in enumerate([1, 20]):

μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu, T=t)
μ_hat_p, μ_hat_q = np.nanmean(μ_L_p), np.nanmean(μ_L_q)
σ_hat_p, σ_hat_q = np.nanvar(μ_L_p), np.nanvar(μ_L_q)

axs[i].set_xlabel('$μ_L$')
axs[i].set_ylabel('frequency')
axs[i].set_title(f'$T$={t}')
n_p, bins_p, _ = axs[i].hist(μ_L_p, bins=μ_range, color='r', alpha=0.5, label='$g

↪$ generating')
n_q, bins_q, _ = axs[i].hist(μ_L_q, bins=μ_range, color='b', alpha=0.5, label='$h_

↪3$ generating')
axs[i].legend(loc=4)

for n, bins, μ_hat, σ_hat in [[n_p, bins_p, μ_hat_p, σ_hat_p],
[n_q, bins_q, μ_hat_q, σ_hat_q]]:

idx = np.argmax(n)
axs[i].text(bins[idx], n[idx], r'$\hat{μ}$='+f'{μ_hat:.4g}'+r', $\hat{σ}=$'+f'

↪{σ_hat:.4g}')

plt.show()
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However, ℎ3 is evidently a poor importance sampling distribution for our problem, with a mean estimate far away from
1 for 𝑇 = 20.
Notice that even at 𝑇 = 1, the mean estimate with importance sampling is more biased than sampling with just 𝑔 itself.
Thus, our simulations suggest that for our problem we would be better off simply using Monte Carlo approximations
under 𝑔 than using ℎ3 as an importance sampling distribution.
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TWENTYSIX

A PROBLEM THAT STUMPED MILTON FRIEDMAN

(and that Abraham Wald solved by inventing sequential analysis)

Contents

• A Problem that Stumped Milton Friedman

– Overview

– Source of the Problem

– Neyman-Pearson formulation

– Wald’s sequential formulation

– Links between 𝐴, 𝐵 and 𝛼, 𝛽
– Simulations

– Related lectures

– Exercises

26.1 Overview

This is the first of two lectures about a statistical decision problem that a US Navy Captain presented to Milton Friedman
and W. Allen Wallis during World War II when they were analysts at the U.S. Government’s Statistical Research Group
at Columbia University.

This problem led Abraham Wald [Wald, 1947] to formulate sequential analysis, an approach to statistical decision
problems that is intimately related to dynamic programming.

In the spirit of this earlier lecture, the present lecture and its sequel approach the problem from two distinct points of view,
one frequentist, the other Bayesian.

In this lecture, we describe Wald’s formulation of the problem from the perspective of a statistician working within the
Neyman-Pearson tradition of a frequentist statistician who thinks about testing hypotheses and consequently use laws
of large numbers to investigate limiting properties of particular statistics under a given hypothesis, i.e., a vector of
parameters that pins down a particular member of a manifold of statistical models that interest the statistician.

• From this lecture on frequentist and bayesian statistics, please remember that a frequentist statistician routinely
calculates functions of sequences of random variables, conditioning on a vector of parameters.

487



Intermediate Quantitative Economics with Python

In this related lecture we’ll discuss another formulation that adopts the perspective of a Bayesian statistician who views
parameters as random variables that are jointly distributed with observable variables that he is concerned about.

Because we are taking a frequentist perspective that is concerned about relative frequencies conditioned on alternative
parameter values, i.e., alternative hypotheses, key ideas in this lecture

• Type I and type II statistical errors

– a type I error occurs when you reject a null hypothesis that is true

– a type II error occurs when you accept a null hypothesis that is false

• The power of a frequentist statistical test

• The size of a frequentist statistical test

• The critical region of a statistical test

• A uniformly most powerful test

• The role of a Law of Large Numbers (LLN) in interpreting power and size of a frequentist statistical test

• Abraham Wald’s sequential probability ratio test

We’ll begin with some imports:

import numpy as np
import matplotlib.pyplot as plt
from numba import njit, prange, vectorize, jit
from numba.experimental import jitclass
from math import gamma
from scipy.integrate import quad
from scipy.stats import beta
from collections import namedtuple
import pandas as pd
import scipy as sp

This lecture uses ideas studied in the lecture on likelihood ratio processes and the lecture on Bayesian learning.

26.2 Source of the Problem

On pages 137-139 of his 1998 book Two Lucky People with Rose Friedman [Friedman and Friedman, 1998], Milton
Friedman described a problem presented to him and Allen Wallis during World War II, when they worked at the US
Government’s Statistical Research Group at Columbia University.

Note

See pages 25 and 26 of Allen Wallis’s 1980 article [Wallis, 1980] about the Statistical Research Group at Columbia
University during World War II for his account of the episode and for important contributions that Harold Hotelling
made to formulating the problem. Also see chapter 5 of Jennifer Burns’ book about Milton Friedman [Burns, 2023].

Let’s listen to Milton Friedman tell us what happened

In order to understand the story, it is necessary to have an idea of a simple statistical problem, and of the
standard procedure for dealing with it. The actual problem out of which sequential analysis grew will serve.
The Navy has two alternative designs (say A and B) for a projectile. It wants to determine which is superior.
To do so it undertakes a series of paired firings. On each round, it assigns the value 1 or 0 to A accordingly as
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its performance is superior or inferior to that of B and conversely 0 or 1 to B. The Navy asks the statistician
how to conduct the test and how to analyze the results.

The standard statistical answer was to specify a number of firings (say 1,000) and a pair of percentages (e.g.,
53% and 47%) and tell the client that if A receives a 1 in more than 53% of the firings, it can be regarded
as superior; if it receives a 1 in fewer than 47%, B can be regarded as superior; if the percentage is between
47% and 53%, neither can be so regarded.

When Allen Wallis was discussing such a problem with (Navy) Captain Garret L. Schuyler, the captain
objected that such a test, to quote fromAllen’s account, may prove wasteful. If a wise and seasoned ordnance
officer like Schuyler were on the premises, he would see after the first few thousand or even few hundred
[rounds] that the experiment need not be completed either because the new method is obviously inferior or
because it is obviously superior beyond what was hoped for ….

Friedman and Wallis worked on the problem for a while but didn’t completely solve it.

Realizing that, they told Abraham Wald about the problem.

That set Wald on a path that led him to create Sequential Analysis [Wald, 1947].

26.3 Neyman-Pearson formulation

It is useful to begin by describing the theory underlying the test that the U.S. Navy told Captain G. S. Schuyler to use.

Captain Schuyler’s doubts motivated him to tell Milton Friedman and Allen Wallis his conjecture that superior practical
procedures existed.

Evidently, the Navy had told Captain Schuyler to use what was then a state-of-the-art Neyman-Pearson hypothesis test.

We’ll rely on Abraham Wald’s [Wald, 1947] elegant summary of Neyman-Pearson theory.

Watch for these features of the setup:

• the assumption of a fixed sample size 𝑛
• the application of laws of large numbers, conditioned on alternative probability models, to interpret probabilities

𝛼 and 𝛽 of the type I and type II errors defined in the Neyman-Pearson theory

In chapter 1 of Sequential Analysis [Wald, 1947] Abraham Wald summarizes the Neyman-Pearson approach to hy-
pothesis testing.

Wald frames the problem as making a decision about a probability distribution that is partially known.

(You have to assume that something is already known in order to state a well-posed problem – usually, something means
a lot)

By limiting what is unknown, Wald uses the following simple structure to illustrate the main ideas:

• A decision-maker wants to decide which of two distributions 𝑓0, 𝑓1 govern an IID random variable 𝑧.
• The null hypothesis 𝐻0 is the statement that 𝑓0 governs the data.

• The alternative hypothesis 𝐻1 is the statement that 𝑓1 governs the data.

• The problem is to devise and analyze a test of hypothesis 𝐻0 against the alternative hypothesis 𝐻1 on the basis of
a sample of a fixed number 𝑛 independent observations 𝑧1, 𝑧2, … , 𝑧𝑛 of the random variable 𝑧.

To quote Abraham Wald,

A test procedure leading to the acceptance or rejection of the [null] hypothesis in question is simply a rule
specifying, for each possible sample of size 𝑛, whether the [null] hypothesis should be accepted or rejected
on the basis of the sample. This may also be expressed as follows: A test procedure is simply a subdivision of
the totality of all possible samples of size 𝑛 into two mutually exclusive parts, say part 1 and part 2, together
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with the application of the rule that the [null] hypothesis be accepted if the observed sample is contained in
part 2. Part 1 is also called the critical region. Since part 2 is the totality of all samples of size 𝑛 which are
not included in part 1, part 2 is uniquely determined by part 1. Thus, choosing a test procedure is equivalent
to determining a critical region.

Let’s listen to Wald longer:

As a basis for choosing among critical regions the following considerations have been advanced by Neyman
and Pearson: In accepting or rejecting 𝐻0 we may commit errors of two kinds. We commit an error of the
first kind if we reject 𝐻0 when it is true; we commit an error of the second kind if we accept 𝐻0 when 𝐻1
is true. After a particular critical region 𝑊 has been chosen, the probability of committing an error of the
first kind, as well as the probability of committing an error of the second kind is uniquely determined. The
probability of committing an error of the first kind is equal to the probability, determined by the assumption
that 𝐻0 is true, that the observed sample will be included in the critical region 𝑊 . The probability of
committing an error of the second kind is equal to the probability, determined on the assumption that 𝐻1
is true, that the probability will fall outside the critical region 𝑊 . For any given critical region 𝑊 we shall
denote the probability of an error of the first kind by 𝛼 and the probability of an error of the second kind by
𝛽.

Let’s listen carefully to how Wald applies law of large numbers to interpret 𝛼 and 𝛽:
The probabilities 𝛼 and 𝛽 have the following important practical interpretation: Suppose that we draw a large
number of samples of size 𝑛. Let 𝑀 be the number of such samples drawn. Suppose that for each of these
𝑀 samples we reject 𝐻0 if the sample is included in 𝑊 and accept 𝐻0 if the sample lies outside 𝑊 . In this
way we make 𝑀 statements of rejection or acceptance. Some of these statements will in general be wrong.
If 𝐻0 is true and if 𝑀 is large, the probability is nearly 1 (i.e., it is practically certain) that the proportion
of wrong statements (i.e., the number of wrong statements divided by 𝑀 ) will be approximately 𝛼. If 𝐻1 is
true, the probability is nearly 1 that the proportion of wrong statements will be approximately 𝛽. Thus, we
can say that in the long run [ here Wald applies law of large numbers by driving 𝑀 → ∞ (our comment,
not Wald’s) ] the proportion of wrong statements will be 𝛼 if 𝐻0 is true and 𝛽 if 𝐻1 is true.

The quantity 𝛼 is called the size of the critical region, and the quantity 1 − 𝛽 is called the power of the critical region.

Wald notes that

one critical region 𝑊 is more desirable than another if it has smaller values of 𝛼 and 𝛽. Although either 𝛼
or 𝛽 can be made arbitrarily small by a proper choice of the critical region 𝑊 , it is impossible to make both
𝛼 and 𝛽 arbitrarily small for a fixed value of 𝑛, i.e., a fixed sample size.

Wald summarizes Neyman and Pearson’s setup as follows:

Neyman and Pearson show that a region consisting of all samples (𝑧1, 𝑧2, … , 𝑧𝑛)which satisfy the inequality

𝑓1(𝑧1) ⋯ 𝑓1(𝑧𝑛)
𝑓0(𝑧1) ⋯ 𝑓0(𝑧𝑛) ≥ 𝑘

is a most powerful critical region for testing the hypothesis 𝐻0 against the alternative hypothesis 𝐻1. The
term 𝑘 on the right side is a constant chosen so that the region will have the required size 𝛼.

Wald goes on to discuss Neyman and Pearson’s concept of uniformly most powerful test.

Here is how Wald introduces the notion of a sequential test

A rule is given for making one of the following three decisions at any stage of the experiment (at the 𝑚 th
trial for each integral value of 𝑚): (1) to accept the hypothesis 𝐻 , (2) to reject the hypothesis 𝐻 , (3) to
continue the experiment by making an additional observation. Thus, such a test procedure is carried out
sequentially. On the basis of the first observation, one of the aforementioned decision is made. If the first or
second decision is made, the process is terminated. If the third decision is made, a second trial is performed.
Again, on the basis of the first two observations, one of the three decision is made. If the third decision
is made, a third trial is performed, and so on. The process is continued until either the first or the second
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decisions is made. The number 𝑛 of observations required by such a test procedure is a random variable,
since the value of 𝑛 depends on the outcome of the observations.

26.4 Wald’s sequential formulation

By way of contrast to Neyman and Pearson’s formulation of the problem, in Wald’s formulation

• The sample size 𝑛 is not fixed but rather a random variable.

• Two parameters𝐴 and𝐵 that are related to but distinct from Neyman and Pearson’s 𝛼 and 𝛽; 𝐴 and𝐵 characterize
cut-off rules that Wald uses to determine the random variable 𝑛 as a function of random outcomes.

Here is how Wald sets up the problem.

A decision-maker can observe a sequence of draws of a random variable 𝑧.
He (or she) wants to know which of two probability distributions 𝑓0 or 𝑓1 governs 𝑧.
We use beta distributions as examples.

We will also work with Jensen-Shannon divergence introduced in Statistical Divergence Measures.

@vectorize
def p(x, a, b):

"""Beta distribution density function."""
r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x** (a-1) * (1 - x) ** (b-1)

def create_beta_density(a, b):
"""Create a beta density function with specified parameters."""
return jit(lambda x: p(x, a, b))

def compute_KL(f, g):
"""Compute KL divergence KL(f, g)"""
integrand = lambda w: f(w) * np.log(f(w) / g(w))
val, _ = quad(integrand, 1e-5, 1-1e-5)
return val

def compute_JS(f, g):
"""Compute Jensen-Shannon divergence"""
def m(w):

return 0.5 * (f(w) + g(w))

js_div = 0.5 * compute_KL(f, m) + 0.5 * compute_KL(g, m)
return js_div

The next figure shows two beta distributions

f0 = create_beta_density(1, 1)
f1 = create_beta_density(9, 9)
grid = np.linspace(0, 1, 50)

fig, ax = plt.subplots()
ax.plot(grid, f0(grid), lw=2, label="$f_0$")
ax.plot(grid, f1(grid), lw=2, label="$f_1$")
ax.legend()
ax.set(xlabel="$z$ values", ylabel="probability of $z_k$")

(continues on next page)
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plt.tight_layout()
plt.show()

Conditional on knowing that successive observations are drawn from distribution 𝑓0, the sequence of random variables
is independently and identically distributed (IID).

Conditional on knowing that successive observations are drawn from distribution 𝑓1, the sequence of random variables
is also independently and identically distributed (IID).

But the observer does not know which of the two distributions generated the sequence.

For reasons explained in Exchangeability and Bayesian Updating, this means that the observer thinks that the sequence
is not IID.

Consequently, the observer has something to learn, namely, whether the observations are drawn from 𝑓0 or from 𝑓1.

The decision maker wants to decide which of the two distributions is generating outcomes.
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26.4.1 Type I and type II errors

If we regard 𝑓 = 𝑓0 as a null hypothesis and 𝑓 = 𝑓1 as an alternative hypothesis, then

• a type I error is an incorrect rejection of a true null hypothesis (a “false positive”)

• a type II error is a failure to reject a false null hypothesis (a “false negative”)

To repeat ourselves

• 𝛼 is the probability of a type I error

• 𝛽 is the probability of a type II error

26.4.2 Choices

After observing 𝑧𝑘, 𝑧𝑘−1, … , 𝑧1, the decision-maker chooses among three distinct actions:

• He decides that 𝑓 = 𝑓0 and draws no more 𝑧’s
• He decides that 𝑓 = 𝑓1 and draws no more 𝑧’s
• He postpones deciding and instead chooses to draw 𝑧𝑘+1

Wald defines

• 𝑝0𝑚 = 𝑓0(𝑧1) ⋯ 𝑓0(𝑧𝑚)
• 𝑝1𝑚 = 𝑓1(𝑧1) ⋯ 𝑓1(𝑧𝑚)
• 𝐿𝑚 = 𝑝1𝑚

𝑝0𝑚

Here {𝐿𝑚}∞
𝑚=0 is a likelihood ratio process.

Wald’s sequential decision rule is parameterized by real numbers 𝐵 < 𝐴.
For a given pair 𝐴, 𝐵, the decision rule is

accept 𝑓 = 𝑓1 if 𝐿𝑚 ≥ 𝐴
accept 𝑓 = 𝑓0 if 𝐿𝑚 ≤ 𝐵

draw another 𝑧 if 𝐵 < 𝐿𝑚 < 𝐴

The following figure illustrates aspects of Wald’s procedure.

26.5 Links between 𝐴, 𝐵 and 𝛼, 𝛽

In chapter 3 of Sequential Analysis [Wald, 1947] Wald establishes the inequalities

𝛼
1 − 𝛽 ≤ 1

𝐴
𝛽

1 − 𝛼 ≤ 𝐵
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His analysis of these inequalities leads Wald to recommend the following approximations as rules for setting 𝐴 and 𝐵
that come close to attaining a decision maker’s target values for probabilities 𝛼 of a type I and 𝛽 of a type II error:

𝐴 ≈ 𝑎(𝛼, 𝛽) ≡ 1 − 𝛽
𝛼

𝐵 ≈ 𝑏(𝛼, 𝛽) ≡ 𝛽
1 − 𝛼

(26.1)

For small values of 𝛼 and 𝛽, Wald shows that approximation (26.1) provides a good way to set 𝐴 and 𝐵.

In particular, Wald constructs a mathematical argument that leads him to conclude that the use of approximation (26.1)
rather than the true functions 𝐴(𝛼, 𝛽), 𝐵(𝛼, 𝛽) for setting 𝐴 and 𝐵

… cannot result in any appreciable increase in the value of either 𝛼 or 𝛽. In other words, for all practical
purposes the test corresponding to 𝐴 = 𝑎(𝛼, 𝛽), 𝐵 = 𝑏(𝛼, 𝛽) provides as least the same protection against
wrong decisions as the test corresponding to 𝐴 = 𝐴(𝛼, 𝛽) and 𝐵 = 𝑏(𝛼, 𝛽).
Thus, the only disadvantage that may arise from using 𝑎(𝛼, 𝛽), 𝑏(𝛼, 𝛽) instead of 𝐴(𝛼, 𝛽), 𝐵(𝛼, 𝛽), re-
spectively, is that it may result in an appreciable increase in the number of observations required by the
test.

We’ll write some Python code to help us illustrate Wald’s claims about how 𝛼 and 𝛽 are related to the parameters 𝐴 and
𝐵 that characterize his sequential probability ratio test.

26.6 Simulations

We experiment with different distributions 𝑓0 and 𝑓1 to examine how Wald’s test performs under various conditions.

Our goal in conducting these simulations is to understand trade-offs between decision speed and accuracy associated with
Wald’s sequential probability ratio test.

Specifically, we will watch how:

• The decision thresholds 𝐴 and 𝐵 (or equivalently the target error rates 𝛼 and 𝛽) affect the average stopping time
• The discrepancy between distributions 𝑓0 and 𝑓1 affects average stopping times

We will focus on the case where 𝑓0 and 𝑓1 are beta distributions since it is easy to control the overlapping regions of the
two densities by adjusting their shape parameters.

First, we define a namedtuple to store all the parameters we need for our simulation studies.

We also compute Wald’s recommended thresholds 𝐴 and 𝐵 based on the target type I and type II errors 𝛼 and 𝛽
SPRTParams = namedtuple('SPRTParams',

['α', 'β', # Target type I and type II errors
'a0', 'b0', # Shape parameters for f_0
'a1', 'b1', # Shape parameters for f_1
'N', # Number of simulations
'seed'])

@njit
def compute_wald_thresholds(α, β):

"""Compute Wald's recommended thresholds."""
A = (1 - β) / α
B = β / (1 - α)
return A, B, np.log(A), np.log(B)
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Now we can run the simulation following Wald’s recommendation.

We’ll compare the log-likelihood ratio to logarithms of the thresholds log(𝐴) and log(𝐵).
The following algorithm underlies our simulations.

1. Compute thresholds 𝐴 = 1−𝛽
𝛼 , 𝐵 = 𝛽

1−𝛼 and work with log𝐴, log𝐵.

2. Given true distribution (either 𝑓0 or 𝑓1):

• Initialize log-likelihood ratio log𝐿0 = 0
• Repeat:

– Draw observation 𝑧 from the true distribution

– Update: log𝐿𝑛+1 ← log𝐿𝑛 + (log 𝑓1(𝑧) − log 𝑓0(𝑧))
– If log𝐿𝑛+1 ≥ log𝐴: stop, reject 𝐻0

– If log𝐿𝑛+1 ≤ log𝐵: stop, accept 𝐻0

3. Repeat step 2 for 𝑁 replications with 𝑁/2 replications for each distribution, compute the empirical type I error ̂𝛼
and type II error ̂𝛽 with

̂𝛼 = # of times reject 𝐻0 when 𝑓0 is true
# of replications with 𝑓0 true

̂𝛽 = # of times accept 𝐻0 when 𝑓1 is true
# of replications with 𝑓1 true

@njit
def sprt_single_run(a0, b0, a1, b1, logA, logB, true_f0, seed):

"""Run a single SPRT until a decision is reached."""
log_L = 0.0
n = 0
np.random.seed(seed)

while True:
z = np.random.beta(a0, b0) if true_f0 else np.random.beta(a1, b1)
n += 1

# Update log-likelihood ratio
log_L += np.log(p(z, a1, b1)) - np.log(p(z, a0, b0))

# Check stopping conditions
if log_L >= logA:

return n, False # Reject H0
elif log_L <= logB:

return n, True # Accept H0

@njit(parallel=True)
def run_sprt_simulation(a0, b0, a1, b1, α, β, N, seed):

"""SPRT simulation."""
A, B, logA, logB = compute_wald_thresholds(α, β)

stopping_times = np.zeros(N, dtype=np.int64)
decisions_h0 = np.zeros(N, dtype=np.bool_)
truth_h0 = np.zeros(N, dtype=np.bool_)

for i in prange(N):
true_f0 = (i % 2 == 0)
truth_h0[i] = true_f0

(continues on next page)
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n, accept_f0 = sprt_single_run(
a0, b0, a1, b1,
logA, logB,
true_f0, seed + i)

stopping_times[i] = n
decisions_h0[i] = accept_f0

return stopping_times, decisions_h0, truth_h0

def run_sprt(params):
"""Run SPRT simulations with given parameters."""
stopping_times, decisions_h0, truth_h0 = run_sprt_simulation(

params.a0, params.b0, params.a1, params.b1,
params.α, params.β, params.N, params.seed

)

# Calculate error rates
truth_h0_bool = truth_h0.astype(bool)
decisions_h0_bool = decisions_h0.astype(bool)

type_I = np.sum(truth_h0_bool & ~decisions_h0_bool) \
/ np.sum(truth_h0_bool)

type_II = np.sum(~truth_h0_bool & decisions_h0_bool) \
/ np.sum(~truth_h0_bool)

return {
'stopping_times': stopping_times,
'decisions_h0': decisions_h0_bool,
'truth_h0': truth_h0_bool,
'type_I': type_I,
'type_II': type_II

}

# Run simulation
params = SPRTParams(α=0.05, β=0.10, a0=2, b0=5, a1=5, b1=2, N=20000, seed=1)
results = run_sprt(params)

print(f"Average stopping time: {results['stopping_times'].mean():.2f}")
print(f"Empirical type I error: {results['type_I']:.3f} (target = {params.α})")
print(f"Empirical type II error: {results['type_II']:.3f} (target = {params.β})")

Average stopping time: 1.59
Empirical type I error: 0.012 (target = 0.05)
Empirical type II error: 0.022 (target = 0.1)

As anticipated in the passage above in whichWald discussed the quality of 𝑎(𝛼, 𝛽), 𝑏(𝛼, 𝛽) given in approximation (26.1),
we find that the algorithm actually gives lower type I and type II error rates than the target values.

Note

For recent work on the quality of approximation (26.1), see, e.g., [Fischer and Ramdas, 2024].

The following code creates a few graphs that illustrate the results of our simulation.

Let’s plot the results of our simulation
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plot_sprt_results(results, params)

In this example, the stopping time stays below 10.

We can construct a 2 × 2 “confusion matrix” whose diagonal elements count the number of times that Wald’s decision
rule correctly accepts and rejects the null hypothesis.

print("Confusion Matrix data:")
print(f"Type I error: {results['type_I']:.3f}")
print(f"Type II error: {results['type_II']:.3f}")

Confusion Matrix data:
Type I error: 0.012
Type II error: 0.022

Next we use our code to study three different 𝑓0, 𝑓1 pairs having different discrepancies between distributions.

We plot the same three graphs we used above for each pair of distributions

params_1 = SPRTParams(α=0.05, β=0.10, a0=2, b0=8, a1=8, b1=2, N=5000, seed=42)
results_1 = run_sprt(params_1)

params_2 = SPRTParams(α=0.05, β=0.10, a0=4, b0=5, a1=5, b1=4, N=5000, seed=42)
results_2 = run_sprt(params_2)

params_3 = SPRTParams(α=0.05, β=0.10, a0=0.5, b0=0.4, a1=0.4,
b1=0.5, N=5000, seed=42)

results_3 = run_sprt(params_3)

plot_sprt_results(results_1, params_1)
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plot_sprt_results(results_2, params_2)

plot_sprt_results(results_3, params_3)

Notice that the stopping times are less when the two distributions are farther apart.

This makes sense.

When two distributions are “far apart”, it should not take too long to decide which one is generating the data.

When two distributions are “close”, it should takes longer to decide which one is generating the data.

It is tempting to link this pattern to our discussion of Kullback–Leibler divergence in Likelihood Ratio Processes.

While, KL divergence is larger when two distributions differ more, KL divergence is not symmetric, meaning that the KL
divergence of distribution 𝑓 from distribution 𝑔 is not necessarily equal to the KL divergence of 𝑔 from 𝑓 .
If we want a symmetric measure of divergence that actually a metric, we can instead use Jensen-Shannon distance.

That is what we shall do now.

We shall compute Jensen-Shannon distance and plot it against the average stopping times.

def js_dist(a0, b0, a1, b1):
"""Jensen–Shannon distance"""
f0 = create_beta_density(a0, b0)
f1 = create_beta_density(a1, b1)

# Mixture
m = lambda w: 0.5*(f0(w) + f1(w))
return np.sqrt(0.5*compute_KL(m, f0) + 0.5*compute_KL(m, f1))

def generate_β_pairs(N=100, T=10.0, d_min=0.5, d_max=9.5):
ds = np.linspace(d_min, d_max, N)

(continues on next page)
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a0 = (T - ds) / 2
b0 = (T + ds) / 2
return list(zip(a0, b0, b0, a0))

param_comb = generate_β_pairs()

# Run simulations for each parameter combination
js_dists = []
mean_stopping_times = []
param_list = []

for a0, b0, a1, b1 in param_comb:
# Compute KL divergence
js_div = js_dist(a1, b1, a0, b0)

# Run SPRT simulation with a fixed set of parameters d d
params = SPRTParams(α=0.05, β=0.10, a0=a0, b0=b0,

a1=a1, b1=b1, N=5000, seed=42)
results = run_sprt(params)

js_dists.append(js_div)
mean_stopping_times.append(results['stopping_times'].mean())
param_list.append((a0, b0, a1, b1))

# Create the plot
fig, ax = plt.subplots()

scatter = ax.scatter(js_dists, mean_stopping_times,
s=80, alpha=0.7, linewidth=0.5)

ax.set_xlabel('Jensen–Shannon distance', fontsize=14)
ax.set_ylabel('mean stopping time', fontsize=14)

plt.tight_layout()
plt.show()
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The plot demonstrates a clear negative correlation between relative entropy and mean stopping time.

As Jensen-Shannon divergence increases (distributions become more separated), the mean stopping time decreases ex-
ponentially.

Below are sampled examples from the experiments we have above

def plot_beta_distributions_grid(param_list, js_dists, mean_stopping_times,
selected_indices=None):

"""Plot grid of beta distributions with JS distance and stopping times."""
if selected_indices is None:

selected_indices = [0, len(param_list)//6, len(param_list)//3,
len(param_list)//2, 2*len(param_list)//3, -1]

fig, axes = plt.subplots(2, 3, figsize=(15, 8))
z_grid = np.linspace(0, 1, 200)

for i, idx in enumerate(selected_indices):
row, col = i // 3, i % 3
a0, b0, a1, b1 = param_list[idx]

f0 = create_beta_density(a0, b0)
f1 = create_beta_density(a1, b1)

axes[row, col].plot(z_grid, f0(z_grid), 'b-', lw=2, label='$f_0$')
axes[row, col].plot(z_grid, f1(z_grid), 'r-', lw=2, label='$f_1$')
axes[row, col].fill_between(z_grid, 0,

(continues on next page)

500 Chapter 26. A Problem that Stumped Milton Friedman



Intermediate Quantitative Economics with Python

(continued from previous page)

np.minimum(f0(z_grid), f1(z_grid)),
alpha=0.3, color='purple')

axes[row, col].set_title(f'JS dist: {js_dists[idx]:.3f}'
f'\nMean time: {mean_stopping_times[idx]:.1f}',
fontsize=12)

axes[row, col].set_xlabel('z', fontsize=10)
if i == 0:

axes[row, col].set_ylabel('density', fontsize=10)
axes[row, col].legend(fontsize=10)

plt.tight_layout()
plt.show()

plot_beta_distributions_grid(param_list, js_dists, mean_stopping_times)

Again, we find that the stopping time is shorter when the distributions are more separated, as measured by Jensen-Shannon
distance.

Let’s visualize individual likelihood ratio processes to see how they evolve toward the decision boundaries.

def plot_likelihood_paths(params, n_highlight=10, n_background=200):
"""visualize likelihood ratio paths."""
A, B, logA, logB = compute_wald_thresholds(params.α, params.β)
f0, f1 = map(lambda ab: create_beta_density(*ab),

[(params.a0, params.b0),
(params.a1, params.b1)])

fig, axes = plt.subplots(1, 2, figsize=(14, 7))

for dist_idx, (true_f0, ax, title) in enumerate([
(True, axes[0], 'true distribution: $f_0$'),
(False, axes[1], 'true distribution: $f_1$')

]):
rng = np.random.default_rng(seed=42 + dist_idx)

(continues on next page)
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(continued from previous page)

paths_data = []

# Generate paths
for path in range(n_background + n_highlight):

log_L_path, log_L, n = [0.0], 0.0, 0

while True:
z = rng.beta(params.a0, params.b0) if true_f0 \

else rng.beta(params.a1, params.b1)
n += 1
log_L += np.log(f1(z)) - np.log(f0(z))
log_L_path.append(log_L)

if log_L >= logA or log_L <= logB:
paths_data.append((log_L_path, n, log_L >= logA))
break

# Plot background paths
for path, _, decision in paths_data[:n_background]:

ax.plot(range(len(path)), path, color='C1' if decision else 'C0',
alpha=0.2, linewidth=0.5)

# Plot highlighted paths with labels
for i, (path, _, decision) in enumerate(paths_data[n_background:]):

ax.plot(range(len(path)), path, color='C1' if decision else 'C0',
alpha=0.8, linewidth=1.5,
label='reject $H_0$' if decision and i == 0 else (

'accept $H_0$' if not decision and i == 0 else ''))

# Add threshold lines and formatting
ax.axhline(y=logA, color='C1', linestyle='--', linewidth=2,

label=f'$\\log A = {logA:.2f}$')
ax.axhline(y=logB, color='C0', linestyle='--', linewidth=2,

label=f'$\\log B = {logB:.2f}$')
ax.axhline(y=0, color='black', linestyle='-', alpha=0.5, linewidth=1)

ax.set_xlabel(r'$n$')
ax.set_ylabel(r'$\log(L_n)$')
ax.set_title(title, fontsize=20)
ax.legend(fontsize=18, loc='center right')

y_margin = max(abs(logA), abs(logB)) * 0.2
ax.set_ylim(logB - y_margin, logA + y_margin)

plt.tight_layout()
plt.show()

plot_likelihood_paths(params_3, n_highlight=10, n_background=100)

502 Chapter 26. A Problem that Stumped Milton Friedman



Intermediate Quantitative Economics with Python

Next, let’s adjust the decision thresholds 𝐴 and 𝐵 and examine how the mean stopping time and the type I and type II
error rates change.

In the code below, we adjust Wald’s rule by adjusting the thresholds 𝐴 and 𝐵 using factors 𝐴𝑓 and 𝐵𝑓 .

@njit(parallel=True)
def run_adjusted_thresholds(a0, b0, a1, b1, α, β, N, seed, A_f, B_f):

"""SPRT simulation with adjusted thresholds."""

# Calculate original thresholds
A_original = (1 - β) / α
B_original = β / (1 - α)

# Apply adjustment factors
A_adj = A_original * A_f
B_adj = B_original * B_f
logA = np.log(A_adj)
logB = np.log(B_adj)

# Pre-allocate arrays
stopping_times = np.zeros(N, dtype=np.int64)
decisions_h0 = np.zeros(N, dtype=np.bool_)
truth_h0 = np.zeros(N, dtype=np.bool_)

# Run simulations in parallel
for i in prange(N):

true_f0 = (i % 2 == 0)
truth_h0[i] = true_f0

n, accept_f0 = sprt_single_run(a0, b0, a1, b1,
logA, logB, true_f0, seed + i)

stopping_times[i] = n
decisions_h0[i] = accept_f0

return stopping_times, decisions_h0, truth_h0, A_adj, B_adj

def run_adjusted(params, A_f=1.0, B_f=1.0):

(continues on next page)
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(continued from previous page)

"""Wrapper to run SPRT with adjusted A and B thresholds."""

stopping_times, decisions_h0, truth_h0, A_adj, B_adj = run_adjusted_thresholds(
params.a0, params.b0, params.a1, params.b1,
params.α, params.β, params.N, params.seed, A_f, B_f

)
truth_h0_bool = truth_h0.astype(bool)
decisions_h0_bool = decisions_h0.astype(bool)

# Calculate error rates
type_I = np.sum(truth_h0_bool

& ~decisions_h0_bool) / np.sum(truth_h0_bool)
type_II = np.sum(~truth_h0_bool

& decisions_h0_bool) / np.sum(~truth_h0_bool)

return {
'stopping_times': stopping_times,
'type_I': type_I,
'type_II': type_II,
'A_used': A_adj,
'B_used': B_adj

}

adjustments = [
(5.0, 0.5),
(1.0, 1.0),
(0.3, 3.0),
(0.2, 5.0),
(0.15, 7.0),

]

results_table = []
for A_f, B_f in adjustments:

result = run_adjusted(params_2, A_f, B_f)
results_table.append([

A_f, B_f,
f"{result['stopping_times'].mean():.1f}",
f"{result['type_I']:.3f}",
f"{result['type_II']:.3f}"

])

df = pd.DataFrame(results_table,
columns=["A_f", "B_f", "mean stop time",

"Type I error", "Type II error"])
df = df.set_index(["A_f", "B_f"])
df

mean stop time Type I error Type II error
A_f B_f
5.00 0.5 16.1 0.006 0.036
1.00 1.0 11.1 0.033 0.070
0.30 3.0 5.5 0.086 0.195
0.20 5.0 3.4 0.120 0.304
0.15 7.0 2.2 0.146 0.410

Let’s pause and think about the table more carefully by referring back to (26.1).
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Recall that 𝐴 = 1−𝛽
𝛼 and 𝐵 = 𝛽

1−𝛼 .

When we multiply 𝐴 by a factor less than 1 (making 𝐴 smaller), we are effectively making it easier to reject the null
hypothesis 𝐻0.

This increases the probability of Type I errors.

When we multiply 𝐵 by a factor greater than 1 (making 𝐵 larger), we are making it easier to accept the null hypothesis
𝐻0.

This increases the probability of Type II errors.

The table confirms this intuition: as 𝐴 decreases and 𝐵 increases from their optimal Wald values, both Type I and Type
II error rates increase, while the mean stopping time decreases.

26.7 Related lectures

We’ll dig deeper into some of the ideas used here in the following earlier and later lectures:

• In this sequel, we reformulate the problem from the perspective of a Bayesian statistician who views parameters
as vectors of random variables that are jointly distributed with the observables they are concerned about.

• The concept of exchangeability, which underlies much of statistical learning, is explored in depth in our lecture
on exchangeable random variables.

• For a deeper understanding of likelihood ratio processes and their role in frequentist and Bayesian statistical theo-
ries, see Likelihood Ratio Processes.

• Building on that foundation, Likelihood Ratio Processes and Bayesian Learning examines the role of likelihood ratio
processes in Bayesian learning.

• Finally, this later lecture revisits the subject discussed here and examines whether the frequentist decision rule that
the Navy ordered the captain to use would perform better or worse than Abraham Wald’s sequential decision rule.

26.8 Exercises

In the two exercises below, please try to rewrite the entire SPRT suite in this lecture.

Exercise 26.8.1

In the first exercise, we apply the sequential probability ratio test to distinguish two models generated by 3-state
Markov chains

(For a review on likelihood ratio processes for Markov chains, see this section.)

Consider distinguishing between two 3-state Markov chain models using Wald’s sequential probability ratio test.

You have competing hypotheses about the transition probabilities:

• 𝐻0: The chain follows transition matrix 𝑃 (0)

• 𝐻1: The chain follows transition matrix 𝑃 (1)

Given transition matrices:

𝑃 (0) = ⎡⎢
⎣

0.7 0.2 0.1
0.3 0.5 0.2
0.1 0.3 0.6

⎤⎥
⎦

, 𝑃 (1) = ⎡⎢
⎣

0.5 0.3 0.2
0.2 0.6 0.2
0.2 0.2 0.6

⎤⎥
⎦
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For a sequence of observations (𝑥0, 𝑥1, … , 𝑥𝑡), the likelihood ratio is:

Λ𝑡 = 𝜋(1)
𝑥0

𝜋(0)
𝑥0

𝑡
∏
𝑠=1

𝑃 (1)
𝑥𝑠−1,𝑥𝑠

𝑃 (0)
𝑥𝑠−1,𝑥𝑠

where 𝜋(𝑖) is the stationary distribution under hypothesis 𝑖.
Tasks:

1. Implement the likelihood ratio computation for Markov chains

2. Implement Wald’s sequential test with Type I error 𝛼 = 0.05 and Type II error 𝛽 = 0.10
3. Run 1000 simulations under each hypothesis and compute empirical error rates

4. Analyze the distribution of stopping times

The test stops when:

• Λ𝑡 ≥ 𝐴 = 1−𝛽
𝛼 = 18: Reject 𝐻0

• Λ𝑡 ≤ 𝐵 = 𝛽
1−𝛼 = 0.105: Accept 𝐻0

Solution to Exercise 26.8.1

Below is one solution to the exercise.

In the lecture, we write the code more verbosely to illustrate the concepts clearly.

In the code below, we simplified some of the code structure for a shorter presentation.

First we define the parameters for the Markov chain SPRT

MarkovSPRTParams = namedtuple('MarkovSPRTParams',
['α', 'β', 'P_0', 'P_1', 'N', 'seed'])

def compute_stationary_distribution(P):
"""Compute stationary distribution of transition matrix P."""
eigenvalues, eigenvectors = np.linalg.eig(P.T)
idx = np.argmin(np.abs(eigenvalues - 1))
pi = np.real(eigenvectors[:, idx])
return pi / pi.sum()

@njit
def simulate_markov_chain(P, pi_0, T, seed):

"""Simulate a Markov chain path."""
np.random.seed(seed)
path = np.zeros(T, dtype=np.int32)

cumsum_pi = np.cumsum(pi_0)
path[0] = np.searchsorted(cumsum_pi, np.random.uniform())

for t in range(1, T):
cumsum_row = np.cumsum(P[path[t-1]])
path[t] = np.searchsorted(cumsum_row, np.random.uniform())

return path

Here we define the function that runs SPRT for Markov chains
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@njit
def markov_sprt_single_run(P_0, P_1, π_0, π_1,

logA, logB, true_P, true_π, seed):
"""Run single SPRT for Markov chains."""
max_n = 10000
path = simulate_markov_chain(true_P, true_π, max_n, seed)

log_L = np.log(π_1[path[0]] / π_0[path[0]])
if log_L >= logA: return 1, False
if log_L <= logB: return 1, True

for t in range(1, max_n):
prev_state, curr_state = path[t-1], path[t]
p_1, p_0 = P_1[prev_state, curr_state], P_0[prev_state, curr_state]

if p_0 > 0:
log_L += np.log(p_1 / p_0)

elif p_1 > 0:
log_L = np.inf

if log_L >= logA: return t+1, False
if log_L <= logB: return t+1, True

return max_n, log_L < 0

def run_markov_sprt(params):
"""Run SPRT for Markov chains."""
π_0 = compute_stationary_distribution(params.P_0)
π_1 = compute_stationary_distribution(params.P_1)
A, B, logA, logB = compute_wald_thresholds(params.α, params.β)

stopping_times = np.zeros(params.N, dtype=np.int64)
decisions_h0 = np.zeros(params.N, dtype=bool)
truth_h0 = np.zeros(params.N, dtype=bool)

for i in range(params.N):
true_P, true_π = (params.P_0, π_0) if i % 2 == 0 else (params.P_1, π_1)
truth_h0[i] = i % 2 == 0

n, accept_h0 = markov_sprt_single_run(
params.P_0, params.P_1, π_0, π_1, logA, logB,
true_P, true_π, params.seed + i)

stopping_times[i] = n
decisions_h0[i] = accept_h0

type_I = np.sum(truth_h0 & ~decisions_h0) / np.sum(truth_h0)
type_II = np.sum(~truth_h0 & decisions_h0) / np.sum(~truth_h0)

return {
'stopping_times': stopping_times, 'decisions_h0': decisions_h0,
'truth_h0': truth_h0, 'type_I': type_I, 'type_II': type_II

}

Now we can run the SPRT for the Markov chain models and visualize the results
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# Run Markov chain SPRT
P_0 = np.array([[0.7, 0.2, 0.1],

[0.3, 0.5, 0.2],
[0.1, 0.3, 0.6]])

P_1 = np.array([[0.5, 0.3, 0.2],
[0.2, 0.6, 0.2],
[0.2, 0.2, 0.6]])

params_markov = MarkovSPRTParams(α=0.05, β=0.10,
P_0=P_0, P_1=P_1, N=1000, seed=42)

results_markov = run_markov_sprt(params_markov)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))

ax1.hist(results_markov['stopping_times'],
bins=50, color="steelblue", alpha=0.8)

ax1.set_title("stopping times")
ax1.set_xlabel("n")
ax1.set_ylabel("frequency")

plot_confusion_matrix(results_markov, ax2)

plt.tight_layout()
plt.show()

Exercise 26.8.2

In this exercise, apply Wald’s sequential test to distinguish between two VAR(1) models with different dynamics and
noise structures.

For a review of the likelihood ratio process with VAR models, see Likelihood Processes For VAR Models.

Given VAR models under each hypothesis:
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• 𝐻0: 𝑥𝑡+1 = 𝐴(0)𝑥𝑡 + 𝐶(0)𝑤𝑡+1

• 𝐻1: 𝑥𝑡+1 = 𝐴(1)𝑥𝑡 + 𝐶(1)𝑤𝑡+1

where 𝑤𝑡 ∼ 𝒩(0, 𝐼) and:

𝐴(0) = [0.8 0.1
0.2 0.7] , 𝐶(0) = [0.3 0.1

0.1 0.3]

𝐴(1) = [0.6 0.2
0.3 0.5] , 𝐶(1) = [0.4 0

0 0.4]

Tasks:

1. Implement the VAR likelihood ratio using the functions from the VAR lecture

2. Implement Wald’s sequential test with 𝛼 = 0.05 and 𝛽 = 0.10
3. Analyze performance under both hypotheses and with model misspecification

4. Compare with the Markov chain case in terms of stopping times and accuracy

Solution to Exercise 26.8.2

Below is one solution to the exercise.

First we define the parameters for the VAR models and simulator

VARSPRTParams = namedtuple('VARSPRTParams',
['α', 'β', 'A_0', 'C_0', 'A_1', 'C_1', 'N', 'seed'])

def create_var_model(A, C):
"""Create VAR model."""
μ_0 = np.zeros(A.shape[0])
CC = C @ C.T
Σ_0 = sp.linalg.solve_discrete_lyapunov(A, CC)

CC_inv = np.linalg.inv(CC + 1e-10 * np.eye(CC.shape[0]))
Σ_0_inv = np.linalg.inv(Σ_0 + 1e-10 * np.eye(Σ_0.shape[0]))

return {
'A': A, 'C': C, 'μ_0': μ_0, 'Σ_0': Σ_0,
'CC_inv': CC_inv, 'Σ_0_inv': Σ_0_inv,
'log_det_CC': np.log(

np.linalg.det(CC + 1e-10 * np.eye(CC.shape[0]))),
'log_det_Σ_0': np.log(

np.linalg.det(Σ_0 + 1e-10 * np.eye(Σ_0.shape[0])))
}

Now we define the likelihood ratio for the VAR models and the SPRT function similar to the Markov chain case
def var_log_likelihood(x_curr, x_prev, model, initial=False):

"""Compute VAR log-likelihood."""
n = len(x_curr)
if initial:

diff = x_curr - model['μ_0']
return -0.5 * (n * np.log(2 * np.pi) + model['log_det_Σ_0'] +

diff @ model['Σ_0_inv'] @ diff)
else:

diff = x_curr - model['A'] @ x_prev
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return -0.5 * (n * np.log(2 * np.pi) + model['log_det_CC'] +
diff @ model['CC_inv'] @ diff)

def var_sprt_single_run(model_0, model_1, model_true,
logA, logB, seed):

"""Single VAR SPRT run."""
np.random.seed(seed)
max_T = 500

# Generate VAR path
Σ_chol = np.linalg.cholesky(model_true['Σ_0'])
x = model_true['μ_0'] + Σ_chol @ np.random.randn(

len(model_true['μ_0']))

# Initial likelihood ratio
log_L = (var_log_likelihood(x, None, model_1, True) -

var_log_likelihood(x, None, model_0, True))

if log_L >= logA: return 1, False
if log_L <= logB: return 1, True

# Sequential updates
for t in range(1, max_T):

x_prev = x.copy()
w = np.random.randn(model_true['C'].shape[1])
x = model_true['A'] @ x + model_true['C'] @ w

log_L += (var_log_likelihood(x, x_prev, model_1) -
var_log_likelihood(x, x_prev, model_0))

if log_L >= logA: return t+1, False
if log_L <= logB: return t+1, True

return max_T, log_L < 0

def run_var_sprt(params):
"""Run VAR SPRT."""

model_0 = create_var_model(params.A_0, params.C_0)
model_1 = create_var_model(params.A_1, params.C_1)
A, B, logA, logB = compute_wald_thresholds(params.α, params.β)

stopping_times = np.zeros(params.N)
decisions_h0 = np.zeros(params.N, dtype=bool)
truth_h0 = np.zeros(params.N, dtype=bool)

for i in range(params.N):
model_true = model_0 if i % 2 == 0 else model_1
truth_h0[i] = i % 2 == 0

n, accept_h0 = var_sprt_single_run(model_0, model_1, model_true,
logA, logB, params.seed + i)

stopping_times[i] = n
decisions_h0[i] = accept_h0

type_I = np.sum(truth_h0 & ~decisions_h0) / np.sum(truth_h0)
type_II = np.sum(~truth_h0 & decisions_h0) / np.sum(~truth_h0)
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return {'stopping_times': stopping_times,
'decisions_h0': decisions_h0,
'truth_h0': truth_h0,
'type_I': type_I, 'type_II': type_II}

Let’s run SPRT and visualize the results

# Run VAR SPRT
A_0 = np.array([[0.8, 0.1],

[0.2, 0.7]])
C_0 = np.array([[0.3, 0.1],

[0.1, 0.3]])
A_1 = np.array([[0.6, 0.2],

[0.3, 0.5]])
C_1 = np.array([[0.4, 0.0],

[0.0, 0.4]])

params_var = VARSPRTParams(α=0.05, β=0.10,
A_0=A_0, C_0=C_0, A_1=A_1, C_1=C_1,
N=1000, seed=42)

results_var = run_var_sprt(params_var)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

ax1.boxplot([results_markov['stopping_times'],
results_var['stopping_times']],

tick_labels=['Markov Chain', 'VAR(1)'])
ax1.set_ylabel('stopping time')

x = np.arange(2)
ax2.bar(x - 0.2, [results_markov['type_I'], results_var['type_I']],

0.4, label='Type I', alpha=0.7)
ax2.bar(x + 0.2, [results_markov['type_II'], results_var['type_II']],

0.4, label='Type II', alpha=0.7)
ax2.axhline(y=0.05, linestyle='--', alpha=0.5, color='C0')
ax2.axhline(y=0.10, linestyle='--', alpha=0.5, color='C1')
ax2.set_xticks(x), ax2.set_xticklabels(['Markov', 'VAR'])
ax2.legend()
plt.tight_layout()
plt.show()
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CHAPTER

TWENTYSEVEN

A BAYESIAN FORMULATION OF FRIEDMAN AND WALD’S PROBLEM

Contents

• A Bayesian Formulation of Friedman and Wald’s Problem

– Overview

– A Dynamic Programming Approach

– Implementation

– Analysis

27.1 Overview

This lecture revisits the statistical decision problem presented to Milton Friedman andW. AllenWallis duringWorldWar
II when they were analysts at the U.S. Government’s Statistical Research Group at Columbia University.

In an earlier lecture, we described how Abraham Wald [Wald, 1947] solved the problem by extending frequentist hy-
pothesis testing techniques and formulating the problem sequentially.

Note

Wald’s idea of formulating the problem sequentially created links to the dynamic programming that Richard Bellman
developed in the 1950s.

As we learned in Elementary Probability with Matrices and Two Meanings of Probability, a frequentist statistician views
a probability distribution as measuring relative frequencies of a statistic that he anticipates constructing from a very long
sequence of i.i.d. draws from a known probability distribution.

That known probability distribution is his ‘hypothesis’.

A frequentist statistician studies the distribution of that statistic under that known probability distribution

• when the distribution is a member of a set of parameterized probability distributions, his hypothesis takes the form
of a particular parameter vector.

• this is what we mean when we say that the frequentist statistician ‘conditions on the parameters’

• he regards the parameters as fixed numbers that are known to nature, but not to him.
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• the statistician copes with his ignorance of those parameters by constructing type I and type II errors associated
with frequentist hypothesis testing.

In this lecture, we reformulate Friedman and Wald’s problem by transforming our point of view from the ‘objective’
frequentist perspective of the lecture on Wald’s sequential analysis to an explicitly ‘subjective’ perspective taken by a
Bayesian decision maker who regards parameters not as fixed numbers but as (hidden) random variables that are jointly
distributed with the random variables that he can observe by sampling from that joint distribution.

To form that joint distribution, the Bayesian statistician supplements the conditional distributions used by the frequentist
statistician with a prior probability distribution over the parameters that represents his personal, subjective opinion about
them.

That lets the Bayesian statistician calculate the joint distribution that he requires to calculate the conditional distributions
that he wants.

To proceed in this way, we endow our decision maker with

• an initial prior subjective probability 𝜋−1 ∈ (0, 1) that nature uses to generate {𝑧𝑘} as a sequence of i.i.d. draws
from 𝑓1 rather than 𝑓0.

• faith in Bayes’ law as a way to revise his subjective beliefs as observations on {𝑧𝑘} sequence arrive.
• a loss function that tells how the decision maker values type I and type II errors.

In our previous frequentist version, key ideas in play were:

• Type I and type II statistical errors

– a type I error occurs when you reject a null hypothesis that is true

– a type II error occurs when you accept a null hypothesis that is false

• Abraham Wald’s sequential probability ratio test

• The power of a statistical test

• The critical region of a statistical test

• A uniformly most powerful test

In this lecture about a Bayesian reformulation of the problem, additional ideas at work are

• an initial prior probability 𝜋−1 that model 𝑓1 generates the data

• Bayes’ Law

• a sequence of posterior probabilities that model 𝑓1 is generating the data

• dynamic programming

This lecture uses ideas studied in the lectures on likelihood ratio processes, their roles in Bayesian learning, and this lecture
on exchangeability.

We’ll begin with some imports:

import numpy as np
import matplotlib.pyplot as plt
from numba import jit, prange, float64, int64
from numba.experimental import jitclass
from math import gamma
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27.2 A Dynamic Programming Approach

The following presentation of the problem closely follows Dmitri Bertsekas’s treatment in Dynamic Programming and
Stochastic Control [Bertsekas, 1975].

A decision-maker can observe a sequence of draws of a random variable 𝑧.
He (or she) wants to know which of two probability distributions 𝑓0 or 𝑓1 governs 𝑧.
Conditional on knowing that successive observations are drawn from distribution 𝑓0, the sequence of random variables
is independently and identically distributed (IID).

Conditional on knowing that successive observations are drawn from distribution 𝑓1, the sequence of random variables
is also independently and identically distributed (IID).

But the observer does not know which of the two distributions generated the sequence.

For reasons explained in Exchangeability and Bayesian Updating, this means that the sequence is not IID.

The observer has something to learn, namely, whether the observations are drawn from 𝑓0 or from 𝑓1.

The decision maker wants to decide which of the two distributions is generating outcomes.

We adopt a Bayesian formulation.

The decision maker begins with a prior probability

𝜋−1 = ℙ{𝑓 = 𝑓1 ∣ no observations} ∈ (0, 1)

Note

In Bertsekas [1975], the belief is associated with the distribution 𝑓0, but here we associate the belief with the distri-
bution 𝑓1 to match the discussions in the lecture on Wald’s sequential analysis.

After observing 𝑘+1 observations 𝑧𝑘, 𝑧𝑘−1, … , 𝑧0, he updates his personal probability that the observations are described
by distribution 𝑓1 to

𝜋𝑘 = ℙ{𝑓 = 𝑓1 ∣ 𝑧𝑘, 𝑧𝑘−1, … , 𝑧0}
which is calculated recursively by applying Bayes’ law:

𝜋𝑘+1 = 𝜋𝑘𝑓1(𝑧𝑘+1)
(1 − 𝜋𝑘)𝑓0(𝑧𝑘+1) + 𝜋𝑘𝑓1(𝑧𝑘+1) , 𝑘 = −1, 0, 1, …

After observing 𝑧𝑘, 𝑧𝑘−1, … , 𝑧0, the decision-maker believes that 𝑧𝑘+1 has probability distribution

𝑓𝜋𝑘
(𝑣) = (1 − 𝜋𝑘)𝑓0(𝑣) + 𝜋𝑘𝑓1(𝑣),

which is a mixture of distributions 𝑓0 and 𝑓1, with the weight on 𝑓1 being the posterior probability that 𝑓 = 𝑓1
1.

To illustrate such a distribution, let’s inspect some mixtures of beta distributions.

The density of a beta probability distribution with parameters 𝑎 and 𝑏 is

𝑓(𝑧; 𝑎, 𝑏) = Γ(𝑎 + 𝑏)𝑧𝑎−1(1 − 𝑧)𝑏−1

Γ(𝑎)Γ(𝑏) where Γ(𝑡) ∶= ∫
∞

0
𝑥𝑡−1𝑒−𝑥𝑑𝑥

The next figure shows two beta distributions in the top panel.

The bottom panel presents mixtures of these distributions, with various mixing probabilities 𝜋𝑘
1 The decision maker acts as if he believes that the sequence of random variables [𝑧0, 𝑧1, …] is exchangeable. See Exchangeability and Bayesian

Updating and [Kreps, 1988] chapter 11, for discussions of exchangeability.
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@jit
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x**(a-1) * (1 - x)**(b-1)

f0 = lambda x: p(x, 1, 1)
f1 = lambda x: p(x, 9, 9)
grid = np.linspace(0, 1, 50)

fig, axes = plt.subplots(2, figsize=(10, 8))

axes[0].set_title("Original Distributions")
axes[0].plot(grid, f0(grid), lw=2, label="$f_0$")
axes[0].plot(grid, f1(grid), lw=2, label="$f_1$")

axes[1].set_title("Mixtures")
for π in 0.25, 0.5, 0.75:

y = (1 - π) * f0(grid) + π * f1(grid)
axes[1].plot(grid, y, lw=2, label=fr"$\pi_k$ = {π}")

for ax in axes:
ax.legend()
ax.set(xlabel="$z$ values", ylabel="probability of $z_k$")

plt.tight_layout()
plt.show()
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27.2.1 Losses and Costs

After observing 𝑧𝑘, 𝑧𝑘−1, … , 𝑧0, the decision-maker chooses among three distinct actions:

• He decides that 𝑓 = 𝑓0 and draws no more 𝑧’s
• He decides that 𝑓 = 𝑓1 and draws no more 𝑧’s
• He postpones deciding now and instead chooses to draw a 𝑧𝑘+1

Associated with these three actions, the decision-maker can suffer three kinds of losses:

• A loss 𝐿0 if he decides 𝑓 = 𝑓0 when actually 𝑓 = 𝑓1

• A loss 𝐿1 if he decides 𝑓 = 𝑓1 when actually 𝑓 = 𝑓0

• A cost 𝑐 if he postpones deciding and chooses instead to draw another 𝑧
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27.2.2 Digression on Type I and Type II Errors

If we regard 𝑓 = 𝑓0 as a null hypothesis and 𝑓 = 𝑓1 as an alternative hypothesis, then 𝐿1 and 𝐿0 are losses associated
with two types of statistical errors

• a type I error is an incorrect rejection of a true null hypothesis (a “false positive”)

• a type II error is a failure to reject a false null hypothesis (a “false negative”)

So when we treat 𝑓 = 𝑓0 as the null hypothesis

• We can think of 𝐿1 as the loss associated with a type I error.

• We can think of 𝐿0 as the loss associated with a type II error.

27.2.3 Intuition

Before proceeding, let’s try to guess what an optimal decision rule might look like.

Suppose at some given point in time that 𝜋 is close to 1.

Then our prior beliefs and the evidence so far point strongly to 𝑓 = 𝑓1.

If, on the other hand, 𝜋 is close to 0, then 𝑓 = 𝑓0 is strongly favored.

Finally, if 𝜋 is in the middle of the interval [0, 1], then we are confronted with more uncertainty.
This reasoning suggests a sequential decision rule that we illustrate in the following figure:

As we’ll see, this is indeed the correct form of the decision rule.

Our problem is to determine threshold values 𝐴, 𝐵 that somehow depend on the parameters described above.

You might like to pause at this point and try to predict the impact of a parameter such as 𝑐 or 𝐿0 on 𝐴 or 𝐵.

27.2.4 A Bellman Equation

Let 𝐽(𝜋) be the total loss for a decision-maker with current belief 𝜋 who chooses optimally.

Principles of dynamic programming teach us that an optimal loss function 𝐽 satisfies the following the Bellman func-
tional equation

𝐽(𝜋) = min
⎧{
⎨{⎩

𝜋𝐿0⏟
accept 𝑓0

, (1 − 𝜋)𝐿1⏟⏟⏟⏟⏟
accept 𝑓1

, 𝑐 + 𝔼[𝐽(𝜋′)]⏟⏟⏟⏟⏟
draw again

⎫}
⎬}⎭

(27.1)

where 𝜋′ is the random variable defined by Bayes’ Law

𝜋′ = 𝜅(𝑧′, 𝜋) = 𝜋𝑓1(𝑧′)
(1 − 𝜋)𝑓0(𝑧′) + 𝜋𝑓1(𝑧′)

when 𝜋 is fixed and 𝑧′ is drawn from the current best guess, which is the distribution 𝑓 defined by

𝑓𝜋(𝑣) = (1 − 𝜋)𝑓0(𝑣) + 𝜋𝑓1(𝑣)

In the Bellman equation, minimization is over three actions:
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1. Accept the hypothesis that 𝑓 = 𝑓0

2. Accept the hypothesis that 𝑓 = 𝑓1

3. Postpone deciding and draw again

We can represent the Bellman equation as

𝐽(𝜋) = min {𝜋𝐿0, (1 − 𝜋)𝐿1, ℎ(𝜋)} (27.2)

where 𝜋 ∈ [0, 1] and
• 𝜋𝐿0 is the expected loss associated with accepting 𝑓0 (i.e., the cost of making a type II error).

• (1 − 𝜋)𝐿1 is the expected loss associated with accepting 𝑓1 (i.e., the cost of making a type I error).

• ℎ(𝜋) ∶= 𝑐 + 𝔼[𝐽(𝜋′)]; this is the continuation value; i.e., the expected cost associated with drawing one more 𝑧.
The optimal decision rule is characterized by two numbers 𝐴, 𝐵 ∈ (0, 1) × (0, 1) that satisfy

𝜋𝐿0 < min{(1 − 𝜋)𝐿1, 𝑐 + 𝔼[𝐽(𝜋′)]} if 𝜋 ≤ 𝐵

and

(1 − 𝜋)𝐿1 < min{𝜋𝐿0, 𝑐 + 𝔼[𝐽(𝜋′)]} if 𝜋 ≥ 𝐴

The optimal decision rule is then

accept 𝑓 = 𝑓1 if 𝜋 ≥ 𝐴
accept 𝑓 = 𝑓0 if 𝜋 ≤ 𝐵

draw another 𝑧 if 𝐵 < 𝜋 < 𝐴

Our aim is to compute the cost function 𝐽 as well as the associated cutoffs 𝐴 and 𝐵.

To help make our computations more manageable, we can use (27.2) to write the continuation cost ℎ(𝜋) as

ℎ(𝜋) = 𝑐 + 𝔼[𝐽(𝜋′)]
= 𝑐 + 𝔼𝜋′ min{𝜋′𝐿0, (1 − 𝜋′)𝐿1, ℎ(𝜋′)}

= 𝑐 + ∫min{𝜅(𝑧′, 𝜋)𝐿0, (1 − 𝜅(𝑧′, 𝜋))𝐿1, ℎ(𝜅(𝑧′, 𝜋))}𝑓𝜋(𝑧′)𝑑𝑧′
(27.3)

The equality

ℎ(𝜋) = 𝑐 + ∫min{𝜅(𝑧′, 𝜋)𝐿0, (1 − 𝜅(𝑧′, 𝜋))𝐿1, ℎ(𝜅(𝑧′, 𝜋))}𝑓𝜋(𝑧′)𝑑𝑧′ (27.4)

is an equation in an unknown function ℎ.

Note

Such an equation is called a functional equation.

Using the functional equation, (27.4), for the continuation cost, we can back out optimal choices using the right side of
(27.2).

This functional equation can be solved by taking an initial guess and iterating to find a fixed point.

Thus, we iterate with an operator 𝑄, where

𝑄ℎ(𝜋) = 𝑐 + ∫min{𝜅(𝑧′, 𝜋)𝐿0, (1 − 𝜅(𝑧′, 𝜋))𝐿1, ℎ(𝜅(𝑧′, 𝜋))}𝑓𝜋(𝑧′)𝑑𝑧′
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27.3 Implementation

First, we will construct a jitclass to store the parameters of the model

wf_data = [('a0', float64), # Parameters of beta distributions
('b0', float64),
('a1', float64),
('b1', float64),
('c', float64), # Cost of another draw
('π_grid_size', int64),
('L0', float64), # Cost of selecting f0 when f1 is true
('L1', float64), # Cost of selecting f1 when f0 is true
('π_grid', float64[:]),
('mc_size', int64),
('z0', float64[:]),
('z1', float64[:])]

@jitclass(wf_data)
class WaldFriedman:

def __init__(self,
c=1.25,
a0=1,
b0=1,
a1=3,
b1=1.2,
L0=25,
L1=25,
π_grid_size=200,
mc_size=1000):

self.a0, self.b0 = a0, b0
self.a1, self.b1 = a1, b1
self.c, self.π_grid_size = c, π_grid_size
self.L0, self.L1 = L0, L1
self.π_grid = np.linspace(0, 1, π_grid_size)
self.mc_size = mc_size

self.z0 = np.random.beta(a0, b0, mc_size)
self.z1 = np.random.beta(a1, b1, mc_size)

def f0(self, x):

return p(x, self.a0, self.b0)

def f1(self, x):

return p(x, self.a1, self.b1)

def f0_rvs(self):
return np.random.beta(self.a0, self.b0)

def f1_rvs(self):
return np.random.beta(self.a1, self.b1)

def κ(self, z, π):
"""

(continues on next page)
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(continued from previous page)

Updates π using Bayes' rule and the current observation z
"""

f0, f1 = self.f0, self.f1

π_f0, π_f1 = (1 - π) * f0(z), π * f1(z)
π_new = π_f1 / (π_f0 + π_f1)

return π_new

As in the optimal growth lecture, to approximate a continuous value function

• We iterate at a finite grid of possible values of 𝜋.
• When we evaluate 𝔼[𝐽(𝜋′)] between grid points, we use linear interpolation.

We define the operator function Q below.

@jit(nopython=True, parallel=True)
def Q(h, wf):

c, π_grid = wf.c, wf.π_grid
L0, L1 = wf.L0, wf.L1
z0, z1 = wf.z0, wf.z1
mc_size = wf.mc_size

κ = wf.κ

h_new = np.empty_like(π_grid)
h_func = lambda p: np.interp(p, π_grid, h)

for i in prange(len(π_grid)):
π = π_grid[i]

# Find the expected value of J by integrating over z
integral_f0, integral_f1 = 0, 0
for m in range(mc_size):

π_0 = κ(z0[m], π) # Draw z from f0 and update π
integral_f0 += min(π_0 * L0, (1 - π_0) * L1, h_func(π_0))

π_1 = κ(z1[m], π) # Draw z from f1 and update π
integral_f1 += min(π_1 * L0, (1 - π_1) * L1, h_func(π_1))

integral = ((1 - π) * integral_f0 + π * integral_f1) / mc_size

h_new[i] = c + integral

return h_new

To solve the key functional equation, we will iterate using Q to find the fixed point

@jit
def solve_model(wf, tol=1e-4, max_iter=1000):

"""
Compute the continuation cost function

* wf is an instance of WaldFriedman
"""

(continues on next page)
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(continued from previous page)

# Set up loop
h = np.zeros(len(wf.π_grid))
i = 0
error = tol + 1

while i < max_iter and error > tol:
h_new = Q(h, wf)
error = np.max(np.abs(h - h_new))
i += 1
h = h_new

if error > tol:
print("Failed to converge!")

return h_new

27.4 Analysis

Let’s inspect outcomes.

We will be using the default parameterization with distributions like so

wf = WaldFriedman()

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(wf.f0(wf.π_grid), label="$f_0$")
ax.plot(wf.f1(wf.π_grid), label="$f_1$")
ax.set(ylabel="probability of $z_k$", xlabel="$z_k$", title="Distributions")
ax.legend()

plt.show()
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27.4.1 Cost Function

To solve the model, we will call our solve_model function

h_star = solve_model(wf) # Solve the model

We will also set up a function to compute the cutoffs 𝐴 and 𝐵 and plot these on our cost function plot

@jit
def find_cutoff_rule(wf, h):

"""
This function takes a continuation cost function and returns the
corresponding cutoffs of where you transition between continuing and
choosing a specific model
"""

π_grid = wf.π_grid
L0, L1 = wf.L0, wf.L1

# Evaluate cost at all points on grid for choosing a model
cost_f0 = π_grid * L0
cost_f1 = (1 - π_grid) * L1

# Find B: largest π where cost_f0 <= min(cost_f1, h)
optimal_cost = np.minimum(np.minimum(cost_f0, cost_f1), h)
choose_f0 = (cost_f0 <= cost_f1) & (cost_f0 <= h)

if np.any(choose_f0):

(continues on next page)
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(continued from previous page)

B = π_grid[choose_f0][-1] # Last point where we choose f0
else:

assert False, "No point where we choose f0"

# Find A: smallest π where cost_f1 <= min(cost_f0, h)
choose_f1 = (cost_f1 <= cost_f0) & (cost_f1 <= h)

if np.any(choose_f1):
A = π_grid[choose_f1][0] # First point where we choose f1

else:
assert False, "No point where we choose f1"

return (B, A)

B, A = find_cutoff_rule(wf, h_star)
cost_L0 = wf.π_grid * wf.L0
cost_L1 = (1 - wf.π_grid) * wf.L1

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(wf.π_grid, h_star, label='sample again')
ax.plot(wf.π_grid, cost_L1, label='choose f1')
ax.plot(wf.π_grid, cost_L0, label='choose f0')
ax.plot(wf.π_grid,

np.amin(np.column_stack([h_star, cost_L0, cost_L1]),axis=1),
lw=15, alpha=0.1, color='b', label=r'$J(\pi)$')

ax.annotate(r"$B$", xy=(B + 0.01, 0.5), fontsize=14)
ax.annotate(r"$A$", xy=(A + 0.01, 0.5), fontsize=14)

plt.vlines(B, 0, (1 - B) * wf.L1, linestyle="--")
plt.vlines(A, 0, A * wf.L0, linestyle="--")

ax.set(xlim=(0, 1), ylim=(0, 0.5 * max(wf.L0, wf.L1)), ylabel="cost",
xlabel=r"$\pi$", title=r"Cost function $J(\pi)$")

plt.legend(borderpad=1.1)
plt.show()
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The cost function 𝐽 equals 𝜋𝐿0 for 𝜋 ≤ 𝐵, and (1 − 𝜋)𝐿1 for 𝜋 ≥ 𝐴.
The slopes of the two linear pieces of the cost function 𝐽(𝜋) are determined by 𝐿0 and −𝐿1.

The cost function 𝐽 is smooth in the interior region, where the posterior probability assigned to 𝑓1 is in the indecisive
region 𝜋 ∈ (𝐵, 𝐴).
The decision-maker continues to sample until the probability that he attaches to model 𝑓1 falls below 𝐵 or above 𝐴.

27.4.2 Simulations

The next figure shows the outcomes of 500 simulations of the decision process.

On the left is a histogram of stopping times, i.e., the number of draws of 𝑧𝑘 required to make a decision.

The average number of draws is around 6.6.

On the right is the fraction of correct decisions at the stopping time.

In this case, the decision-maker is correct 80% of the time

def simulate(wf, true_dist, h_star, π_0=0.5):

"""
This function takes an initial condition and simulates until it
stops (when a decision is made)
"""

f0, f1 = wf.f0, wf.f1
f0_rvs, f1_rvs = wf.f0_rvs, wf.f1_rvs
π_grid = wf.π_grid
κ = wf.κ

(continues on next page)
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if true_dist == "f0":
f, f_rvs = wf.f0, wf.f0_rvs

elif true_dist == "f1":
f, f_rvs = wf.f1, wf.f1_rvs

# Find cutoffs
B, A = find_cutoff_rule(wf, h_star)

# Initialize a couple of useful variables
decision_made = False
π = π_0
t = 0

while decision_made is False:
z = f_rvs()
t = t + 1
π = κ(z, π)
if π < B:

decision_made = True
decision = 0

elif π > A:
decision_made = True
decision = 1

if true_dist == "f0":
if decision == 0:

correct = True
else:

correct = False

elif true_dist == "f1":
if decision == 1:

correct = True
else:

correct = False

return correct, π, t

def stopping_dist(wf, h_star, ndraws=250, true_dist="f0"):

"""
Simulates repeatedly to get distributions of time needed to make a
decision and how often they are correct
"""

tdist = np.empty(ndraws, int)
cdist = np.empty(ndraws, bool)

for i in range(ndraws):
correct, π, t = simulate(wf, true_dist, h_star)
tdist[i] = t
cdist[i] = correct

return cdist, tdist

def simulation_plot(wf):
(continues on next page)
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(continued from previous page)

h_star = solve_model(wf)
ndraws = 500
cdist, tdist = stopping_dist(wf, h_star, ndraws)

fig, ax = plt.subplots(1, 2, figsize=(16, 5))

ax[0].hist(tdist, bins=np.max(tdist))
ax[0].set_title(f"Stopping times over {ndraws} replications")
ax[0].set(xlabel="time", ylabel="number of stops")
ax[0].annotate(f"mean = {np.mean(tdist)}", xy=(max(tdist) / 2,

max(np.histogram(tdist, bins=max(tdist))[0]) / 2))

ax[1].hist(cdist.astype(int), bins=2)
ax[1].set_title(f"Correct decisions over {ndraws} replications")
ax[1].annotate(f"% correct = {np.mean(cdist)}",

xy=(0.05, ndraws / 2))

plt.show()

simulation_plot(wf)

27.4.3 Comparative Statics

Now let’s consider the following exercise.

We double the cost of drawing an additional observation.

Before you look, think about what will happen:

• Will the decision-maker be correct more or less often?

• Will he make decisions sooner or later?

wf = WaldFriedman(c=2.5)
simulation_plot(wf)
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Increased cost per draw has induced the decision-maker to take fewer draws before deciding.

Because he decides with fewer draws, the percentage of time he is correct drops.

This leads to him having a higher expected loss when he puts equal weight on both models.

To facilitate comparative statics, we invite you to adjust the parameters of the model and investigate

• effects on the smoothness of the value function in the indecisive middle range as we increase the number of grid
points in the piecewise linear approximation.

• effects of different settings for the cost parameters 𝐿0, 𝐿1, 𝑐, the parameters of two beta distributions 𝑓0 and 𝑓1,
and the number of points and linear functions 𝑚 to use in the piecewise continuous approximation to the value
function.

• various simulations from 𝑓0 and associated distributions of waiting times to making a decision.

• associated histograms of correct and incorrect decisions.
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28.1 Overview

This lecture studies learning via Bayes’ Law.

We touch foundations of Bayesian statistical inference invented by Bruno DeFinetti [de Finetti, 1937].

The relevance of DeFinetti’s work for economists is presented forcefully by David Kreps in chapter 11 of [Kreps, 1988].

An example that we study in this lecture is a key component of this lecture that augments the classic job search model of
McCall [McCall, 1970] by presenting an unemployed worker with a statistical inference problem.

Here we create graphs that illustrate the role that a likelihood ratio plays in Bayes’ Law.

We’ll use such graphs to provide insights into mechanics driving outcomes in this lecture about learning in an augmented
McCall job search model.

Among other things, this lecture discusses connections between the statistical concepts of sequences of random variables
that are

• independently and identically distributed

• exchangeable (also known as conditionally independently and identically distributed)
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Understanding these concepts is essential for appreciating how Bayesian updating works.

You can read about exchangeability here.

Because another term for exchangeable is conditionally independent, we want to convey an answer to the question
conditional on what?

We also tell why an assumption of independence precludes learning while an assumption of conditional independence
makes learning possible.

Below, we’ll often use

• 𝑊 to denote a random variable

• 𝑤 to denote a particular realization of a random variable 𝑊
Let’s start with some imports:

import matplotlib.pyplot as plt
from numba import jit, vectorize
from math import gamma
import scipy.optimize as op
from scipy.integrate import quad
import numpy as np

28.2 Independently and Identically Distributed

We begin by looking at the notion of an independently and identically distributed sequence of random variables.

An independently and identically distributed sequence is often abbreviated as IID.

Two notions are involved

• independence

• identically distributed

A sequence 𝑊0, 𝑊1, … is independently distributed if the joint probability density of the sequence is the product of
the densities of the components of the sequence.

The sequence 𝑊0, 𝑊1, … is independently and identically distributed (IID) if in addition the marginal density of 𝑊𝑡
is the same for all 𝑡 = 0, 1, ….

For example, let 𝑝(𝑊0, 𝑊1, …) be the joint density of the sequence and let 𝑝(𝑊𝑡) be the marginal density for a
particular 𝑊𝑡 for all 𝑡 = 0, 1, ….

Then the joint density of the sequence 𝑊0, 𝑊1, … is IID if

𝑝(𝑊0, 𝑊1, …) = 𝑝(𝑊0)𝑝(𝑊1) ⋯

so that the joint density is the product of a sequence of identical marginal densities.
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28.2.1 IID Means Past Observations Don’t Tell Us Anything About Future Observa-
tions

If a sequence is random variables is IID, past information provides no information about future realizations.

Therefore, there is nothing to learn from the past about the future.

To understand these statements, let the joint distribution of a sequence of random variables {𝑊𝑡}𝑇
𝑡=0 that is not necessarily

IID be

𝑝(𝑊𝑇 , 𝑊𝑇 −1, … , 𝑊1, 𝑊0)

Using the laws of probability, we can always factor such a joint density into a product of conditional densities:

𝑝(𝑊𝑇 , 𝑊𝑇 −1, … , 𝑊1, 𝑊0) =𝑝(𝑊𝑇 |𝑊𝑇 −1, … , 𝑊0)𝑝(𝑊𝑇 −1|𝑊𝑇 −2, … , 𝑊0) ⋯
⋯ 𝑝(𝑊1|𝑊0)𝑝(𝑊0)

In general,

𝑝(𝑊𝑡|𝑊𝑡−1, … , 𝑊0) ≠ 𝑝(𝑊𝑡)

which states that the conditional density on the left side does not equal the marginal density on the right side.

But in the special IID case,

𝑝(𝑊𝑡|𝑊𝑡−1, … , 𝑊0) = 𝑝(𝑊𝑡),

so that the partial history 𝑊𝑡−1, … , 𝑊0 contains no information about the probability of 𝑊𝑡.

So in the IID case, there is nothing to learn about the densities of future random variables from past random variables.

But when the sequence is not IID, there is something to learn about the future from observations of past random variables.

We turn next to an instance of the general case in which the sequence is not IID.

Please watch for what can be learned from the past and when.

28.3 A Setting in Which Past Observations Are Informative

Let {𝑊𝑡}∞
𝑡=0 be a sequence of nonnegative scalar random variables with a joint probability distribution constructed as

follows.

There are two distinct cumulative distribution functions𝐹 and𝐺 that have densities 𝑓 and 𝑔, respectively, for a nonnegative
scalar random variable 𝑊 .

Before the start of time, say at time 𝑡 = −1, “nature” once and for all selects either 𝑓 or 𝑔.
Thereafter at each time 𝑡 ≥ 0, nature draws a random variable 𝑊𝑡 from the selected distribution.

So the data are permanently generated as independently and identically distributed (IID) draws from either 𝐹 or 𝐺.

We could say that objectively, meaning after nature has chosen either 𝐹 or 𝐺, the probability that the data are generated
as draws from 𝐹 is either 0 or 1.
We now drop into this setting a partially informed decision maker who

• knows both 𝐹 and 𝐺, but

• does not know whether at 𝑡 = −1 nature had drawn 𝐹 or whether nature had drawn 𝐺 once-and-for-all
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Thus, although our decision maker knows 𝐹 and knows 𝐺, he does not know which of these two known distributions
nature had selected to draw from.

The decision maker describes his ignorance with a subjective probability ̃𝜋 and reasons as if nature had selected 𝐹 with
probability ̃𝜋 ∈ (0, 1) and 𝐺 with probability 1 − ̃𝜋.
Thus, we assume that the decision maker

• knows both 𝐹 and 𝐺
• doesn’t know which of these two distributions that nature has drawn

• expresses his ignorance by acting as if or thinking that nature chose distribution 𝐹 with probability ̃𝜋 ∈ (0, 1)
and distribution 𝐺 with probability 1 − ̃𝜋

• at date 𝑡 ≥ 0 knows the partial history 𝑤𝑡, 𝑤𝑡−1, … , 𝑤0

To proceed, we want to know the decision maker’s belief about the joint distribution of the partial history.

We’ll discuss that next and in the process describe the concept of exchangeability.

28.4 Relationship Between IID and Exchangeable

Conditional on nature selecting 𝐹 , the joint density of the sequence 𝑊0, 𝑊1, … is

𝑓(𝑊0)𝑓(𝑊1) ⋯

Conditional on nature selecting 𝐺, the joint density of the sequence 𝑊0, 𝑊1, … is

𝑔(𝑊0)𝑔(𝑊1) ⋯

Thus, conditional on nature having selected 𝐹 , the sequence 𝑊0, 𝑊1, … is independently and identically distributed.

Furthermore, conditional on nature having selected 𝐺, the sequence 𝑊0, 𝑊1, … is also independently and identically
distributed.

But what about the unconditional distribution of a partial history?

The unconditional distribution of 𝑊0, 𝑊1, … is evidently

ℎ(𝑊0, 𝑊1, …) ≡ ̃𝜋[𝑓(𝑊0)𝑓(𝑊1) ⋯ ] + (1 − ̃𝜋)[𝑔(𝑊0)𝑔(𝑊1) ⋯ ] (28.1)

Under the unconditional distribution ℎ(𝑊0, 𝑊1, …), the sequence 𝑊0, 𝑊1, … is not independently and identically dis-
tributed.

To verify this claim, it is sufficient to notice, for example, that

ℎ(𝑊0, 𝑊1) = ̃𝜋𝑓(𝑊0)𝑓(𝑊1) + (1 − ̃𝜋)𝑔(𝑊0)𝑔(𝑊1) ≠ ( ̃𝜋𝑓(𝑊0) + (1 − ̃𝜋)𝑔(𝑊0))( ̃𝜋𝑓(𝑊1) + (1 − ̃𝜋)𝑔(𝑊1))

Thus, the conditional distribution

ℎ(𝑊1|𝑊0) ≡ ℎ(𝑊0, 𝑊1)
( ̃𝜋𝑓(𝑊0) + (1 − ̃𝜋)𝑔(𝑊0)) ≠ ( ̃𝜋𝑓(𝑊1) + (1 − ̃𝜋)𝑔(𝑊1))

This means that random variable 𝑊0 contains information about random variable 𝑊1.

So there is something to learn from the past about the future.
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28.5 Exchangeability

While the sequence 𝑊0, 𝑊1, … is not IID, it can be verified that it is exchangeable, which means that the joint distribu-
tions ℎ(𝑊0, 𝑊1) and ℎ(𝑊1, 𝑊0) of the “re-ordered” sequences satisfy

ℎ(𝑊0, 𝑊1) = ℎ(𝑊1, 𝑊0)

and so on.

More generally, a sequence of random variables is said to be exchangeable if the joint probability distribution for a
sequence does not change when the positions in the sequence in which finitely many of random variables appear are
altered.

Equation (28.1) represents our instance of an exchangeable joint density over a sequence of random variables as amixture
of two IID joint densities over a sequence of random variables.

A Bayesian statistician interprets the mixing parameter ̃𝜋 ∈ (0, 1) as a decision maker’s subjective belief – the decision
maker’s prior probability – that nature had selected probability distribution 𝐹 .

Note

DeFinetti [de Finetti, 1937] established a related representation of an exchangeable process created by mixing se-
quences of IID Bernoulli random variables with parameter 𝜃 ∈ (0, 1) and mixing probability density 𝜋(𝜃) that a
Bayesian statistician would interpret as a prior over the unknown Bernoulli parameter 𝜃.

28.6 Bayes’ Law

We noted above that in our example model there is something to learn about about the future from past data drawn from
our particular instance of a process that is exchangeable but not IID.

But how can we learn?

And about what?

The answer to the about what question is ̃𝜋.
The answer to the how question is to use Bayes’ Law.

Another way to say use Bayes’ Law is to say from a (subjective) joint distribution, compute an appropriate conditional
distribution.

Let’s dive into Bayes’ Law in this context.

Let 𝑞 represent the distribution that nature actually draws 𝑤 from and let

𝜋 = ℙ{𝑞 = 𝑓}

where we regard 𝜋 as a decision maker’s subjective probability (also called a personal probability).

Suppose that at 𝑡 ≥ 0, the decision maker has observed a history 𝑤𝑡 ≡ [𝑤𝑡, 𝑤𝑡−1, … , 𝑤0].
We let

𝜋𝑡 = ℙ{𝑞 = 𝑓|𝑤𝑡}

where we adopt the convention

𝜋−1 = ̃𝜋

28.5. Exchangeability 533



Intermediate Quantitative Economics with Python

The distribution of 𝑤𝑡+1 conditional on 𝑤𝑡 is then

𝜋𝑡𝑓 + (1 − 𝜋𝑡)𝑔.

Bayes’ rule for updating 𝜋𝑡+1 is

𝜋𝑡+1 = 𝜋𝑡𝑓(𝑤𝑡+1)
𝜋𝑡𝑓(𝑤𝑡+1) + (1 − 𝜋𝑡)𝑔(𝑤𝑡+1) (28.2)

Equation (28.2) follows from Bayes’ rule, which tells us that

ℙ{𝑞 = 𝑓 | 𝑊 = 𝑤} = ℙ{𝑊 = 𝑤 | 𝑞 = 𝑓}ℙ{𝑞 = 𝑓}
ℙ{𝑊 = 𝑤}

where

ℙ{𝑊 = 𝑤} = ∑
𝑎∈{𝑓,𝑔}

ℙ{𝑊 = 𝑤 | 𝑞 = 𝑎}ℙ{𝑞 = 𝑎}

28.7 More Details about Bayesian Updating

Let’s stare at and rearrange Bayes’ Law as represented in equation (28.2) with the aim of understanding how the posterior
probability 𝜋𝑡+1 is influenced by the prior probability 𝜋𝑡 and the likelihood ratio

𝑙(𝑤) = 𝑓(𝑤)
𝑔(𝑤)

It is convenient for us to rewrite the updating rule (28.2) as

𝜋𝑡+1 = 𝜋𝑡𝑓 (𝑤𝑡+1)
𝜋𝑡𝑓 (𝑤𝑡+1) + (1 − 𝜋𝑡) 𝑔 (𝑤𝑡+1) =

𝜋𝑡
𝑓(𝑤𝑡+1)
𝑔(𝑤𝑡+1)

𝜋𝑡
𝑓(𝑤𝑡+1)
𝑔(𝑤𝑡+1) + (1 − 𝜋𝑡)

= 𝜋𝑡𝑙 (𝑤𝑡+1)
𝜋𝑡𝑙 (𝑤𝑡+1) + (1 − 𝜋𝑡)

This implies that

𝜋𝑡+1
𝜋𝑡

= 𝑙 (𝑤𝑡+1)
𝜋𝑡𝑙 (𝑤𝑡+1) + (1 − 𝜋𝑡)

{> 1 if 𝑙 (𝑤𝑡+1) > 1
≤ 1 if 𝑙 (𝑤𝑡+1) ≤ 1 (28.3)

Notice how the likelihood ratio and the prior interact to determine whether an observation 𝑤𝑡+1 leads the decision maker
to increase or decrease the subjective probability he/she attaches to distribution 𝐹 .

When the likelihood ratio 𝑙(𝑤𝑡+1) exceeds one, the observation 𝑤𝑡+1 nudges the probability 𝜋 put on distribution 𝐹
upward, and when the likelihood ratio 𝑙(𝑤𝑡+1) is less that one, the observation 𝑤𝑡+1 nudges 𝜋 downward.

Representation (28.3) is the foundation of some graphs that we’ll use to display the dynamics of {𝜋𝑡}∞
𝑡=0 that are induced

by Bayes’ Law.

We’ll plot 𝑙 (𝑤) as a way to enlighten us about how learning – i.e., Bayesian updating of the probability 𝜋 that nature has
chosen distribution 𝑓 – works.

To create the Python infrastructure to do our work for us, we construct a wrapper function that displays informative graphs
given parameters of 𝑓 and 𝑔.
@vectorize
def p(x, a, b):

"The general beta distribution function."
r = gamma(a + b) / (gamma(a) * gamma(b))

(continues on next page)
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(continued from previous page)

return r * x ** (a-1) * (1 - x) ** (b-1)

def learning_example(F_a=1, F_b=1, G_a=3, G_b=1.2):
"""
A wrapper function that displays the updating rule of belief π,
given the parameters which specify F and G distributions.
"""

f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

# l(w) = f(w) / g(w)
l = lambda w: f(w) / g(w)
# objective function for solving l(w) = 1
obj = lambda w: l(w) - 1

x_grid = np.linspace(0, 1, 100)
π_grid = np.linspace(1e-3, 1-1e-3, 100)

w_max = 1
w_grid = np.linspace(1e-12, w_max-1e-12, 100)

# the mode of beta distribution
# use this to divide w into two intervals for root finding
G_mode = (G_a - 1) / (G_a + G_b - 2)
roots = np.empty(2)
roots[0] = op.root_scalar(obj, bracket=[1e-10, G_mode]).root
roots[1] = op.root_scalar(obj, bracket=[G_mode, 1-1e-10]).root

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 5))

ax1.plot(l(w_grid), w_grid, label='$l$', lw=2)
ax1.vlines(1., 0., 1., linestyle="--")
ax1.hlines(roots, 0., 2., linestyle="--")
ax1.set_xlim([0., 2.])
ax1.legend(loc=4)
ax1.set(xlabel='$l(w)=f(w)/g(w)$', ylabel='$w$')

ax2.plot(f(x_grid), x_grid, label='$f$', lw=2)
ax2.plot(g(x_grid), x_grid, label='$g$', lw=2)
ax2.vlines(1., 0., 1., linestyle="--")
ax2.hlines(roots, 0., 2., linestyle="--")
ax2.legend(loc=4)
ax2.set(xlabel='$f(w), g(w)$', ylabel='$w$')

area1 = quad(f, 0, roots[0])[0]
area2 = quad(g, roots[0], roots[1])[0]
area3 = quad(f, roots[1], 1)[0]

ax2.text((f(0) + f(roots[0])) / 4, roots[0] / 2, f"{area1: .3g}")
ax2.fill_between([0, 1], 0, roots[0], color='blue', alpha=0.15)
ax2.text(np.mean(g(roots)) / 2, np.mean(roots), f"{area2: .3g}")
w_roots = np.linspace(roots[0], roots[1], 20)
ax2.fill_betweenx(w_roots, 0, g(w_roots), color='orange', alpha=0.15)
ax2.text((f(roots[1]) + f(1)) / 4, (roots[1] + 1) / 2, f"{area3: .3g}")
ax2.fill_between([0, 1], roots[1], 1, color='blue', alpha=0.15)

(continues on next page)
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(continued from previous page)

W = np.arange(0.01, 0.99, 0.08)
Π = np.arange(0.01, 0.99, 0.08)

ΔW = np.zeros((len(W), len(Π)))
ΔΠ = np.empty((len(W), len(Π)))
for i, w in enumerate(W):

for j, π in enumerate(Π):
lw = l(w)
ΔΠ[i, j] = π * (lw / (π * lw + 1 - π) - 1)

q = ax3.quiver(Π, W, ΔΠ, ΔW, scale=2, color='r', alpha=0.8)

ax3.fill_between(π_grid, 0, roots[0], color='blue', alpha=0.15)
ax3.fill_between(π_grid, roots[0], roots[1], color='green', alpha=0.15)
ax3.fill_between(π_grid, roots[1], w_max, color='blue', alpha=0.15)
ax3.hlines(roots, 0., 1., linestyle="--")
ax3.set(xlabel=r'$\pi$', ylabel='$w$')
ax3.grid()

plt.show()

Now we’ll create a group of graphs that illustrate dynamics induced by Bayes’ Law.

We’ll begin with Python function default values of various objects, then change them in a subsequent example.

learning_example()

Please look at the three graphs above created for an instance in which 𝑓 is a uniform distribution on [0, 1] (i.e., a Beta
distribution with parameters 𝐹𝑎 = 1, 𝐹𝑏 = 1), while 𝑔 is a Beta distribution with the default parameter values 𝐺𝑎 =
3, 𝐺𝑏 = 1.2.
The graph on the left plots the likelihood ratio 𝑙(𝑤) as the absciassa axis against 𝑤 as the ordinate.

The middle graph plots both 𝑓(𝑤) and 𝑔(𝑤) against 𝑤, with the horizontal dotted lines showing values of 𝑤 at which the
likelihood ratio equals 1.
The graph on the right plots arrows to the right that show when Bayes’ Law makes 𝜋 increase and arrows to the left that
show when Bayes’ Law make 𝜋 decrease.

Lengths of the arrows show magnitudes of the force from Bayes’ Law impelling 𝜋 to change.

These lengths depend on both the prior probability 𝜋 on the abscissa axis and the evidence in the form of the current
draw of 𝑤 on the ordinate axis.

The fractions in the colored areas of the middle graphs are probabilities under 𝐹 and 𝐺, respectively, that realizations of
𝑤 fall into the interval that updates the belief 𝜋 in a correct direction (i.e., toward 0 when 𝐺 is the true distribution, and
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toward 1 when 𝐹 is the true distribution).

For example, in the above example, under true distribution 𝐹 , 𝜋 will be updated toward 0 if 𝑤 falls into the interval
[0.524, 0.999], which occurs with probability 1 − .524 = .476 under 𝐹 .

But this would occur with probability 0.816 if 𝐺 were the true distribution.

The fraction 0.816 in the orange region is the integral of 𝑔(𝑤) over this interval.
Next we use our code to create graphs for another instance of our model.

We keep 𝐹 the same as in the preceding instance, namely a uniform distribution, but now assume that 𝐺 is a Beta
distribution with parameters 𝐺𝑎 = 2, 𝐺𝑏 = 1.6.
learning_example(G_a=2, G_b=1.6)

Notice how the likelihood ratio, the middle graph, and the arrows compare with the previous instance of our example.

28.8 Appendix

28.8.1 Sample Paths of 𝜋𝑡

Now we’ll have some fun by plotting multiple realizations of sample paths of 𝜋𝑡 under two possible assumptions about
nature’s choice of distribution, namely

• that nature permanently draws from 𝐹
• that nature permanently draws from 𝐺

Outcomes depend on a peculiar property of likelihood ratio processes discussed in this lecture.

To proceed, we create some Python code.

def function_factory(F_a=1, F_b=1, G_a=3, G_b=1.2):

# define f and g
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

@jit
def update(a, b, π):

"Update π by drawing from beta distribution with parameters a and b"

# Draw
w = np.random.beta(a, b)

(continues on next page)
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(continued from previous page)

# Update belief
π = 1 / (1 + ((1 - π) * g(w)) / (π * f(w)))

return π

@jit
def simulate_path(a, b, T=50):

"Simulates a path of beliefs π with length T"

π = np.empty(T+1)

# initial condition
π[0] = 0.5

for t in range(1, T+1):
π[t] = update(a, b, π[t-1])

return π

def simulate(a=1, b=1, T=50, N=200, display=True):
"Simulates N paths of beliefs π with length T"

π_paths = np.empty((N, T+1))
if display:

fig = plt.figure()

for i in range(N):
π_paths[i] = simulate_path(a=a, b=b, T=T)
if display:

plt.plot(range(T+1), π_paths[i], color='b', lw=0.8, alpha=0.5)

if display:
plt.show()

return π_paths

return simulate

simulate = function_factory()

We begin by generating 𝑁 simulated {𝜋𝑡} paths with 𝑇 periods when the sequence is truly IID draws from 𝐹 . We set
an initial prior 𝜋−1 = .5.
T = 50

# when nature selects F
π_paths_F = simulate(a=1, b=1, T=T, N=1000)
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In the above example, for most paths 𝜋𝑡 → 1.
So Bayes’ Law evidently eventually discovers the truth for most of our paths.

Next, we generate paths with 𝑇 periods when the sequence is truly IID draws from 𝐺. Again, we set the initial prior
𝜋−1 = .5.
# when nature selects G
π_paths_G = simulate(a=3, b=1.2, T=T, N=1000)
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In the above graph we observe that now most paths 𝜋𝑡 → 0.

28.8.2 Rates of convergence

We study rates of convergence of 𝜋𝑡 to 1 when nature generates the data as IID draws from 𝐹 and of convergence of 𝜋𝑡
to 0 when nature generates IID draws from 𝐺.

We do this by averaging across simulated paths of {𝜋𝑡}𝑇
𝑡=0.

Using 𝑁 simulated 𝜋𝑡 paths, we compute 1 − ∑𝑁
𝑖=1 𝜋𝑖,𝑡 at each 𝑡 when the data are generated as draws from 𝐹 and

compute ∑𝑁
𝑖=1 𝜋𝑖,𝑡 when the data are generated as draws from 𝐺.

plt.plot(range(T+1), 1 - np.mean(π_paths_F, 0), label='F generates')
plt.plot(range(T+1), np.mean(π_paths_G, 0), label='G generates')
plt.legend()
plt.title("convergence");
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From the above graph, rates of convergence appear not to depend on whether 𝐹 or 𝐺 generates the data.

28.8.3 Graph of Ensemble Dynamics of 𝜋𝑡

More insights about the dynamics of {𝜋𝑡} can be gleaned by computing conditional expectations of 𝜋𝑡+1
𝜋𝑡

as functions of
𝜋𝑡 via integration with respect to the pertinent probability distribution:

𝐸 [𝜋𝑡+1
𝜋𝑡

∣ 𝑞 = 𝑎, 𝜋𝑡] = 𝐸 [ 𝑙 (𝑤𝑡+1)
𝜋𝑡𝑙 (𝑤𝑡+1) + (1 − 𝜋𝑡)

∣ 𝑞 = 𝑎, 𝜋𝑡] ,

= ∫
1

0

𝑙 (𝑤𝑡+1)
𝜋𝑡𝑙 (𝑤𝑡+1) + (1 − 𝜋𝑡)

𝑎 (𝑤𝑡+1) 𝑑𝑤𝑡+1

where 𝑎 = 𝑓, 𝑔.
The following code approximates the integral above:

def expected_ratio(F_a=1, F_b=1, G_a=3, G_b=1.2):

# define f and g
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

l = lambda w: f(w) / g(w)
integrand_f = lambda w, π: f(w) * l(w) / (π * l(w) + 1 - π)
integrand_g = lambda w, π: g(w) * l(w) / (π * l(w) + 1 - π)

π_grid = np.linspace(0.02, 0.98, 100)

(continues on next page)
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(continued from previous page)

expected_rario = np.empty(len(π_grid))
for q, inte in zip(["f", "g"], [integrand_f, integrand_g]):

for i, π in enumerate(π_grid):
expected_rario[i]= quad(inte, 0, 1, args=(π,))[0]

plt.plot(π_grid, expected_rario, label=f"{q} generates")

plt.hlines(1, 0, 1, linestyle="--")
plt.xlabel(r"$\pi_t$")
plt.ylabel(r"$E[\pi_{t+1}/\pi_t]$")
plt.legend()

plt.show()

First, consider the case where 𝐹𝑎 = 𝐹𝑏 = 1 and 𝐺𝑎 = 3, 𝐺𝑏 = 1.2.
expected_ratio()

The above graphs shows that when 𝐹 generates the data, 𝜋𝑡 on average always heads north, while when 𝐺 generates the
data, 𝜋𝑡 heads south.

Next, we’ll look at a degenerate case in whcih 𝑓 and 𝑔 are identical beta distributions, and 𝐹𝑎 = 𝐺𝑎 = 3, 𝐹𝑏 = 𝐺𝑏 = 1.2.
In a sense, here there is nothing to learn.

expected_ratio(F_a=3, F_b=1.2)
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The above graph says that 𝜋𝑡 is inert and remains at its initial value.

Finally, let’s look at a case in which 𝑓 and 𝑔 are neither very different nor identical, in particular one in which 𝐹𝑎 =
2, 𝐹𝑏 = 1 and 𝐺𝑎 = 3, 𝐺𝑏 = 1.2.
expected_ratio(F_a=2, F_b=1, G_a=3, G_b=1.2)
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28.9 Sequels

We’ll apply and dig deeper into some of the ideas presented in this lecture:

• this lecture describes likelihood ratio processes and their role in frequentist and Bayesian statistical theories

• this lecture studies whether a WorldWar II US Navy Captain’s hunch that a (frequentist) decision rule that the Navy
had told him to use was inferior to a sequential rule that Abraham Wald had not yet designed.
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CHAPTER

TWENTYNINE

LIKELIHOOD RATIO PROCESSES AND BAYESIAN LEARNING

29.1 Overview

This lecture describes the role that likelihood ratio processes play in Bayesian learning.

As in Likelihood Ratio Processes, we’ll use a simple statistical setting from Exchangeability and Bayesian Updating.

We’ll focus on how a likelihood ratio process and a prior probability determine a posterior probability.

We’ll derive a convenient recursion for today’s posterior as a function of yesterday’s posterior and today’s multiplicative
increment to a likelihood process.

We’ll also present a useful generalization of that formula that represents today’s posterior in terms of an initial prior and
today’s realization of the likelihood ratio process.

We’ll study how, at least in our setting, a Bayesian eventually learns the probability distribution that generates the data,
an outcome that rests on the asymptotic behavior of likelihood ratio processes studied in Likelihood Ratio Processes.

We’ll also drill down into the psychology of our Bayesian learner and study dynamics under his subjective beliefs.

This lecture provides technical results that underlie outcomes to be studied in Job Search VII: Search with Learning, A
Problem that Stumped Milton Friedman, and Bayesian versus Frequentist Decision Rules.

We’ll begin by loading some Python modules.

import matplotlib.pyplot as plt
import numpy as np
from numba import vectorize, jit, prange
from math import gamma
import pandas as pd
from scipy.integrate import quad

import seaborn as sns
colors = sns.color_palette()

@jit
def set_seed():

np.random.seed(142857)
set_seed()

Matplotlib is building the font cache; this may take a moment.
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29.2 The setting

We begin by reviewing the setting in Likelihood Ratio Processes, which we adopt here too.

A nonnegative random variable 𝑊 has one of two probability density functions, either 𝑓 or 𝑔.
Before the beginning of time, nature once and for all decides whether she will draw a sequence of IID draws from 𝑓 or
from 𝑔.
We let 𝑞 be the density that nature chose once and for all, so that 𝑞 is either 𝑓 or 𝑔, permanently.
Nature knows which density it permanently draws from, but we the observers do not.

We do know both 𝑓 and 𝑔, but we don’t know which density nature chose.

But we want to know.

To do that, we use observations.

We observe a sequence {𝑤𝑡}𝑇
𝑡=1 of 𝑇 IID draws from either 𝑓 or 𝑔.

We want to use these observations to infer whether nature chose 𝑓 or 𝑔.
A likelihood ratio process is a useful tool for this task.

To begin, we define the key component of a likelihood ratio process, namely, the time 𝑡 likelihood ratio as the random
variable

ℓ(𝑤𝑡) = 𝑓 (𝑤𝑡)
𝑔 (𝑤𝑡)

, 𝑡 ≥ 1.

We assume that 𝑓 and 𝑔 both put positive probabilities on the same intervals of possible realizations of the random variable
𝑊 .

That means that under the 𝑔 density, ℓ(𝑤𝑡) = 𝑓(𝑤𝑡)
𝑔(𝑤𝑡) is evidently a nonnegative random variable with mean 1.

A likelihood ratio process for sequence {𝑤𝑡}
∞
𝑡=1 is defined as

𝐿 (𝑤𝑡) =
𝑡

∏
𝑖=1

ℓ(𝑤𝑖),

where 𝑤𝑡 = {𝑤1, … , 𝑤𝑡} is a history of observations up to and including time 𝑡.
Sometimes for shorthand we’ll write

𝐿𝑡 = 𝐿(𝑤𝑡) = 𝑓(𝑤𝑡)
𝑔(𝑤𝑡)

where we use the conventions that 𝑓(𝑤𝑡) = 𝑓(𝑤1)𝑓(𝑤2) … 𝑓(𝑤𝑡) and 𝑔(𝑤𝑡) = 𝑔(𝑤1)𝑔(𝑤2) … 𝑔(𝑤𝑡).
Notice that the likelihood process satisfies the recursion or multiplicative decomposition

𝐿(𝑤𝑡) = ℓ(𝑤𝑡)𝐿(𝑤𝑡−1).

The likelihood ratio and its logarithm are key tools for making inferences using a classic frequentist approach due to
Neyman and Pearson [Neyman and Pearson, 1933].

We’ll again deploy the following Python code from Likelihood Ratio Processes that evaluates 𝑓 and 𝑔 as two different beta
distributions, then computes and simulates an associated likelihood ratio process by generating a sequence 𝑤𝑡 from some
probability distribution, for example, a sequence of IID draws from 𝑔.
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# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x**(a-1) * (1 - x)**(b-1)

# The two density functions.
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

@jit
def simulate(a, b, T=50, N=500):

'''
Generate N sets of T observations of the likelihood ratio,
return as N x T matrix.
'''

l_arr = np.empty((N, T))

for i in range(N):

for j in range(T):
w = np.random.beta(a, b)
l_arr[i, j] = f(w) / g(w)

return l_arr

We’ll also use the following Python code to prepare some informative simulations

l_arr_g = simulate(G_a, G_b, N=50000)
l_seq_g = np.cumprod(l_arr_g, axis=1)

l_arr_f = simulate(F_a, F_b, N=50000)
l_seq_f = np.cumprod(l_arr_f, axis=1)

29.3 Likelihood ratio processes and Bayes’ law

Let 𝜋0 ∈ [0, 1] be a Bayesian statistician’s prior probability that nature generates 𝑤𝑡 as a sequence of IID draws from
distribution 𝑓 .

• here “probability” is to be interpreted as a way to summarize or express a subjective opinion

• it does not mean an anticipated relative frequency as sample size grows without limit

Let 𝜋𝑡+1 be a Bayesian posterior probability defined as

𝜋𝑡+1 = Prob(𝑞 = 𝑓|𝑤𝑡+1) (29.1)

The likelihood ratio process is a principal actor in the formula that governs the evolution of the posterior probability 𝜋𝑡,
an instance of Bayes’ law.

Let’s derive a couple of formulas for 𝜋𝑡+1, one in terms of likelihood ratio ℓ(𝑤𝑡), the other in terms of 𝐿(𝑤𝑡).
To begin, we use the notational conventions
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• 𝑓(𝑤𝑡+1) ≡ 𝑓(𝑤1)𝑓(𝑤2) ⋯ 𝑓(𝑤𝑡+1)
• 𝑔(𝑤𝑡+1) ≡ 𝑔(𝑤1)𝑔(𝑤2) ⋯ 𝑔(𝑤𝑡+1)
• 𝜋0 = Prob(𝑞 = 𝑓|∅)
• 𝜋𝑡 = Prob(𝑞 = 𝑓|𝑤𝑡)

Here the symbol ∅ means “empty set” or “no data”.
With no data in hand, our Bayesian statistician thinks that the probability density of the sequence 𝑤𝑡+1 is

Prob(𝑤𝑡+1|∅) = 𝜋0𝑓(𝑤𝑡+1) + (1 − 𝜋0)𝑔(𝑤𝑡+1)

Laws of probability say that the joint distribution Prob(𝐴𝐵) of events 𝐴 and 𝐵 are connected to the conditional distri-
butions Prob(𝐴|𝐵) and Prob(𝐵|𝐴) by

Prob(𝐴𝐵) = Prob(𝐴|𝐵)Prob(𝐵) = Prob(𝐵|𝐴)Prob(𝐴). (29.2)

We are interested in events

𝐴 = {𝑞 = 𝑓}, 𝐵 = {𝑤𝑡+1},

where braces {⋅} are our shorthand for “event”.
So in our setting, probability laws (29.2) imply that

Prob(𝑞 = 𝑓|𝑤𝑡+1)Prob(𝑤𝑡+1|∅) = Prob(𝑤𝑡+1|𝑞 = 𝑓)Prob(𝑞 = 𝑓|∅)

or

𝜋𝑡+1 [𝜋0𝑓(𝑤𝑡+1) + (1 − 𝜋0)𝑔(𝑤𝑡+1)] = 𝑓(𝑤𝑡+1)𝜋0

or

𝜋𝑡+1 = 𝑓(𝑤𝑡+1)𝜋0
𝜋0𝑓(𝑤𝑡+1) + (1 − 𝜋0)𝑔(𝑤𝑡+1)

Dividing both the numerator and the denominator on the right side of the above equation by 𝑔(𝑤𝑡+1) implies

𝜋𝑡+1 = 𝜋0𝐿 (𝑤𝑡+1)
𝜋0𝐿 (𝑤𝑡+1) + 1 − 𝜋0

. (29.3)

Formula (29.3) can be regarded as a one step revision of prior probability 𝜋0 after seeing the batch of data {𝑤𝑖}
𝑡+1
𝑖=1.

Formula (29.3) shows the key role that the likelihood ratio process𝐿 (𝑤𝑡+1) plays in determining the posterior probability
𝜋𝑡+1.

Formula (29.3) is the foundation for the insight that, because of how the likelihood ratio process behaves as 𝑡 → +∞,
the likelihood ratio process dominates the initial prior 𝜋0 in determining the limiting behavior of 𝜋𝑡.

29.3.1 A recursive formula

We can use a similar line of argument to get a recursive version of formula (29.3).

The laws of probability imply

Prob(𝑞 = 𝑓|𝑤𝑡+1) = Prob(𝑞 = 𝑓|𝑤𝑡)𝑓(𝑤𝑡+1)
Prob(𝑞 = 𝑓|𝑤𝑡)𝑓(𝑤𝑡+1) + (1 − Prob(𝑞 = 𝑓|𝑤𝑡))𝑔(𝑤𝑡+1)
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or

𝜋𝑡+1 = 𝜋𝑡𝑓(𝑤𝑡+1)
𝜋𝑡𝑓(𝑤𝑡+1) + (1 − 𝜋𝑡)𝑔(𝑤𝑡+1) (29.4)

Evidently, the above equation asserts that

Prob(𝑞 = 𝑓|𝑤𝑡+1) = Prob(𝑞 = 𝑓|𝑤𝑡)𝑓(𝑤𝑡+1)
Prob(𝑤𝑡+1)

Dividing both the numerator and the denominator on the right side of the equation (29.4) by 𝑔(𝑤𝑡+1) implies the recursion

𝜋𝑡+1 = 𝜋𝑡ℓ(𝑤𝑡+1)
𝜋𝑡ℓ(𝑤𝑡+1) + 1 − 𝜋𝑡

(29.5)

with 𝜋0 being a Bayesian prior probability that 𝑞 = 𝑓 , i.e., a personal or subjective belief about 𝑞 based on our having
seen no data.

Formula (29.3) can be deduced by iterating on equation (29.5).

Below we define a Python function that updates belief 𝜋 using likelihood ratio ℓ according to recursion (29.5)
@jit
def update(π, l):

"Update π using likelihood l"

# Update belief
π = π * l / (π * l + 1 - π)

return π

As mentioned above, formula (29.3) shows the key role that the likelihood ratio process 𝐿 (𝑤𝑡+1) plays in determining
the posterior probability 𝜋𝑡+1.

As 𝑡 → +∞, the likelihood ratio process dominates the initial prior 𝜋0 in determining the limiting behavior of 𝜋𝑡.

To illustrate this insight, below we will plot graphs showing one simulated path of the likelihood ratio process 𝐿𝑡 along
with two paths of 𝜋𝑡 that are associated with the same realization of the likelihood ratio process but different initial prior
probabilities 𝜋0.

First, we tell Python two values of 𝜋0.

π1, π2 = 0.2, 0.8

Next we generate paths of the likelihood ratio process 𝐿𝑡 and the posterior 𝜋𝑡 for a history of IID draws from density 𝑓 .
T = l_arr_f.shape[1]
π_seq_f = np.empty((2, T+1))
π_seq_f[:, 0] = π1, π2

for t in range(T):
for i in range(2):

π_seq_f[i, t+1] = update(π_seq_f[i, t], l_arr_f[0, t])

fig, ax1 = plt.subplots()

for i in range(2):
ax1.plot(range(T+1), π_seq_f[i, :],
label=fr"$\pi_0$={π_seq_f[i, 0]}", lw=2)

(continues on next page)
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(continued from previous page)

ax1.set_ylabel(r"$\pi_t$")
ax1.set_xlabel(r"$t$")
ax1.legend()

ax2 = ax1.twinx()
ax2.plot(range(1, T+1), np.log(l_seq_f[0, :]), '--', color='b', lw=2)
ax2.set_ylabel(r"$\log(L(w^{t}))$")

plt.show()

Fig. 29.1: Posterior paths and log likelihood

The dotted line in the graph above records the logarithm of the likelihood ratio process log𝐿(𝑤𝑡).
Please note that there are two different scales on the 𝑦 axis.
Now let’s study what happens when the history consists of IID draws from density 𝑔
T = l_arr_g.shape[1]
π_seq_g = np.empty((2, T+1))
π_seq_g[:, 0] = π1, π2

for t in range(T):
for i in range(2):

π_seq_g[i, t+1] = update(π_seq_g[i, t], l_arr_g[0, t])
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fig, ax1 = plt.subplots()

for i in range(2):
ax1.plot(range(T+1), π_seq_g[i, :],

label=fr"$\pi_0$={π_seq_g[i, 0]}", lw=2)

ax1.set_ylabel(r"$\pi_t$")
ax1.set_xlabel(r"$t$")
ax1.legend()

ax2 = ax1.twinx()
ax2.plot(range(1, T+1), np.log(l_seq_g[0, :]), '--', color='b', lw=2)
ax2.set_ylabel(r"$\log(L(w^{t}))$")

plt.show()

Fig. 29.2: Posterior paths and log likelihood

Below we offer Python code that verifies that nature chose permanently to draw from density 𝑓 .
π_seq = np.empty((2, T+1))
π_seq[:, 0] = π1, π2

for i in range(2):
πL = π_seq[i, 0] * l_seq_f[0, :]
π_seq[i, 1:] = πL / (πL + 1 - π_seq[i, 0])
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np.abs(π_seq - π_seq_f).max() < 1e-10

np.True_

We thus conclude that the likelihood ratio process is a key ingredient of the formula (29.3) for a Bayesian’s posterior
probability that nature has drawn history 𝑤𝑡 as repeated draws from density 𝑓 .

29.4 Another timing protocol

Let’s study how the posterior probability 𝜋𝑡 = Prob(𝑞 = 𝑓|𝑤𝑡) behaves when nature generates the history 𝑤𝑡 =
{𝑤1, 𝑤2, … , 𝑤𝑡} under a different timing protocol.
Until now we assumed that before time 1 nature somehow chose to draw 𝑤𝑡 as an IID sequence from either 𝑓 or 𝑔.
Nature’s decision about whether to draw from 𝑓 or 𝑔 was thus permanent.

We now assume a different timing protocol in which before each period 𝑡 = 1, 2, … nature

• flips an 𝑥-weighted coin, then
• draws from 𝑓 if it has drawn a “head”

• draws from 𝑔 if it has drawn a “tail”.
Under this timing protocol, nature draws permanently from neither 𝑓 nor 𝑔, so a statistician who thinks that nature is
drawing IID draws permanently from one of them is mistaken.

• in truth, nature actually draws permanently from an 𝑥-mixture of 𝑓 and 𝑔 — a distribution that is neither 𝑓 nor 𝑔
when 𝑥 ∈ (0, 1)

Thus, the Bayesian prior 𝜋0 and the sequence of posterior probabilities described by equation (29.3) should not be in-
terpreted as the statistician’s opinion about the mixing parameter 𝑥 under the alternative timing protocol in which nature
draws from an 𝑥-mixture of 𝑓 and 𝑔.
This is clear when we remember the definition of 𝜋𝑡 in equation (29.1), which for convenience we repeat here:

𝜋𝑡+1 = Prob(𝑞 = 𝑓|𝑤𝑡+1)

Let’s write some Python code to study how 𝜋𝑡 behaves when nature actually generates data as IID draws from neither 𝑓
nor from 𝑔 but instead as IID draws from an 𝑥-mixture of two beta distributions.

Note

This is a situation in which the statistician’s model is misspecified, so we should anticipate that a Kullback–Leibler
divergence with respect to an 𝑥-mixture distribution will shape outcomes.

We can study how 𝜋𝑡 would behave for various values of nature’s mixing probability 𝑥.
First, let’s create a function to simulate data under the mixture timing protocol:

@jit
def simulate_mixture_path(x_true, T):

"""
Simulate T observations under mixture timing protocol.
"""
w = np.empty(T)

(continues on next page)
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(continued from previous page)

for t in range(T):
if np.random.rand() < x_true:

w[t] = np.random.beta(F_a, F_b)
else:

w[t] = np.random.beta(G_a, G_b)
return w

Let’s generate a sequence of observations from this mixture model with a true mixing probability of 𝑥 = 0.5.
We will first use this sequence to study how 𝜋𝑡 behaves.

Note

Later, we can use it to study how a statistician who knows that nature generates data from an 𝑥-mixture of 𝑓 and 𝑔
could construct maximum likelihood or Bayesian estimators of 𝑥 along with the free parameters of 𝑓 and 𝑔.

x_true = 0.5
T_mix = 200

# Three different priors with means 0.25, 0.5, 0.75
prior_params = [(1, 3), (1, 1), (3, 1)]
prior_means = [a/(a+b) for a, b in prior_params]

# Generate one path of observations from the mixture
set_seed()
w_mix = simulate_mixture_path(x_true, T_mix)

29.4.1 Behavior of 𝜋𝑡 under wrong model

Let’s study how the posterior probability 𝜋𝑡 that nature permanently draws from 𝑓 behaves when data are actually gener-
ated by an 𝑥-mixture of 𝑓 and 𝑔.
fig, ax = plt.subplots(figsize=(10, 6))
T_plot = 200

for i, mean0 in enumerate(prior_means):
π_wrong = np.empty(T_plot + 1)
π_wrong[0] = mean0

# Compute likelihood ratios for the mixture data
for t in range(T_plot):

l_t = f(w_mix[t]) / g(w_mix[t])
π_wrong[t + 1] = update(π_wrong[t], l_t)

ax.plot(range(T_plot + 1), π_wrong,
label=fr'$\pi_0 = ${mean0:.2f}',
color=colors[i], linewidth=2)

ax.axhline(y=x_true, color='black', linestyle='--',
label=f'True x = {x_true}', linewidth=2)

ax.set_xlabel('t')
ax.set_ylabel(r'$\pi_t$')
ax.legend()
plt.show()
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Fig. 29.3: Posterior under mixture model

Evidently, 𝜋𝑡 converges to 1.

This indicates that the model concludes that the data is generated by 𝑓 .
Why does this happen?

Given 𝑥 = 0.5, the data generating process is a mixture of 𝑓 and 𝑔: 𝑚(𝑤) = 1
2 𝑓(𝑤) + 1

2 𝑔(𝑤).
Let’s check the KL divergence of the mixture distribution 𝑚 from both 𝑓 and 𝑔.
def compute_KL(f, g):

"""
Compute KL divergence KL(f, g)
"""
integrand = lambda w: f(w) * np.log(f(w) / g(w))
val, _ = quad(integrand, 1e-5, 1-1e-5)
return val

def compute_div_m(f, g):
"""
Compute KL(m, f) and KL(m, g)
"""
def m(w):

return 0.5 * (f(w) + g(w))

return compute_KL(m, f), compute_KL(m, g)

(continues on next page)
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(continued from previous page)

KL_f, KL_g = compute_div_m(f, g)

print(f'KL(m, f) = {KL_f:.3f}\nKL(m, g) = {KL_g:.3f}')

KL(m, f) = 0.073
KL(m, g) = 0.281

Since 𝐾𝐿(𝑚, 𝑓) < 𝐾𝐿(𝑚, 𝑔), 𝑓 is “closer” to the mixture distribution 𝑚.

Hence by our discussion on KL divergence and likelihood ratio process in Likelihood Ratio Processes, log(𝐿𝑡) → ∞ as
𝑡 → ∞.

Now look back at the key equation (29.3).

Consider the function

ℎ(𝑧) = 𝜋0𝑧
𝜋0𝑧 + 1 − 𝜋0

.

The limit lim𝑧→∞ ℎ(𝑧) is 1.
Hence 𝜋𝑡 → 1 as 𝑡 → ∞ for any 𝜋0 ∈ (0, 1).
This explains what we observed in the plot above.

But how can we learn the true mixing parameter 𝑥?
This topic is taken up in Incorrect Models.

We explore how to learn the true mixing parameter 𝑥 in the exercise of Incorrect Models.

29.5 Behavior of posterior probability {𝜋𝑡} under subjective probabil-
ity distribution

We’ll end this lecture by briefly studying what our Bayesian learner expects to learn under the subjective beliefs 𝜋𝑡 cranked
out by Bayes’ law.

This will provide us with some perspective on our application of Bayes’ law as a theory of learning.

As we shall see, at each time 𝑡, the Bayesian learner knows that he will be surprised.
But he expects that new information will not lead him to change his beliefs.

And it won’t on average under his subjective beliefs.

We’ll continue with our setting in which a McCall worker knows that successive draws of his wage are drawn from either
𝐹 or 𝐺, but does not know which of these two distributions nature has drawn once-and-for-all before time 0.
We’ll review and reiterate and rearrange some formulas that we have encountered above and in associated lectures.

The worker’s initial beliefs induce a joint probability distribution over a potentially infinite sequence of draws 𝑤0, 𝑤1, ….

Bayes’ law is simply an application of laws of probability to compute the conditional distribution of the 𝑡th draw 𝑤𝑡
conditional on [𝑤0, … , 𝑤𝑡−1].
After our worker puts a subjective probability 𝜋−1 on nature having selected distribution 𝐹 , we have in effect assumed
from the start that the decision maker knows the joint distribution for the process {𝑤𝑡}𝑡=0.

We assume that the worker also knows the laws of probability theory.
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A respectable view is that Bayes’ law is less a theory of learning than a statement about the consequences of information
inflows for a decision maker who thinks he knows the truth (i.e., a joint probability distribution) from the beginning.

29.5.1 Mechanical details again

At time 0 before drawing a wage offer, the worker attaches probability 𝜋−1 ∈ (0, 1) to the distribution being 𝐹 .

Before drawing a wage at time 0, the worker thus believes that the density of 𝑤0 is

ℎ(𝑤0; 𝜋−1) = 𝜋−1𝑓(𝑤0) + (1 − 𝜋−1)𝑔(𝑤0).

Let 𝑎 ∈ {𝑓, 𝑔} be an index that indicates whether nature chose permanently to draw from distribution 𝑓 or from distri-
bution 𝑔.
After drawing 𝑤0, the worker uses Bayes’ law to deduce that the posterior probability 𝜋0 = Prob(𝑎 = 𝑓|𝑤0) that the
density is 𝑓(𝑤) is

𝜋0 = 𝜋−1𝑓(𝑤0)
𝜋−1𝑓(𝑤0) + (1 − 𝜋−1)𝑔(𝑤0) .

More generally, after making the 𝑡th draw and having observed 𝑤𝑡, 𝑤𝑡−1, … , 𝑤0, the worker believes that the probability
that 𝑤𝑡+1 is being drawn from distribution 𝐹 is

𝜋𝑡 = 𝜋𝑡(𝑤𝑡|𝜋𝑡−1) ≡ 𝜋𝑡−1𝑓(𝑤𝑡)/𝑔(𝑤𝑡)
𝜋𝑡−1𝑓(𝑤𝑡)/𝑔(𝑤𝑡) + (1 − 𝜋𝑡−1) (29.6)

or

𝜋𝑡 = 𝜋𝑡−1ℓ(𝑤𝑡)
𝜋𝑡−1ℓ(𝑤𝑡) + 1 − 𝜋𝑡−1

and that the density of 𝑤𝑡+1 conditional on 𝑤𝑡, 𝑤𝑡−1, … , 𝑤0 is

ℎ(𝑤𝑡+1; 𝜋𝑡) = 𝜋𝑡𝑓(𝑤𝑡+1) + (1 − 𝜋𝑡)𝑔(𝑤𝑡+1).

Notice that

𝐸(𝜋𝑡|𝜋𝑡−1) = ∫[ 𝜋𝑡−1𝑓(𝑤)
𝜋𝑡−1𝑓(𝑤) + (1 − 𝜋𝑡−1)𝑔(𝑤)][𝜋𝑡−1𝑓(𝑤) + (1 − 𝜋𝑡−1)𝑔(𝑤)]𝑑𝑤

= 𝜋𝑡−1 ∫ 𝑓(𝑤)𝑑𝑤

= 𝜋𝑡−1,

so that the process 𝜋𝑡 is a martingale.

Indeed, it is a bounded martingale because each 𝜋𝑡, being a probability, is between 0 and 1.
In the first line in the above string of equalities, the term in the first set of brackets is just 𝜋𝑡 as a function of 𝑤𝑡, while
the term in the second set of brackets is the density of 𝑤𝑡 conditional on 𝑤𝑡−1, … , 𝑤0 or equivalently conditional on the
sufficient statistic 𝜋𝑡−1 for 𝑤𝑡−1, … , 𝑤0.

Notice that here we are computing 𝐸(𝜋𝑡|𝜋𝑡−1) under the subjective density described in the second term in brackets.

Because {𝜋𝑡} is a bounded martingale sequence, it follows from the martingale convergence theorem that 𝜋𝑡 converges
almost surely to a random variable in [0, 1].
Practically, this means that probability one is attached to sample paths {𝜋𝑡}∞

𝑡=0 that converge.

According to the theorem, different sample paths can converge to different limiting values.
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Thus, let {𝜋𝑡(𝜔)}∞
𝑡=0 denote a particular sample path indexed by a particular 𝜔 ∈ Ω.

We can think of nature as drawing an 𝜔 ∈ Ω from a probability distribution Prob(Ω) and then generating a single
realization (or simulation) {𝜋𝑡(𝜔)}∞

𝑡=0 of the process.

The limit points of {𝜋𝑡(𝜔)}∞
𝑡=0 as 𝑡 → +∞ are realizations of a random variable that is swept out as we sample 𝜔 from

Ω and construct repeated draws of {𝜋𝑡(𝜔)}∞
𝑡=0.

By staring at the law of motion (29.5) or (29.6), we can figure out some things about the probability distribution of the
limit points

𝜋∞(𝜔) = lim
𝑡→+∞

𝜋𝑡(𝜔).

Evidently, since the likelihood ratio ℓ(𝑤𝑡) differs from 1 when 𝑓 ≠ 𝑔, as we have assumed, the only possible fixed points
of (29.6) are

𝜋∞(𝜔) = 1

and

𝜋∞(𝜔) = 0

Thus, for some realizations, lim𝑡→+∞ 𝜋𝑡(𝜔) = 1 while for other realizations, lim𝑡→+∞ 𝜋𝑡(𝜔) = 0.
Now let’s remember that {𝜋𝑡}∞

𝑡=0 is a martingale and apply the law of iterated expectations.

The law of iterated expectations implies

𝐸𝑡𝜋𝑡+𝑗 = 𝜋𝑡

and in particular

𝐸−1𝜋𝑡+𝑗 = 𝜋−1.

Applying the above formula to 𝜋∞, we obtain

𝐸−1𝜋∞(𝜔) = 𝜋−1 (29.7)

where the mathematical expectation 𝐸−1 here is taken with respect to the probability measure Prob(Ω).
Since the only two values that 𝜋∞(𝜔) can take are 1 and 0, we know that for some 𝜆 ∈ [0, 1]

Prob(𝜋∞(𝜔) = 1) = 𝜆, Prob(𝜋∞(𝜔) = 0) = 1 − 𝜆

and consequently that

𝐸−1𝜋∞(𝜔) = 𝜆 ⋅ 1 + (1 − 𝜆) ⋅ 0 = 𝜆

Combining this equation with equation (29.7), we deduce that the probability that Prob(Ω) attaches to 𝜋∞(𝜔) being 1
must be 𝜋−1.

Thus, under the worker’s subjective distribution, 𝜋−1 of the sample paths of {𝜋𝑡}will converge pointwise to 1 and 1−𝜋−1
of the sample paths will converge pointwise to 0.
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29.5.2 Some simulations

Let’s watch the martingale convergence theorem at work in some simulations of our learning model under the worker’s
subjective distribution.

Let us simulate {𝜋𝑡}
𝑇
𝑡=0, {𝑤𝑡}

𝑇
𝑡=0 paths where for each 𝑡 ≥ 0, 𝑤𝑡 is drawn from the subjective distribution

𝜋𝑡−1𝑓 (𝑤𝑡) + (1 − 𝜋𝑡−1) 𝑔 (𝑤𝑡)

We’ll plot a large sample of paths.

@jit
def martingale_simulate(π0, N=5000, T=200):

π_path = np.empty((N,T+1))
w_path = np.empty((N,T))
π_path[:,0] = π0

for n in range(N):
π = π0
for t in range(T):

# draw w
if np.random.rand() <= π:

w = np.random.beta(F_a, F_b)
else:

w = np.random.beta(G_a, G_b)
π = π*f(w)/g(w)/(π*f(w)/g(w) + 1 - π)
π_path[n,t+1] = π
w_path[n,t] = w

return π_path, w_path

def fraction_0_1(π0, N, T, decimals):

π_path, w_path = martingale_simulate(π0, N=N, T=T)
values, counts = np.unique(

np.round(π_path[:,-1], decimals=decimals),
return_counts=True)

return values, counts

def create_table(π0s, N=10000, T=500, decimals=2):

outcomes = []
for π0 in π0s:

values, counts = fraction_0_1(π0, N=N, T=T, decimals=decimals)
freq = counts/N
outcomes.append(dict(zip(values, freq)))

table = pd.DataFrame(outcomes).sort_index(axis=1).fillna(0)
table.index = π0s
return table

# simulate
T = 200
π0 = .5

π_path, w_path = martingale_simulate(π0=π0, T=T, N=10000)
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fig, ax = plt.subplots()
for i in range(100):

ax.plot(range(T+1), π_path[i, :], lw=2)

ax.set_xlabel('time')
ax.set_ylabel(r'$\pi_t$')
plt.show()

The above graph indicates that

• each of the paths converges

• some of the paths converge to 1
• some of the paths converge to 0
• none of the paths converge to a limit point not equal to 0 or 1

Convergence actually occurs pretty fast, as the following graph of the cross-ensemble distribution of 𝜋𝑡 for various small
𝑡’s indicates.
fig, ax = plt.subplots()
for t in [1, 10, T-1]:

ax.hist(π_path[:,t], bins=20, alpha=0.4, label=f'T={t}')

ax.set_ylabel('count')
ax.set_xlabel(r'$\pi_T$')
ax.legend(loc='lower right')
plt.show()
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Evidently, by 𝑡 = 199, 𝜋𝑡 has converged to either 0 or 1.
The fraction of paths that have converged to 1 is .5
The fraction of paths that have converged to 0 is also .5.
Does the fraction .5 ring a bell?
Yes, it does: it equals the value of 𝜋0 = .5 that we used to generate each sequence in the ensemble.
So let’s change 𝜋0 to .3 and watch what happens to the distribution of the ensemble of 𝜋𝑡’s for various 𝑡’s.
# simulate
T = 200
π0 = .3

π_path3, w_path3 = martingale_simulate(π0=π0, T=T, N=10000)

fig, ax = plt.subplots()
for t in [1, 10, T-1]:

ax.hist(π_path3[:,t], bins=20, alpha=0.4, label=f'T={t}')

ax.set_ylabel('count')
ax.set_xlabel(r'$\pi_T$')
ax.legend(loc='upper right')
plt.show()
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For the preceding ensemble that assumed 𝜋0 = .5, the following graph shows two paths of 𝑤𝑡’s and the 𝜋𝑡 sequences that
gave rise to them.

Notice that one of the paths involves systematically higher 𝑤𝑡’s, outcomes that push 𝜋𝑡 upward.

The luck of the draw early in a simulation pushes the subjective distribution to draw from 𝐹 more frequently along a
sample path, and this pushes 𝜋𝑡 toward 1.
fig, ax = plt.subplots()
for i, j in enumerate([10, 100]):

ax.plot(range(T+1), π_path[j,:], color=colors[i],
label=fr'${{\pi_t}}$, {j}-th simulation', lw=2)
ax.plot(range(1,T+1), w_path[j,:], color=colors[i],
label=fr'${{w_t}}$, {j}-th simulation', alpha=0.3, lw=2)

ax.legend(loc='upper right')
ax.set_xlabel('time')
ax.set_ylabel(r'$\pi_t$')
ax2 = ax.twinx()
ax2.set_ylabel(r"$w_t$")
plt.show()
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29.6 Initial prior is verified by paths drawn from subjective conditional
densities

Now let’s use our Python code to generate a table that checks out our earlier claims about the probability distribution of
the pointwise limits 𝜋∞(𝜔).
We’ll use our simulations to generate a histogram of this distribution.

In the following table, the left column in bold face reports an assumed value of 𝜋−1.

The second column reports the fraction of 𝑁 = 10000 simulations for which 𝜋𝑡 had converged to 0 at the terminal date
𝑇 = 500 for each simulation.
The third column reports the fraction of 𝑁 = 10000 simulations for which 𝜋𝑡 had converged to 1 at the terminal date
𝑇 = 500 for each simulation.
# Create table
table = create_table(list(np.linspace(0,1,11)), N=10000, T=500)
table

0.0 1.0
0.0 1.0000 0.0000
0.1 0.8984 0.1016
0.2 0.8000 0.2000
0.3 0.6981 0.3019
0.4 0.6004 0.3996

(continues on next page)
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(continued from previous page)

0.5 0.4968 0.5032
0.6 0.3995 0.6005
0.7 0.3007 0.6993
0.8 0.2074 0.7926
0.9 0.0964 0.9036
1.0 0.0000 1.0000

The fraction of simulations for which 𝜋𝑡 had converged to 1 is indeed always close to 𝜋−1, as anticipated.

29.7 Drilling down a little bit

To understand how the local dynamics of 𝜋𝑡 behaves, it is enlightening to consult the variance of 𝜋𝑡 conditional on 𝜋𝑡−1.

Under the subjective distribution this conditional variance is defined as

𝜎2(𝜋𝑡|𝜋𝑡−1) = ∫[ 𝜋𝑡−1𝑓(𝑤)
𝜋𝑡−1𝑓(𝑤) + (1 − 𝜋𝑡−1)𝑔(𝑤) − 𝜋𝑡−1]

2
[𝜋𝑡−1𝑓(𝑤) + (1 − 𝜋𝑡−1)𝑔(𝑤)]𝑑𝑤

We can use a Monte Carlo simulation to approximate this conditional variance.

We approximate it for a grid of points 𝜋𝑡−1 ∈ [0, 1].
Then we’ll plot it.

@jit
def compute_cond_var(π, mc_size=int(1e6)):

# Create Monte Carlo draws
mc_draws = np.zeros(mc_size)

for i in prange(mc_size):
if np.random.rand() <= π:

mc_draws[i] = np.random.beta(F_a, F_b)
else:

mc_draws[i] = np.random.beta(G_a, G_b)

dev = π*f(mc_draws)/(π*f(mc_draws) + (1-π)*g(mc_draws)) - π
return np.mean(dev**2)

π_array = np.linspace(0, 1, 40)
cond_var_array = []

for π in π_array:
cond_var_array.append(compute_cond_var(π))

fig, ax = plt.subplots()
ax.plot(π_array, cond_var_array, lw=2)
ax.set_xlabel(r'$\pi_{t-1}$')
ax.set_ylabel(r'$\sigma^{2}(\pi_{t}\vert \pi_{t-1})$')
plt.show()
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The shape of the conditional variance as a function of 𝜋𝑡−1 is informative about the behavior of sample paths of {𝜋𝑡}.
Notice how the conditional variance approaches 0 for 𝜋𝑡−1 near either 0 or 1.
The conditional variance is nearly zero only when the agent is almost sure that 𝑤𝑡 is drawn from 𝐹 , or is almost sure it is
drawn from 𝐺.

29.8 Related lectures

This lecture has been devoted to building some useful infrastructure that will help us understand inferences that are the
foundations of results described in Job Search VII: Search with Learning, A Problem that Stumped Milton Friedman, and
Bayesian versus Frequentist Decision Rules.
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THIRTY

INCORRECT MODELS

GPU

This lecture was built using a machine with the latest CUDA and CUDANN frameworks installed with access to a
GPU.

To run this lecture on Google Colab, click on the “play” icon top right, select Colab, and set the runtime environment
to include a GPU.

To run this lecture on your own machine, you need to install the software listed following this notice.

!pip install numpyro jax

30.1 Overview

This is a sequel to this quantecon lecture.

We discuss two ways to create a compound lottery and their consequences.

A compound lottery can be said to create a mixture distribution.

Our two ways of constructing a compound lottery will differ in their timing.

• in one, mixing between two possible probability distributions will occur once and all at the beginning of time

• in the other, mixing between the same two possible probability distributions will occur each period

The statistical setting is close but not identical to the problem studied in that quantecon lecture.

In that lecture, there were two i.i.d. processes that could possibly govern successive draws of a non-negative random
variable 𝑊 .

Nature decided once and for all whether to make a sequence of IID draws from either 𝑓 or from 𝑔.
That lecture studied an agent who knew both 𝑓 and 𝑔 but did not know which distribution nature chose at time −1.
The agent represented that ignorance by assuming that nature had chosen 𝑓 or 𝑔 by flipping an unfair coin that put
probability 𝜋−1 on probability distribution 𝑓 .
That assumption allowed the agent to construct a subjective joint probability distribution over the random sequence
{𝑊𝑡}∞

𝑡=0.
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We studied how the agent would then use the laws of conditional probability and an observed history 𝑤𝑡 = {𝑤𝑠}𝑡
𝑠=0 to

form

𝜋𝑡 = 𝐸[nature chose distribution𝑓|𝑤𝑡], 𝑡 = 0, 1, 2, …

However, in the setting of this lecture, that rule imputes to the agent an incorrect model.

The reason is that now the wage sequence is actually described by a different statistical model.

Thus, we change the quantecon lecture specification in the following way.

Now, each period 𝑡 ≥ 0, nature flips a possibly unfair coin that comes up 𝑓 with probability 𝛼 and 𝑔 with probability
1 − 𝛼.
Thus, nature perpetually draws from themixture distribution with c.d.f.

𝐻(𝑤) = 𝛼𝐹(𝑤) + (1 − 𝛼)𝐺(𝑤), 𝛼 ∈ (0, 1)

We’ll study two agents who try to learn about the wage process, but who use different statistical models.

Both types of agent know 𝑓 and 𝑔 but neither knows 𝛼.
Our first type of agent erroneously thinks that at time −1 nature once and for all chose 𝑓 or 𝑔 and thereafter permanently
draws from that distribution.

Our second type of agent knows, correctly, that nature mixes 𝑓 and 𝑔 with mixing probability 𝛼 ∈ (0, 1) each period,
though the agent doesn’t know the mixing parameter.

Our first type of agent applies the learning algorithm described in this quantecon lecture.

In the context of the statistical model that prevailed in that lecture, that was a good learning algorithm and it enabled the
Bayesian learner eventually to learn the distribution that nature had drawn at time −1.
This is because the agent’s statistical model was correct in the sense of being aligned with the data generating process.

But in the present context, our type 1 decision maker’s model is incorrect because the model ℎ that actually generates the
data is neither 𝑓 nor 𝑔 and so is beyond the support of the models that the agent thinks are possible.
Nevertheless, we’ll see that our first type of agent muddles through and eventually learns something interesting and useful,
even though it is not true.

Instead, it turns out that our type 1 agent who is armed with a wrong statistical model ends up learning whichever proba-
bility distribution, 𝑓 or 𝑔, is in a special sense closest to the ℎ that actually generates the data.

We’ll tell the sense in which it is closest.

Our second type of agent understands that nature mixes between 𝑓 and 𝑔 each period with a fixed mixing probability 𝛼.
But the agent doesn’t know 𝛼.
The agent sets out to learn 𝛼 using Bayes’ law applied to his model.

His model is correct in the sense that it includes the actual data generating process ℎ as a possible distribution.

In this lecture, we’ll learn about

• how nature can mix between two distributions 𝑓 and 𝑔 to create a new distribution ℎ.
• The Kullback-Leibler statistical divergence https://en.wikipedia.org/wiki/Kullback–Leibler_divergence that gov-
erns statistical learning under an incorrect statistical model

• A useful Python functionnumpy.searchsorted that, in conjunctionwith a uniform randomnumber generator,
can be used to sample from an arbitrary distribution

As usual, we’ll start by importing some Python tools.
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import matplotlib.pyplot as plt
import numpy as np
from numba import vectorize, jit
from math import gamma
import pandas as pd
import scipy.stats as sp
from scipy.integrate import quad

import seaborn as sns
colors = sns.color_palette()

import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS

import jax.numpy as jnp
from jax import random

np.random.seed(142857)

@jit
def set_seed():

np.random.seed(142857)
set_seed()

Let’s use Python to generate two beta distributions

# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x** (a-1) * (1 - x) ** (b-1)

# The two density functions.
f = jit(lambda x: p(x, F_a, F_b))
g = jit(lambda x: p(x, G_a, G_b))

@jit
def simulate(a, b, T=50, N=500):

'''
Generate N sets of T observations of the likelihood ratio,
return as N x T matrix.

'''

l_arr = np.empty((N, T))

for i in range(N):

for j in range(T):
w = np.random.beta(a, b)
l_arr[i, j] = f(w) / g(w)

return l_arr
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We’ll also use the following Python code to prepare some informative simulations

l_arr_g = simulate(G_a, G_b, N=50000)
l_seq_g = np.cumprod(l_arr_g, axis=1)

l_arr_f = simulate(F_a, F_b, N=50000)
l_seq_f = np.cumprod(l_arr_f, axis=1)

30.2 Sampling from Compound Lottery 𝐻

We implement two methods to draw samples from our mixture model 𝛼𝐹 + (1 − 𝛼)𝐺.

We’ll generate samples using each of them and verify that they match well.

Here is pseudo code for a direct “method 1” for drawing from our compound lottery:

• Step one:

– use the numpy.random.choice function to flip an unfair coin that selects distribution 𝐹 with prob 𝛼 and 𝐺
with prob 1 − 𝛼

• Step two:

– draw from either 𝐹 or 𝐺, as determined by the coin flip.

• Step three:

– put the first two steps in a big loop and do them for each realization of 𝑤
Our second method uses a uniform distribution and the following fact that we also described and used in the quantecon
lecture https://python.quantecon.org/prob_matrix.html:

• If a random variable 𝑋 has c.d.f. 𝐹 , then a random variable 𝐹 −1(𝑈) also has c.d.f. 𝐹 , where 𝑈 is a uniform
random variable on [0, 1].

In other words, if 𝑋 ∼ 𝐹(𝑥) we can generate a random sample from 𝐹 by drawing a random sample from a uniform
distribution on [0, 1] and computing 𝐹 −1(𝑈).
We’ll use this fact in conjunction with the numpy.searchsorted command to sample from 𝐻 directly.

See https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html for the searchsorted function.

See the Mr. P Solver video on Monte Carlo simulation to see other applications of this powerful trick.

In the Python code below, we’ll use both of our methods and confirm that each of them does a good job of sampling from
our target mixture distribution.

@jit
def draw_lottery(p, N):

"Draw from the compound lottery directly."

draws = []
for i in range(0, N):

if np.random.rand()<=p:
draws.append(np.random.beta(F_a, F_b))

else:
draws.append(np.random.beta(G_a, G_b))

return np.array(draws)

def draw_lottery_MC(p, N):

(continues on next page)
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(continued from previous page)

"Draw from the compound lottery using the Monte Carlo trick."

xs = np.linspace(1e-8,1-(1e-8),10000)
CDF = p*sp.beta.cdf(xs, F_a, F_b) + (1-p)*sp.beta.cdf(xs, G_a, G_b)

Us = np.random.rand(N)
draws = xs[np.searchsorted(CDF[:-1], Us)]
return draws

# verify
N = 100000
α = 0.0

sample1 = draw_lottery(α, N)
sample2 = draw_lottery_MC(α, N)

# plot draws and density function
plt.hist(sample1, 50, density=True, alpha=0.5, label='direct draws')
plt.hist(sample2, 50, density=True, alpha=0.5, label='MC draws')

xs = np.linspace(0,1,1000)
plt.plot(xs, α*f(xs)+(1-α)*g(xs), color='red', label='density')

plt.legend()
plt.show()
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30.3 Type 1 Agent

We’ll now study what our type 1 agent learns

Remember that our type 1 agent uses the wrong statistical model, thinking that nature mixed between 𝑓 and 𝑔 once and
for all at time −1.
The type 1 agent thus uses the learning algorithm studied in this quantecon lecture.

We’ll briefly review that learning algorithm now.

Let 𝜋𝑡 be a Bayesian posterior defined as

𝜋𝑡 = Prob(𝑞 = 𝑓|𝑤𝑡)

The likelihood ratio process plays a principal role in the formula that governs the evolution of the posterior probability
𝜋𝑡, an instance of Bayes’ Law.

Bayes’ law implies that {𝜋𝑡} obeys the recursion

𝜋𝑡 = 𝜋𝑡−1𝑙𝑡(𝑤𝑡)
𝜋𝑡−1𝑙𝑡(𝑤𝑡) + 1 − 𝜋𝑡−1

(30.1)

with 𝜋0 being a Bayesian prior probability that 𝑞 = 𝑓 , i.e., a personal or subjective belief about 𝑞 based on our having
seen no data.

Below we define a Python function that updates belief 𝜋 using likelihood ratio ℓ according to recursion (30.1)
@jit
def update(π, l):

"Update π using likelihood l"

# Update belief
π = π * l / (π * l + 1 - π)

return π

Formula (30.1) can be generalized by iterating on it and thereby deriving an expression for the time 𝑡 posterior 𝜋𝑡+1 as a
function of the time 0 prior 𝜋0 and the likelihood ratio process 𝐿(𝑤𝑡+1) at time 𝑡.
To begin, notice that the updating rule

𝜋𝑡+1 = 𝜋𝑡ℓ (𝑤𝑡+1)
𝜋𝑡ℓ (𝑤𝑡+1) + (1 − 𝜋𝑡)

implies

1
𝜋𝑡+1

= 𝜋𝑡ℓ (𝑤𝑡+1) + (1 − 𝜋𝑡)
𝜋𝑡ℓ (𝑤𝑡+1)

= 1 − 1
ℓ (𝑤𝑡+1) + 1

ℓ (𝑤𝑡+1)
1
𝜋𝑡

.

⇒ 1
𝜋𝑡+1

− 1 = 1
ℓ (𝑤𝑡+1) ( 1

𝜋𝑡
− 1) .

Therefore

1
𝜋𝑡+1

− 1 = 1
∏𝑡+1

𝑖=1 ℓ (𝑤𝑖)
( 1

𝜋0
− 1) = 1

𝐿 (𝑤𝑡+1) ( 1
𝜋0

− 1) .
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Since 𝜋0 ∈ (0, 1) and 𝐿 (𝑤𝑡+1) > 0, we can verify that 𝜋𝑡+1 ∈ (0, 1).
After rearranging the preceding equation, we can express 𝜋𝑡+1 as a function of 𝐿 (𝑤𝑡+1), the likelihood ratio process at
𝑡 + 1, and the initial prior 𝜋0

𝜋𝑡+1 = 𝜋0𝐿 (𝑤𝑡+1)
𝜋0𝐿 (𝑤𝑡+1) + 1 − 𝜋0

. (30.2)

Formula (30.2) generalizes formula (30.1).

Formula (30.2) can be regarded as a one step revision of prior probability 𝜋0 after seeing the batch of data {𝑤𝑖}
𝑡+1
𝑖=1.

30.4 What a type 1 Agent Learns when Mixture 𝐻 Generates Data

We now study what happens when the mixture distribution ℎ; 𝛼 truly generated the data each period.

The sequence 𝜋𝑡 continues to converge, despite the agent’s misspecified model, and the limit is either 0 or 1.
This is true even though in truth nature always mixes between 𝑓 and 𝑔.
After verifying that claim about possible limit points of 𝜋𝑡 sequences, we’ll drill down and study what fundamental force
determines the limiting value of 𝜋𝑡.

Let’s set a value of 𝛼 and then watch how 𝜋𝑡 evolves.

def simulate_mixed(α, T=50, N=500):
"""
Generate N sets of T observations of the likelihood ratio,
return as N x T matrix, when the true density is mixed h;α
"""

w_s = draw_lottery(α, N*T).reshape(N, T)
l_arr = f(w_s) / g(w_s)

return l_arr

def plot_π_seq(α, π1=0.2, π2=0.8, T=200):
"""
Compute and plot π_seq and the log likelihood ratio process
when the mixed distribution governs the data.
"""

l_arr_mixed = simulate_mixed(α, T=T, N=50)
l_seq_mixed = np.cumprod(l_arr_mixed, axis=1)

T = l_arr_mixed.shape[1]
π_seq_mixed = np.empty((2, T+1))
π_seq_mixed[:, 0] = π1, π2

for t in range(T):
for i in range(2):

π_seq_mixed[i, t+1] = update(π_seq_mixed[i, t], l_arr_mixed[0, t])

# plot
fig, ax1 = plt.subplots()
for i in range(2):

ax1.plot(range(T+1), π_seq_mixed[i, :], label=rf"$\pi_0$={π_seq_mixed[i, 0]}")

(continues on next page)
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(continued from previous page)

ax1.plot(np.nan, np.nan, '--', color='b', label='Log likelihood ratio process')
ax1.set_ylabel(r"$\pi_t$")
ax1.set_xlabel("t")
ax1.legend()
ax1.set_title("when $\\alpha F + (1-\\alpha)G$ governs data")

ax2 = ax1.twinx()
ax2.plot(range(1, T+1), np.log(l_seq_mixed[0, :]), '--', color='b')
ax2.set_ylabel("$log(L(w^{t}))$")

plt.show()

plot_π_seq(α = 0.6)

The above graph shows a sample path of the log likelihood ratio process as the blue dotted line, together with sample
paths of 𝜋𝑡 that start from two distinct initial conditions.

Let’s see what happens when we change 𝛼
plot_π_seq(α = 0.2)
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Evidently, 𝛼 is having a big effect on the destination of 𝜋𝑡 as 𝑡 → +∞

30.5 Kullback-Leibler Divergence Governs Limit of 𝜋𝑡

To understand what determines whether the limit point of 𝜋𝑡 is 0 or 1 and how the answer depends on the true value of
the mixing probability 𝛼 ∈ (0, 1) that generates

ℎ(𝑤) ≡ ℎ(𝑤|𝛼) = 𝛼𝑓(𝑤) + (1 − 𝛼)𝑔(𝑤)

we shall compute the following two Kullback-Leibler divergences

𝐾𝐿𝑔(𝛼) = ∫ log(ℎ(𝑤)
𝑔(𝑤) ) ℎ(𝑤)𝑑𝑤

and

𝐾𝐿𝑓(𝛼) = ∫ log(ℎ(𝑤)
𝑓(𝑤)) ℎ(𝑤)𝑑𝑤

We shall plot both of these functions against 𝛼 as we use 𝛼 to vary ℎ(𝑤) = ℎ(𝑤|𝛼).
The limit of 𝜋𝑡 is determined by

min
𝑓,𝑔

{𝐾𝐿𝑔, 𝐾𝐿𝑓}

The only possible limits are 0 and 1.
As 𝑡 → +∞, 𝜋𝑡 goes to one if and only if 𝐾𝐿𝑓 < 𝐾𝐿𝑔
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@vectorize
def KL_g(α):

"Compute the KL divergence KL(h, g)."
err = 1e-8 # to avoid 0 at end points
ws = np.linspace(err, 1-err, 10000)
gs, fs = g(ws), f(ws)
hs = α*fs + (1-α)*gs
return np.sum(np.log(hs/gs)*hs)/10000

@vectorize
def KL_f(α):

"Compute the KL divergence KL(h, f)."
err = 1e-8 # to avoid 0 at end points
ws = np.linspace(err, 1-err, 10000)
gs, fs = g(ws), f(ws)
hs = α*fs + (1-α)*gs
return np.sum(np.log(hs/fs)*hs)/10000

# compute KL using quad in Scipy
def KL_g_quad(α):

"Compute the KL divergence KL(h, g) using scipy.integrate."
h = lambda x: α*f(x) + (1-α)*g(x)
return quad(lambda x: h(x) * np.log(h(x)/g(x)), 0, 1)[0]

def KL_f_quad(α):
"Compute the KL divergence KL(h, f) using scipy.integrate."
h = lambda x: α*f(x) + (1-α)*g(x)
return quad(lambda x: h(x) * np.log(h(x)/f(x)), 0, 1)[0]

# vectorize
KL_g_quad_v = np.vectorize(KL_g_quad)
KL_f_quad_v = np.vectorize(KL_f_quad)

# Let us find the limit point
def π_lim(α, T=5000, π_0=0.4):

"Find limit of π sequence."
π_seq = np.zeros(T+1)
π_seq[0] = π_0
l_arr = simulate_mixed(α, T, N=1)[0]

for t in range(T):
π_seq[t+1] = update(π_seq[t], l_arr[t])

return π_seq[-1]

π_lim_v = np.vectorize(π_lim)

Let us first plot the KL divergences 𝐾𝐿𝑔 (𝛼) , 𝐾𝐿𝑓 (𝛼) for each 𝛼.
α_arr = np.linspace(0, 1, 100)
KL_g_arr = KL_g(α_arr)
KL_f_arr = KL_f(α_arr)

fig, ax = plt.subplots(1, figsize=[10, 6])

ax.plot(α_arr, KL_g_arr, label='KL(h, g)')

(continues on next page)
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(continued from previous page)

ax.plot(α_arr, KL_f_arr, label='KL(h, f)')
ax.set_ylabel('KL divergence')
ax.set_xlabel(r'$\alpha$')

ax.legend(loc='upper right')
plt.show()

Let’s compute an 𝛼 for which the KL divergence between ℎ and 𝑔 is the same as that between ℎ and 𝑓 .
# where KL_f = KL_g
discretion = α_arr[np.argmin(np.abs(KL_g_arr-KL_f_arr))]

We can compute and plot the convergence point 𝜋∞ for each 𝛼 to verify that the convergence is indeed governed by the
KL divergence.

The blue circles show the limiting values of 𝜋𝑡 that simulations discover for different values of 𝛼 recorded on the 𝑥 axis.

Thus, the graph below confirms how a minimum KL divergence governs what our type 1 agent eventually learns.

α_arr_x = α_arr[(α_arr<discretion)|(α_arr>discretion)]
π_lim_arr = π_lim_v(α_arr_x)

# plot
fig, ax = plt.subplots(1, figsize=[10, 6])

ax.plot(α_arr, KL_g_arr, label='KL(h, g)')
ax.plot(α_arr, KL_f_arr, label='KL(h, f)')
ax.set_ylabel('KL divergence')
ax.set_xlabel(r'$\alpha$')

# plot KL

(continues on next page)

30.5. Kullback-Leibler Divergence Governs Limit of 𝜋𝑡 575



Intermediate Quantitative Economics with Python

(continued from previous page)

ax2 = ax.twinx()
# plot limit point
ax2.scatter(α_arr_x, π_lim_arr,

facecolors='none',
edgecolors='tab:blue',
label=r'$\pi$ lim')

ax2.set_ylabel('π lim')

ax.legend(loc=[0.85, 0.8])
ax2.legend(loc=[0.85, 0.73])
plt.show()

Evidently, our type 1 learner who applies Bayes’ law to his misspecified set of statistical models eventually learns an
approximating model that is as close as possible to the true model, as measured by its Kullback-Leibler divergence:

• When 𝛼 is small, 𝐾𝐿𝑔 < 𝐾𝐿𝑓 meaning the divergence of 𝑔 from ℎ is smaller than that of 𝑓 and so the limit point
of 𝜋𝑡 is close to 0.

• When 𝛼 is large, 𝐾𝐿𝑓 < 𝐾𝐿𝑔 meaning the divergence of 𝑓 from ℎ is smaller than that of 𝑔 and so the limit point
of 𝜋𝑡 is close to 1.

30.6 Type 2 Agent

We now describe how our type 2 agent formulates his learning problem and what he eventually learns.

Our type 2 agent understands the correct statistical model but does not know 𝛼.
We apply Bayes law to deduce an algorithm for learning 𝛼 under the assumption that the agent knows that

ℎ(𝑤) = ℎ(𝑤|𝛼)

but does not know 𝛼.
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We’ll assume that the person starts out with a prior probability 𝜋0(𝛼) on 𝛼 ∈ (0, 1) where the prior has one of the forms
that we deployed in this quantecon lecture.

We’ll fire up numpyro and apply it to the present situation.

Bayes’ law now takes the form

𝜋𝑡+1(𝛼) = ℎ(𝑤𝑡+1|𝛼)𝜋𝑡(𝛼)
∫ ℎ(𝑤𝑡+1| ̂𝛼)𝜋𝑡( ̂𝛼)𝑑 ̂𝛼

We’ll use numpyro to approximate this equation.

We’ll create graphs of the posterior 𝜋𝑡(𝛼) as 𝑡 → +∞ corresponding to ones presented in the quantecon lecture https:
//python.quantecon.org/bayes_nonconj.html.

We anticipate that a posterior distribution will collapse around the true 𝛼 as 𝑡 → +∞.

Let us try a uniform prior first.

We use the Mixture class in numpyro to construct the likelihood function.

α = 0.8

# simulate data with true α
data = draw_lottery(α, 1000)
sizes = [5, 20, 50, 200, 1000, 25000]

def model(w):
α = numpyro.sample('α', dist.Uniform(low=0.0, high=1.0))

y_samp = numpyro.sample('w',
dist.Mixture(dist.Categorical(jnp.array([α, 1-α])), [dist.Beta(F_a, F_b),␣

↪dist.Beta(G_a, G_b)]), obs=w)

def MCMC_run(ws):
"Compute posterior using MCMC with observed ws"

kernel = NUTS(model)
mcmc = MCMC(kernel, num_samples=5000, num_warmup=1000, progress_bar=False)

mcmc.run(rng_key=random.PRNGKey(142857), w=jnp.array(ws))
sample = mcmc.get_samples()
return sample['α']

The following code generates the graph below that displays Bayesian posteriors for 𝛼 at various history lengths.

fig, ax = plt.subplots(figsize=(10, 6))

for i in range(len(sizes)):
sample = MCMC_run(data[:sizes[i]])
sns.histplot(

data=sample, kde=True, stat='density', alpha=0.2, ax=ax,
color=colors[i], binwidth=0.02, linewidth=0.05, label=f't={sizes[i]}'

)
ax.set_title(r'$\pi_t(\alpha)$ as $t$ increases')
ax.legend()
ax.set_xlabel(r'$\alpha$')
plt.show()
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Evidently, the Bayesian posterior narrows in on the true value 𝛼 = .8 of the mixing parameter as the length of a history
of observations grows.

30.7 Concluding Remarks

Our type 1 person deploys an incorrect statistical model.

He believes that either 𝑓 or 𝑔 generated the 𝑤 process, but just doesn’t know which one.

That is wrong because nature is actually mixing each period with mixing probability 𝛼.
Our type 1 agent eventually believes that either 𝑓 or 𝑔 generated the 𝑤 sequence, the outcome being determined by the
model, either 𝑓 or 𝑔, whose KL divergence relative to ℎ is smaller.

Our type 2 agent has a different statistical model, one that is correctly specified.

He knows the parametric form of the statistical model but not the mixing parameter 𝛼.
He knows that he does not know it.

But by using Bayes’ law in conjunction with his statistical model and a history of data, he eventually acquires a more and
more accurate inference about 𝛼.
This little laboratory exhibits some important general principles that govern outcomes of Bayesian learning ofmisspecified
models.

Thus, the following situation prevails quite generally in empirical work.

A scientist approaches the data with a manifold 𝑆 of statistical models 𝑠(𝑋|𝜃) , where 𝑠 is a probability distribution over
a random vector 𝑋, 𝜃 ∈ Θ is a vector of parameters, and Θ indexes the manifold of models.
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The scientist with observations that he interprets as realizations 𝑥 of the random vector 𝑋 wants to solve an inverse
problem of somehow inverting 𝑠(𝑥|𝜃) to infer 𝜃 from 𝑥.
But the scientist’s model is misspecified, being only an approximation to an unknown model ℎ that nature uses to generate
𝑋.

If the scientist uses Bayes’ law or a related likelihood-based method to infer 𝜃, it occurs quite generally that for large
sample sizes the inverse problem infers a 𝜃 that minimizes the KL divergence of the scientist’s model 𝑠 relative to nature’s
model ℎ.

30.8 Exercises

Exercise 30.8.1

In Likelihood Ratio Processes and Bayesian Learning, we studied the consequence of applying likelihood ratio and
Bayes’ law to a misspecified statistical model.

In that lecture, we used a model selection algorithm to study the case where the true data generating process is a
mixture.

In this lecture, we studied how to correctly “learn” a model generated by a mixing process using a Bayesian approach.

To fix the algorithm we used in Likelihood Ratio Processes and Bayesian Learning, a correct Bayesian approach should
directly model the uncertainty about 𝑥 and update beliefs about it as new data arrives.

Here is the algorithm:

First we specify a prior distribution for 𝑥 given by 𝑥 ∼ Beta(𝛼0, 𝛽0) with expectation 𝔼[𝑥] = 𝛼0
𝛼0+𝛽0

.

The likelihood for a single observation 𝑤𝑡 is 𝑝(𝑤𝑡|𝑥) = 𝑥𝑓(𝑤𝑡) + (1 − 𝑥)𝑔(𝑤𝑡).
For a sequence 𝑤𝑡 = (𝑤1, … , 𝑤𝑡), the likelihood is 𝑝(𝑤𝑡|𝑥) = ∏𝑡

𝑖=1 𝑝(𝑤𝑖|𝑥).
The posterior distribution is updated using 𝑝(𝑥|𝑤𝑡) ∝ 𝑝(𝑤𝑡|𝑥)𝑝(𝑥).
Recursively, the posterior after 𝑤𝑡 is 𝑝(𝑥|𝑤𝑡) ∝ 𝑝(𝑤𝑡|𝑥)𝑝(𝑥|𝑤𝑡−1).
Without a conjugate prior, we can approximate the posterior by discretizing 𝑥 into a grid.

Your task is to implement this algorithm in Python.

You can verify your implementation by checking that the posterior mean converges to the true value of 𝑥 as 𝑡 increases
in Likelihood Ratio Processes and Bayesian Learning.

Solution to Exercise 30.8.1

Here is one solution:

First we define the mixture probability and parameters of prior distributions

x_true = 0.5
T_mix = 200

# Three different priors with means 0.25, 0.5, 0.75
prior_params = [(1, 3), (1, 1), (3, 1)]
prior_means = [a/(a+b) for a, b in prior_params]

w_mix = draw_lottery(x_true, T_mix)
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@jit
def learn_x_bayesian(observations, α0, β0, grid_size=2000):

"""
Sequential Bayesian learning of the mixing probability x
using a grid approximation.
"""
w = np.asarray(observations)
T = w.size

x_grid = np.linspace(1e-3, 1 - 1e-3, grid_size)

# Log prior
log_prior = (α0 - 1) * np.log(x_grid) + (β0 - 1) * np.log1p(-x_grid)

μ_path = np.empty(T + 1)
μ_path[0] = α0 / (α0 + β0)

log_post = log_prior.copy()

for t in range(T):
wt = w[t]
# P(w_t | x) = x f(w_t) + (1 - x) g(w_t)
like = x_grid * f(wt) + (1 - x_grid) * g(wt)
log_post += np.log(like)

# normalize
log_post -= log_post.max()
post = np.exp(log_post)
post /= post.sum()

μ_path[t + 1] = x_grid @ post

return μ_path

x_posterior_means = [learn_x_bayesian(w_mix, α0, β0) for α0, β0 in prior_params]

Let’s visualize how the posterior mean of 𝑥 evolves over time, starting from three different prior beliefs.

fig, ax = plt.subplots(figsize=(10, 6))

for i, (x_means, mean0) in enumerate(zip(x_posterior_means, prior_means)):
ax.plot(range(T_mix + 1), x_means,

label=fr'Prior mean = ${mean0:.2f}$',
color=colors[i], linewidth=2)

ax.axhline(y=x_true, color='black', linestyle='--',
label=f'True x = {x_true}', linewidth=2)

ax.set_xlabel('$t$')
ax.set_ylabel('Posterior mean of $x$')
ax.legend()
plt.show()

580 Chapter 30. Incorrect Models



Intermediate Quantitative Economics with Python

The plot shows that regardless of the initial prior belief, all three posterior means eventually converge towards the
true value of 𝑥 = 0.5.

Next, let’s look at multiple simulations with a longer time horizon, all starting from a uniform prior.

set_seed()
n_paths = 20
T_long = 10_000

fig, ax = plt.subplots(figsize=(10, 5))

for j in range(n_paths):
w_path = draw_lottery(x_true, T_long)
x_means = learn_x_bayesian(w_path, 1, 1) # Uniform prior
ax.plot(range(T_long + 1), x_means, alpha=0.5, linewidth=1)

ax.axhline(y=x_true, color='red', linestyle='--',
label=f'True x = {x_true}', linewidth=2)

ax.set_ylabel('Posterior mean of $x$')
ax.set_xlabel('$t$')
ax.legend()
plt.tight_layout()
plt.show()
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We can see that the posterior mean of 𝑥 converges to the true value 𝑥 = 0.5.
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BAYESIAN VERSUS FREQUENTIST DECISION RULES

Contents

• Bayesian versus Frequentist Decision Rules

– Overview

– Setup

– Frequentist Decision Rule

– Bayesian Decision Rule

– Was the Navy Captain’s Hunch Correct?

– More Details

– Distribution of Bayesian Decision Rule’s Time to Decide

– Probability of Making Correct Decision

– Distribution of Likelihood Ratios at Neyman-Pearson’s 𝑡

import matplotlib.pyplot as plt
import numpy as np
from numba import jit, prange, float64, int64
from numba.experimental import jitclass
from math import gamma
from scipy.optimize import minimize

31.1 Overview

This lecture follows up on ideas presented in the following lectures:

• A Problem that Stumped Milton Friedman

• A Bayesian Formulation of Friedman and Wald’s Problem

• Exchangeability and Bayesian Updating

• Likelihood Ratio Processes

A Problem that Stumped Milton Friedman described a problem that a Navy Captain presented to Milton Friedman during
World War II.
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The Navy had told the Captain to use a decision rule for quality control.

In particular, the Navy had ordered the Captain to use an instance of a frequentist decision rule.

The Captain doubted that that rule was a good one.

Milton Friedman recognized the Captain’s conjecture as posing a challenging statistical problem that he and other mem-
bers of the US Government’s Statistical Research Group at Columbia University proceeded to try to solve.

A member of the group, the great mathematician and economist Abraham Wald, soon solved the problem.

A good way to formulate the problem is to use some ideas from Bayesian statistics that we describe in this lecture
Exchangeability and Bayesian Updating and in this lecture Likelihood Ratio Processes, which describes the link between
Bayesian updating and likelihood ratio processes.

The present lecture uses Python to generate simulations that evaluate expected losses under the Neyman-Pearson fre-
quentist procedure that the Navy captain questioned and the Bayesian decision rule described in A Bayesian Formulation
of Friedman and Wald’s Problem.

The simulations confirm the Navy Captain’s hunch that there is a better rule than the Neyman-Pearson likelihood ratio
test that the Navy had told him to use.

31.2 Setup

To formalize the problem that had confronted the Navy Captain, we consider a setting with the following parts.

• Each period a decision maker draws a non-negative random variable𝑍. He knows that two probability distributions
are possible, 𝑓0 and 𝑓1, and that which ever distribution it is remains fixed over time. The decision maker believes
that before the beginning of time, nature once and for all had selected either 𝑓0 or 𝑓1 and that the probability that
it selected 𝑓0 is probability 𝜋∗.

• The decision maker observes a sample {𝑧𝑖}
𝑡
𝑖=0 from the distribution chosen by nature.

The decision maker wants to decide which distribution actually governs 𝑍.
He is worried about two types of errors and the losses that they will impose on him.

• a loss 𝐿̄1 from a type I error that occurs if he decides that 𝑓 = 𝑓1 when actually 𝑓 = 𝑓0

• a loss 𝐿̄0 from a type II error that occurs if he decides that 𝑓 = 𝑓0 when actually 𝑓 = 𝑓1

The decision maker pays a cost 𝑐 for drawing another 𝑧.
We mainly borrow parameters from the quantecon lecture A Bayesian Formulation of Friedman and Wald’s Problem
except that we increase both 𝐿̄0 and 𝐿̄1 from 25 to 100 to encourage the Bayesian decision rule to take more draws
before deciding.

We set the cost 𝑐 of taking one more draw at 1.25.
We set the probability distributions 𝑓0 and 𝑓1 to be beta distributions with 𝑎0 = 𝑏0 = 1, 𝑎1 = 3, and 𝑏1 = 1.2,
respectively.

Below is some Python code that sets up these objects.

@jit
def p(x, a, b):

"Beta distribution."

r = gamma(a + b) / (gamma(a) * gamma(b))

return r * x**(a-1) * (1 - x)**(b-1)
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We start with defining a jitclass that stores parameters and functions we need to solve problems for both the Bayesian
and frequentist Navy Captains.

wf_data = [
('c', float64), # unemployment compensation
('a0', float64), # parameters of beta distribution
('b0', float64),
('a1', float64),
('b1', float64),
('L0', float64), # cost of selecting f0 when f1 is true
('L1', float64), # cost of selecting f1 when f0 is true
('π_grid', float64[:]), # grid of beliefs π
('π_grid_size', int64),
('mc_size', int64), # size of Monto Carlo simulation
('z0', float64[:]), # sequence of random values
('z1', float64[:]) # sequence of random values

]

@jitclass(wf_data)
class WaldFriedman:

def __init__(self,
c=1.25,
a0=1,
b0=1,
a1=3,
b1=1.2,
L0=100,
L1=100,
π_grid_size=200,
mc_size=1000):

self.c, self.π_grid_size = c, π_grid_size
self.a0, self.b0, self.a1, self.b1 = a0, b0, a1, b1
self.L0, self.L1 = L0, L1
self.π_grid = np.linspace(0, 1, π_grid_size)
self.mc_size = mc_size

self.z0 = np.random.beta(a0, b0, mc_size)
self.z1 = np.random.beta(a1, b1, mc_size)

def f0(self, x):

return p(x, self.a0, self.b0)

def f1(self, x):

return p(x, self.a1, self.b1)

def κ(self, z, π):
"""
Updates π using Bayes' rule and the current observation z
"""

a0, b0, a1, b1 = self.a0, self.b0, self.a1, self.b1

π_f0, π_f1 = π * p(z, a0, b0), (1 - π) * p(z, a1, b1)
π_new = π_f0 / (π_f0 + π_f1)

(continues on next page)
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(continued from previous page)

return π_new

wf = WaldFriedman()

grid = np.linspace(0, 1, 50)

plt.figure()

plt.title("Two Distributions")
plt.plot(grid, wf.f0(grid), lw=2, label="$f_0$")
plt.plot(grid, wf.f1(grid), lw=2, label="$f_1$")

plt.legend()
plt.xlabel("$z$ values")
plt.ylabel("density of $z_k$")

plt.tight_layout()
plt.show()

Above, we plot the two possible probability densities 𝑓0 and 𝑓1
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31.3 Frequentist Decision Rule

The Navy told the Captain to use a Neyman-Pearson likelihood ratio decision rule.

That decision rule is characterized by

• a sample size 𝑡, and
• a cutoff value 𝑑 of a likelihood ratio

Let 𝐿 (𝑧𝑡) = ∏𝑡
𝑖=0

𝑓0(𝑧𝑖)
𝑓1(𝑧𝑖) be the likelihood ratio associated with observing the sequence {𝑧𝑖}

𝑡
𝑖=0.

The decision rule associated with a sample size 𝑡 is:
• decide that 𝑓0 is the distribution if the likelihood ratio is greater than 𝑑
• decide that 𝑓1 is the distribution if the likelihood ratio is less than 𝑑

For our purposes here, we want to compute an expected loss from using this rule, where we borrow
loss parameters 𝐿̄1 and 𝐿̄2 from A Bayesian Formulation of Friedman and Wald’s Problem.

Let null and alternative hypotheses be

• null: 𝐻0: 𝑓 = 𝑓0,

• alternative 𝐻1: 𝑓 = 𝑓1.

Given sample size 𝑡 and cutoff 𝑑, under the model described above, the mathematical expectation of total loss is

̄𝑉𝑓𝑟𝑒 (𝑡, 𝑑) = 𝑐𝑡 + 𝜋∗𝑃𝐹𝐴 × 𝐿̄1 + (1 − 𝜋∗) (1 − 𝑃𝐷) × 𝐿̄0 (31.1)

where 𝑃𝐹𝐴 = Pr {𝐿 (𝑧𝑡) < 𝑑 ∣ 𝑞 = 𝑓0}
𝑃𝐷 = Pr {𝐿 (𝑧𝑡) < 𝑑 ∣ 𝑞 = 𝑓1}

Here

• 𝑃𝐹𝐴 denotes the probability of a false alarm, i.e., rejecting 𝐻0 when it is true

• 𝑃𝐷 denotes the probability of a detection error, i.e., not rejecting 𝐻0 when 𝐻1 is true

For a given sample size 𝑡, the pairs (𝑃𝐹𝐴, 𝑃𝐷) lie on a receiver operating characteristic curve.
• by choosing 𝑑, we select a particular pair (𝑃𝐹𝐴, 𝑃𝐷) along the curve for a given 𝑡

To see some receiver operating characteristic curves, please see this lecture Likelihood Ratio Processes.

To solve for ̄𝑉𝑓𝑟𝑒 (𝑡, 𝑑) numerically, we first simulate sequences of 𝑧 when either 𝑓0 or 𝑓1 generates data.

Let’s plot empirical distributions, i.e., histograms, associated with 𝑓0 and 𝑓1.

N = 10000
T = 100

z0_arr = np.random.beta(wf.a0, wf.b0, (N, T))
z1_arr = np.random.beta(wf.a1, wf.b1, (N, T))

plt.hist(z0_arr.flatten(), bins=50, alpha=0.4, label='f0')
plt.hist(z1_arr.flatten(), bins=50, alpha=0.4, label='f1')
plt.legend()
plt.show()
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We can compute sequences of likelihood ratios using simulated samples.

l = lambda z: wf.f0(z) / wf.f1(z)

l0_arr = l(z0_arr)
l1_arr = l(z1_arr)

L0_arr = np.cumprod(l0_arr, 1)
L1_arr = np.cumprod(l1_arr, 1)

With an empirical distribution of likelihood ratios in hand, we can draw receiver operating characteristic curves by
enumerating (𝑃𝐹𝐴, 𝑃𝐷) pairs given each sample size 𝑡.
PFA = np.arange(0, 100, 1)

for t in range(1, 15, 4):
percentile = np.percentile(L0_arr[:, t], PFA)
PD = [np.sum(L1_arr[:, t] < p) / N for p in percentile]

plt.plot(PFA / 100, PD, label=f"t={t}")

plt.scatter(0, 1, label="perfect detection")
plt.plot([0, 1], [0, 1], color='k', ls='--', label="random detection")

plt.arrow(0.5, 0.5, -0.15, 0.15, head_width=0.03)
plt.text(0.35, 0.7, "better")
plt.xlabel("Probability of false alarm")
plt.ylabel("Probability of detection")
plt.legend()
plt.title("Receiver Operating Characteristic Curve")

(continues on next page)
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(continued from previous page)

plt.show()

We can minimize the expected total loss presented in equation (31.1) by choosing (𝑡, 𝑑).
Doing that delivers an expected loss

̄𝑉𝑓𝑟𝑒 = min
𝑡,𝑑

̄𝑉𝑓𝑟𝑒 (𝑡, 𝑑) .

We first consider the case in which 𝜋∗ = Pr {nature selects 𝑓0} = 0.5.
We can solve the minimization problem in two steps.

First, we fix 𝑡 and find the optimal cutoff 𝑑 and consequently the minimal ̄𝑉𝑓𝑟𝑒 (𝑡).
Here is Python code that does that and then plots a useful graph.

@jit
def V_fre_d_t(d, t, L0_arr, L1_arr, π_star, wf):

N = L0_arr.shape[0]

PFA = np.sum(L0_arr[:, t-1] < d) / N
PD = np.sum(L1_arr[:, t-1] < d) / N

V = π_star * PFA * wf.L1 + (1 - π_star) * (1 - PD) * wf.L0

return V
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def V_fre_t(t, L0_arr, L1_arr, π_star, wf):

res = minimize(V_fre_d_t, 1, args=(t, L0_arr, L1_arr, π_star, wf), method='Nelder-
↪Mead')

V = res.fun
d = res.x

PFA = np.sum(L0_arr[:, t-1] < d) / N
PD = np.sum(L1_arr[:, t-1] < d) / N

return V, PFA, PD

def compute_V_fre(L0_arr, L1_arr, π_star, wf):

T = L0_arr.shape[1]

V_fre_arr = np.empty(T)
PFA_arr = np.empty(T)
PD_arr = np.empty(T)

for t in range(1, T+1):
V, PFA, PD = V_fre_t(t, L0_arr, L1_arr, π_star, wf)
V_fre_arr[t-1] = wf.c * t + V
PFA_arr[t-1] = PFA
PD_arr[t-1] = PD

return V_fre_arr, PFA_arr, PD_arr

π_star = 0.5
V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, π_star, wf)

plt.plot(range(T), V_fre_arr, label=r'$\min_{d} \overline{V}_{fre}(t,d)$')
plt.xlabel('t')
plt.title(r'$\pi^*=0.5$')
plt.legend()
plt.show()
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t_optimal = np.argmin(V_fre_arr) + 1

The above graph illustrates how minimizing over 𝑡 tells the frequentist to draw 𝑡optimal observations and then decide.
Let’s now change the value of 𝜋∗ and watch how the decision rule changes.

n_π = 20
π_star_arr = np.linspace(0.1, 0.9, n_π)

V_fre_bar_arr = np.empty(n_π)
t_optimal_arr = np.empty(n_π)
PFA_optimal_arr = np.empty(n_π)
PD_optimal_arr = np.empty(n_π)

for i, π_star in enumerate(π_star_arr):
V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, π_star, wf)
t_idx = np.argmin(V_fre_arr)

V_fre_bar_arr[i] = V_fre_arr[t_idx]
t_optimal_arr[i] = t_idx + 1
PFA_optimal_arr[i] = PFA_arr[t_idx]
PD_optimal_arr[i] = PD_arr[t_idx]

plt.plot(π_star_arr, V_fre_bar_arr)
plt.xlabel(r'$\pi^*$')
plt.title(r'$\overline{V}_{fre}$')

(continues on next page)
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(continued from previous page)

plt.show()

The following shows how optimal sample size 𝑡 and targeted (𝑃𝐹𝐴, 𝑃𝐷) change as 𝜋∗ varies.

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

axs[0].plot(π_star_arr, t_optimal_arr)
axs[0].set_xlabel(r'$\pi^*$')
axs[0].set_title(r'optimal sample size given $\pi^*$')

axs[1].plot(π_star_arr, PFA_optimal_arr, label=r'$PFA^*(\pi^*)$')
axs[1].plot(π_star_arr, PD_optimal_arr, label=r'$PD^*(\pi^*)$')
axs[1].set_xlabel(r'$\pi^*$')
axs[1].legend()
axs[1].set_title(r'optimal PFA and PD given $\pi^*$')

plt.show()
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31.4 Bayesian Decision Rule

In A Problem that Stumped Milton Friedman, we learned how Abraham Wald confirmed the Navy Captain’s hunch that
there is a better decision rule.

In A Bayesian Formulation of Friedman and Wald’s Problem we presented a Bayesian procedure that makes decisions by
comparing a Bayesian posterior probability 𝜋 with cutoff probabilities called 𝐴 and 𝐵.

To proceed, we borrow some Python code from the quantecon lecture A Bayesian Formulation of Friedman and Wald’s
Problem that computes optimal values of 𝐴 and 𝐵.

@jit(parallel=True)
def Q(h, wf):

c, π_grid = wf.c, wf.π_grid
L0, L1 = wf.L0, wf.L1
z0, z1 = wf.z0, wf.z1
mc_size = wf.mc_size

κ = wf.κ

h_new = np.empty_like(π_grid)
h_func = lambda p: np.interp(p, π_grid, h)

for i in prange(len(π_grid)):
π = π_grid[i]

# Find the expected value of J by integrating over z
integral_f0, integral_f1 = 0, 0
for m in range(mc_size):

π_0 = κ(z0[m], π) # Draw z from f0 and update π
integral_f0 += min((1 - π_0) * L0, π_0 * L1, h_func(π_0))

π_1 = κ(z1[m], π) # Draw z from f1 and update π
integral_f1 += min((1 - π_1) * L0, π_1 * L1, h_func(π_1))

integral = (π * integral_f0 + (1 - π) * integral_f1) / mc_size

(continues on next page)
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(continued from previous page)

h_new[i] = c + integral

return h_new

@jit
def solve_model(wf, tol=1e-4, max_iter=1000):

"""
Compute the continuation value function

* wf is an instance of WaldFriedman
"""

# Set up loop
h = np.zeros(len(wf.π_grid))
i = 0
error = tol + 1

while i < max_iter and error > tol:
h_new = Q(h, wf)
error = np.max(np.abs(h - h_new))
i += 1
h = h_new

if error > tol:
print("Failed to converge!")

return h_new

h_star = solve_model(wf)

@jit
def find_cutoff_rule(wf, h):

"""
This function takes a continuation value function and returns the
corresponding cutoffs of where you transition between continuing and
choosing a specific model
"""

π_grid = wf.π_grid
L0, L1 = wf.L0, wf.L1

# Evaluate cost at all points on grid for choosing a model
payoff_f0 = (1 - π_grid) * L0
payoff_f1 = π_grid * L1

# The cutoff points can be found by differencing these costs with
# The Bellman equation (J is always less than or equal to p_c_i)
B = π_grid[np.searchsorted(

payoff_f1 - np.minimum(h, payoff_f0),
1e-10)

- 1]
A = π_grid[np.searchsorted(

np.minimum(h, payoff_f1) - payoff_f0,
1e-10)

- 1]
(continues on next page)
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return (B, A)

B, A = find_cutoff_rule(wf, h_star)
cost_L0 = (1 - wf.π_grid) * wf.L0
cost_L1 = wf.π_grid * wf.L1

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(wf.π_grid, h_star, label='continuation value')
ax.plot(wf.π_grid, cost_L1, label='choose f1')
ax.plot(wf.π_grid, cost_L0, label='choose f0')
ax.plot(wf.π_grid,

np.amin(np.column_stack([h_star, cost_L0, cost_L1]),axis=1),
lw=15, alpha=0.1, color='b', label='minimum cost')

ax.annotate(r"$B$", xy=(B + 0.01, 0.5), fontsize=14)
ax.annotate(r"$A$", xy=(A + 0.01, 0.5), fontsize=14)

plt.vlines(B, 0, B * wf.L0, linestyle="--")
plt.vlines(A, 0, (1 - A) * wf.L1, linestyle="--")

ax.set(xlim=(0, 1), ylim=(0, 0.5 * max(wf.L0, wf.L1)), ylabel="cost",
xlabel=r"$\pi$", title="Value function")

plt.legend(borderpad=1.1)
plt.show()

The above figure portrays the value function plotted against the decision maker’s Bayesian posterior.

It also shows the cutoff probabilities 𝐴 and 𝐵.
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The Bayesian decision rule is:

• accept 𝐻0 if 𝜋 ≥ 𝐴
• accept 𝐻1 if 𝜋 ≤ 𝐵
• delay deciding and draw another 𝑧 if 𝐵 ≤ 𝜋 ≤ 𝐴

We can calculate two “objective” loss functions under this situation conditioning on knowing for sure that nature has
selected 𝑓0, in the first case, or 𝑓1, in the second case.

1. under 𝑓0,

𝑉 0 (𝜋) =
⎧{
⎨{⎩

0 if𝐴 ≤ 𝜋,
𝑐 + 𝐸𝑉 0 (𝜋′) if 𝐵 ≤ 𝜋 < 𝐴,
𝐿̄1 if 𝜋 < 𝐵.

2. under 𝑓1

𝑉 1 (𝜋) =
⎧{
⎨{⎩

𝐿̄0 if 𝐴 ≤ 𝜋,
𝑐 + 𝐸𝑉 1 (𝜋′) if 𝐵 ≤ 𝜋 < 𝐴,
0 if 𝜋 < 𝐵.

where 𝜋′ = 𝜋𝑓0(𝑧′)
𝜋𝑓0(𝑧′)+(1−𝜋)𝑓1(𝑧′) .

Given a prior probability 𝜋0, the expected loss for the Bayesian is

̄𝑉𝐵𝑎𝑦𝑒𝑠 (𝜋0) = 𝜋∗𝑉 0 (𝜋0) + (1 − 𝜋∗) 𝑉 1 (𝜋0) .

Below we write some Python code that computes 𝑉 0 (𝜋) and 𝑉 1 (𝜋) numerically.
@jit(parallel=True)
def V_q(wf, flag):

V = np.zeros(wf.π_grid_size)
if flag == 0:

z_arr = wf.z0
V[wf.π_grid < B] = wf.L1

else:
z_arr = wf.z1
V[wf.π_grid >= A] = wf.L0

V_old = np.empty_like(V)

while True:
V_old[:] = V[:]
V[(B <= wf.π_grid) & (wf.π_grid < A)] = 0

for i in prange(len(wf.π_grid)):
π = wf.π_grid[i]

if π >= A or π < B:
continue

for j in prange(len(z_arr)):
π_next = wf.κ(z_arr[j], π)
V[i] += wf.c + np.interp(π_next, wf.π_grid, V_old)

(continues on next page)
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(continued from previous page)

V[i] /= wf.mc_size

if np.abs(V - V_old).max() < 1e-5:
break

return V

V0 = V_q(wf, 0)
V1 = V_q(wf, 1)

plt.plot(wf.π_grid, V0, label='$V^0$')
plt.plot(wf.π_grid, V1, label='$V^1$')
plt.vlines(B, 0, wf.L0, linestyle='--')
plt.text(B+0.01, wf.L0/2, 'B')
plt.vlines(A, 0, wf.L0, linestyle='--')
plt.text(A+0.01, wf.L0/2, 'A')
plt.xlabel(r'$\pi$')
plt.title(r'Objective value function $V(\pi)$')
plt.legend()
plt.show()

Given an assumed value for 𝜋∗ = Pr {nature selects 𝑓0}, we can then compute ̄𝑉𝐵𝑎𝑦𝑒𝑠 (𝜋0).
We can then determine an initial Bayesian prior 𝜋∗

0 that minimizes this objective concept of expected loss.

The figure below plots four cases corresponding to 𝜋∗ = 0.25, 0.3, 0.5, 0.7.
We observe that in each case 𝜋∗

0 equals 𝜋∗.
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def compute_V_baye_bar(π_star, V0, V1, wf):

V_baye = π_star * V0 + (1 - π_star) * V1
π_idx = np.argmin(V_baye)
π_optimal = wf.π_grid[π_idx]
V_baye_bar = V_baye[π_idx]

return V_baye, π_optimal, V_baye_bar

π_star_arr = [0.25, 0.3, 0.5, 0.7]

fig, axs = plt.subplots(2, 2, figsize=(15, 10))

for i, π_star in enumerate(π_star_arr):
row_i = i // 2
col_i = i % 2

V_baye, π_optimal, V_baye_bar = compute_V_baye_bar(π_star, V0, V1, wf)

axs[row_i, col_i].plot(wf.π_grid, V_baye)
axs[row_i, col_i].hlines(V_baye_bar, 0, 1, linestyle='--')
axs[row_i, col_i].vlines(π_optimal, V_baye_bar, V_baye.max(), linestyle='--')
axs[row_i, col_i].text(π_optimal+0.05, (V_baye_bar + V_baye.max()) / 2,

r'${\pi_0^*}=$'+f'{π_optimal:0.2f}')
axs[row_i, col_i].set_xlabel(r'$\pi$')
axs[row_i, col_i].set_ylabel(r'$\overline{V}_{baye}(\pi)$')
axs[row_i, col_i].set_title(r'$\pi^*=$' + f'{π_star}')

fig.suptitle(r'$\overline{V}_{baye}(\pi)=\pi^*V^0(\pi) + (1-\pi^*)V^1(\pi)$',␣
↪fontsize=16)

plt.show()
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This pattern of outcomes holds more generally.

Thus, the following Python code generates the associated graph that verifies the equality of 𝜋∗
0 to 𝜋∗ holds for all 𝜋∗.

π_star_arr = np.linspace(0.1, 0.9, n_π)
V_baye_bar_arr = np.empty_like(π_star_arr)
π_optimal_arr = np.empty_like(π_star_arr)

for i, π_star in enumerate(π_star_arr):

V_baye, π_optimal, V_baye_bar = compute_V_baye_bar(π_star, V0, V1, wf)

V_baye_bar_arr[i] = V_baye_bar
π_optimal_arr[i] = π_optimal

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

axs[0].plot(π_star_arr, V_baye_bar_arr)
axs[0].set_xlabel(r'$\pi^*$')
axs[0].set_title(r'$\overline{V}_{baye}$')

axs[1].plot(π_star_arr, π_optimal_arr, label='optimal prior')
axs[1].plot([π_star_arr.min(), π_star_arr.max()],

[π_star_arr.min(), π_star_arr.max()],
c='k', linestyle='--', label='45 degree line')

axs[1].set_xlabel(r'$\pi^*$')
axs[1].set_title(r'optimal prior given $\pi^*$')
axs[1].legend()

(continues on next page)
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(continued from previous page)

plt.show()

31.5 Was the Navy Captain’s Hunch Correct?

We now compare average losses obtained by our frequentist Neyman-Pearson and Bayesian decision rules.

As a starting point, let’s compare average loss functions when 𝜋∗ = 0.5.
π_star = 0.5

# frequentist
V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, π_star, wf)

# bayesian
V_baye = π_star * V0 + (1 - π_star) * V1
V_baye_bar = V_baye.min()

plt.plot(range(T), V_fre_arr, label=r'$\min_{d} \overline{V}_{fre}(t,d)$')
plt.plot([0, T], [V_baye_bar, V_baye_bar], label=r'$\overline{V}_{baye}$')
plt.xlabel('t')
plt.title(r'$\pi^*=0.5$')
plt.legend()
plt.show()
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Evidently, there is no sample size 𝑡 at which the Neyman-Pearson decision rule attains a lower loss function than does the
Bayesian rule.

Furthermore, the following graph indicates that the Bayesian decision rule does better on average for all values of 𝜋∗.

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

axs[0].plot(π_star_arr, V_fre_bar_arr, label=r'$\overline{V}_{fre}$')
axs[0].plot(π_star_arr, V_baye_bar_arr, label=r'$\overline{V}_{baye}$')
axs[0].legend()
axs[0].set_xlabel(r'$\pi^*$')

axs[1].plot(π_star_arr, V_fre_bar_arr - V_baye_bar_arr, label='$diff$')
axs[1].legend()
axs[1].set_xlabel(r'$\pi^*$')

plt.show()
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The right panel of the above graph plots the difference ̄𝑉𝑓𝑟𝑒 − ̄𝑉𝐵𝑎𝑦𝑒𝑠.

It is always positive.

31.6 More Details

We can provide more insights by focusing on the case in which 𝜋∗ = 0.5 = 𝜋0.

π_star = 0.5

Recall that when 𝜋∗ = 0.5, the frequentist Neyman-Pearson decision rule sets a sample size t_optimal ex ante.
For our parameter settings, we can compute its value:

t_optimal

np.int64(8)

For convenience, let’s define t_idx as the Python array index corresponding to t_optimal sample size.

t_idx = t_optimal - 1

31.7 Distribution of Bayesian Decision Rule’s Time to Decide

We use simulations to compute the frequency distribution of the time to decide for the Bayesian decision rule and compare
that time to the frequentist rule’s fixed 𝑡.
The following Python code creates a graph that shows the frequency distribution of Bayesian times to decide of Bayesian
decision maker, conditional on distribution 𝑞 = 𝑓0 or 𝑞 = 𝑓1 generating the data.

The blue and red dotted lines show averages for the Bayesian decision rule, while the black dotted line shows the frequentist
optimal sample size 𝑡.
On average the Bayesian rule decides earlier than the frequentist rule when 𝑞 = 𝑓0 and later when 𝑞 = 𝑓1.
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@jit(parallel=True)
def check_results(L_arr, A, B, flag, π0):

N, T = L_arr.shape

time_arr = np.empty(N)
correctness = np.empty(N)

π_arr = π0 * L_arr / (π0 * L_arr + 1 - π0)

for i in prange(N):
for t in range(T):

if (π_arr[i, t] < B) or (π_arr[i, t] > A):
time_arr[i] = t + 1
correctness[i] = (flag == 0 and π_arr[i, t] > A) or (flag == 1 and π_

↪arr[i, t] < B)
break

return time_arr, correctness

time_arr0, correctness0 = check_results(L0_arr, A, B, 0, π_star)
time_arr1, correctness1 = check_results(L1_arr, A, B, 1, π_star)

# unconditional distribution
time_arr_u = np.concatenate((time_arr0, time_arr1))
correctness_u = np.concatenate((correctness0, correctness1))

n1 = plt.hist(time_arr0, bins=range(1, 30), alpha=0.4, label='f0 generates')[0]
n2 = plt.hist(time_arr1, bins=range(1, 30), alpha=0.4, label='f1 generates')[0]
plt.vlines(t_optimal, 0, max(n1.max(), n2.max()), linestyle='--', label='frequentist')
plt.vlines(np.mean(time_arr0), 0, max(n1.max(), n2.max()),

linestyle='--', color='b', label='E(t) under f0')
plt.vlines(np.mean(time_arr1), 0, max(n1.max(), n2.max()),

linestyle='--', color='r', label='E(t) under f1')
plt.legend();

plt.xlabel('t')
plt.ylabel('n')
plt.title('Conditional frequency distribution of times')

plt.show()

31.7. Distribution of Bayesian Decision Rule’s Time to Decide 603



Intermediate Quantitative Economics with Python

Later we’ll figure out how these distributions ultimately affect objective expected values under the Neyman-Pearson and
Bayesian decision rules.

To begin, let’s look at simulations of the Bayesian’s beliefs over time.

We can compute updated beliefs at any time 𝑡 using the one-to-one mapping from 𝐿𝑡 to 𝜋𝑡 given 𝜋0 described in this
lecture Likelihood Ratio Processes.

π0_arr = π_star * L0_arr / (π_star * L0_arr + 1 - π_star)
π1_arr = π_star * L1_arr / (π_star * L1_arr + 1 - π_star)

fig, axs = plt.subplots(1, 2, figsize=(14, 4))

axs[0].plot(np.arange(1, π0_arr.shape[1]+1), np.mean(π0_arr, 0), label='f0 generates')
axs[0].plot(np.arange(1, π1_arr.shape[1]+1), 1 - np.mean(π1_arr, 0), label='f1␣

↪generates')
axs[0].set_xlabel('t')
axs[0].set_ylabel(r'$E(\pi_t)$ or ($1 - E(\pi_t)$)')
axs[0].set_title('Expectation of beliefs after drawing t observations')
axs[0].legend()

axs[1].plot(np.arange(1, π0_arr.shape[1]+1), np.var(π0_arr, 0), label='f0 generates')
axs[1].plot(np.arange(1, π1_arr.shape[1]+1), np.var(π1_arr, 0), label='f1 generates')
axs[1].set_xlabel('t')
axs[1].set_ylabel(r'var($\pi_t$)')
axs[1].set_title('Variance of beliefs after drawing t observations')
axs[1].legend()

(continues on next page)
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(continued from previous page)

plt.show()

The above figures compare averages and variances of updated Bayesian posteriors after 𝑡 draws.
The left graph compares 𝐸 (𝜋𝑡) under 𝑓0 to 1 − 𝐸 (𝜋𝑡) under 𝑓1: they lie on top of each other.

However, as the right hand side graph shows, there is significant difference in variances when 𝑡 is small: the variance is
lower under 𝑓1.

The difference in variances is the reason that the Bayesian decision maker waits longer to decide when 𝑓1 generates the
data.

The code below plots outcomes of constructing an unconditional distribution by simply pooling the simulated data across
the two possible distributions 𝑓0 and 𝑓1.

The pooled distribution describes a sense in which on average the Bayesian decides earlier, an outcome that seems at least
partly to confirm the Navy Captain’s hunch.

n = plt.hist(time_arr_u, bins=range(1, 30), alpha=0.4, label='bayesian')[0]
plt.vlines(np.mean(time_arr_u), 0, n.max(), linestyle='--',

color='b', label='bayesian E(t)')
plt.vlines(t_optimal, 0, n.max(), linestyle='--', label='frequentist')
plt.legend()

plt.xlabel('t')
plt.ylabel('n')
plt.title('Unconditional distribution of times')

plt.show()
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31.8 Probability of Making Correct Decision

Now we use simulations to compute the fractions of samples in which the Bayesian and the frequentist Neyman-Pearson
decision rules decide correctly.

For the frequentist Neyman-Pearson rule, the probability ofmaking the correct decision under 𝑓1 is the optimal probability
of detection given 𝑡 that we defined earlier, and similarly it equals 1 minus the optimal probability of a false alarm under
𝑓0.

Below we plot these two probabilities for the frequentist rule, along with the conditional probabilities that the Bayesian
rule decides before 𝑡 and that the decision is correct.
# optimal PFA and PD of frequentist with optimal sample size
V, PFA, PD = V_fre_t(t_optimal, L0_arr, L1_arr, π_star, wf)

plt.plot([1, 20], [PD, PD], linestyle='--', label='PD: fre. chooses f1 correctly')
plt.plot([1, 20], [1-PFA, 1-PFA], linestyle='--', label='1-PFA: fre. chooses f0␣

↪correctly')
plt.vlines(t_optimal, 0, 1, linestyle='--', label='frequentist optimal sample size')

N = time_arr0.size
T_arr = np.arange(1, 21)
plt.plot(T_arr, [np.sum(correctness0[time_arr0 <= t] == 1) / N for t in T_arr],

label='q=f0 and baye. choose f0')
plt.plot(T_arr, [np.sum(correctness1[time_arr1 <= t] == 1) / N for t in T_arr],

(continues on next page)
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label='q=f1 and baye. choose f1')
plt.legend(loc=4)

plt.xlabel('t')
plt.ylabel('Probability')
plt.title('Cond. probability of making correct decisions before t')

plt.show()

By averaging using 𝜋∗, we also plot the unconditional distribution.

plt.plot([1, 20], [(PD + 1 - PFA) / 2, (PD + 1 - PFA) / 2],
linestyle='--', label='fre. makes correct decision')

plt.vlines(t_optimal, 0, 1, linestyle='--', label='frequentist optimal sample size')

N = time_arr_u.size
plt.plot(T_arr, [np.sum(correctness_u[time_arr_u <= t] == 1) / N for t in T_arr],

label="bayesian makes correct decision")
plt.legend()

plt.xlabel('t')
plt.ylabel('Probability')
plt.title('Uncond. probability of making correct decisions before t')

plt.show()
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31.9 Distribution of Likelihood Ratios at Neyman-Pearson’s 𝑡

Next we use simulations to construct distributions of likelihood ratios after 𝑡 draws.
To serve as useful reference points, we also show likelihood ratios that correspond to the Bayesian cutoffs 𝐴 and 𝐵.

In order to exhibit the distribution more clearly, we report logarithms of likelihood ratios.

The graphs below reports two distributions, one conditional on 𝑓0 generating the data, the other conditional on 𝑓1 gener-
ating the data.

LA = (1 - π_star) * A / (π_star - π_star * A)
LB = (1 - π_star) * B / (π_star - π_star * B)

L_min = min(L0_arr[:, t_idx].min(), L1_arr[:, t_idx].min())
L_max = max(L0_arr[:, t_idx].max(), L1_arr[:, t_idx].max())
bin_range = np.linspace(np.log(L_min), np.log(L_max), 50)
n0 = plt.hist(np.log(L0_arr[:, t_idx]), bins=bin_range, alpha=0.4, label='f0 generates

↪')[0]
n1 = plt.hist(np.log(L1_arr[:, t_idx]), bins=bin_range, alpha=0.4, label='f1 generates

↪')[0]

plt.vlines(np.log(LB), 0, max(n0.max(), n1.max()), linestyle='--', color='r', label=
↪'log($L_B$)')

plt.vlines(np.log(LA), 0, max(n0.max(), n1.max()), linestyle='--', color='b', label=

(continues on next page)
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(continued from previous page)

↪'log($L_A$)')
plt.legend()

plt.xlabel('log(L)')
plt.ylabel('n')
plt.title('Cond. distribution of log likelihood ratio at frequentist t')

plt.show()

The next graph plots the unconditional distribution of Bayesian times to decide, constructed as earlier by pooling the two
conditional distributions.

plt.hist(np.log(np.concatenate([L0_arr[:, t_idx], L1_arr[:, t_idx]])),
bins=50, alpha=0.4, label='unconditional dist. of log(L)')

plt.vlines(np.log(LB), 0, max(n0.max(), n1.max()), linestyle='--', color='r', label=
↪'log($L_B$)')

plt.vlines(np.log(LA), 0, max(n0.max(), n1.max()), linestyle='--', color='b', label=
↪'log($L_A$)')

plt.legend()

plt.xlabel('log(L)')
plt.ylabel('n')
plt.title('Uncond. distribution of log likelihood ratio at frequentist t')

plt.show()
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CHAPTER

THIRTYTWO

OPTIMAL TRANSPORT

32.1 Overview

The transportation or optimal transport problem is interesting both because of its many applications and because of
its important role in the history of economic theory.

In this lecture, we describe the problem, tell how linear programming is a key tool for solving it, and then provide some
examples.

We will provide other applications in followup lectures.

The optimal transport problem was studied in early work about linear programming, as summarized for example by
[Dorfman et al., 1958]. A modern reference about applications in economics is [Galichon, 2016].

Below, we show how to solve the optimal transport problem using several implementations of linear programming, in-
cluding, in order,

1. the linprog solver from SciPy,

2. the linprog_simplex solver from QuantEcon and

3. the simplex-based solvers included in the Python Optimal Transport package.

!pip install --upgrade quantecon
!pip install --upgrade POT

Let’s start with some imports.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linprog
from quantecon.optimize.linprog_simplex import linprog_simplex
import ot
from scipy.stats import betabinom
import networkx as nx
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32.2 The Optimal Transport Problem

Suppose that 𝑚 factories produce goods that must be sent to 𝑛 locations.

Let

• 𝑥𝑖𝑗 denote the quantity shipped from factory 𝑖 to location 𝑗
• 𝑐𝑖𝑗 denote the cost of shipping one unit from factory 𝑖 to location 𝑗
• 𝑝𝑖 denote the capacity of factory 𝑖 and 𝑞𝑗 denote the amount required at location 𝑗.
• 𝑖 = 1, 2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛.

A planner wants to minimize total transportation costs subject to the following constraints:

• The amount shipped from each factory must equal its capacity.

• The amount shipped to each location must equal the quantity required there.

The figure below shows one visualization of this idea, when factories and target locations are distributed in the plane.

The size of the vertices in the figure are proportional to

• capacity, for the factories, and

• demand (amount required) for the target locations.

The arrows show one possible transport plan, which respects the constraints stated above.

The planner’s problem can be expressed as the following constrained minimization problem:

min
𝑥𝑖𝑗

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

subject to
𝑛

∑
𝑗=1

𝑥𝑖𝑗 = 𝑝𝑖, 𝑖 = 1, 2, … , 𝑚

𝑚
∑
𝑖=1

𝑥𝑖𝑗 = 𝑞𝑗, 𝑗 = 1, 2, … , 𝑛

𝑥𝑖𝑗 ≥ 0

(32.1)

This is an optimal transport problem with

• 𝑚𝑛 decision variables, namely, the entries 𝑥𝑖𝑗 and

• 𝑚 + 𝑛 constraints.
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Summing the 𝑞𝑗’s across all 𝑗’s and the 𝑝𝑖’s across all 𝑖’s indicates that the total capacity of all the factories equals total
requirements at all locations:

𝑛
∑
𝑗=1

𝑞𝑗 =
𝑛

∑
𝑗=1

𝑚
∑
𝑖=1

𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑝𝑖 (32.2)

The presence of the restrictions in (32.2) will be the source of one redundancy in the complete set of restrictions that we
describe below.

More about this later.

32.3 The Linear Programming Approach

In this section we discuss using using standard linear programming solvers to tackle the optimal transport problem.

32.3.1 Vectorizing a Matrix of Decision Variables

A matrix of decision variables 𝑥𝑖𝑗 appears in problem (32.1).

The SciPy function linprog expects to see a vector of decision variables.

This situation impels us to rewrite our problem in terms of a vector of decision variables.

Let

• 𝑋, 𝐶 be 𝑚 × 𝑛 matrices with entries 𝑥𝑖𝑗, 𝑐𝑖𝑗,

• 𝑝 be 𝑚-dimensional vector with entries 𝑝𝑖,

• 𝑞 be 𝑛-dimensional vector with entries 𝑞𝑗.

With 1𝑛 denoting the 𝑛-dimensional column vector (1, 1, … , 1)′, our problem can now be expressed compactly as:

min
𝑋

tr(𝐶′𝑋)
subject to 𝑋 1𝑛 = 𝑝

𝑋′ 1𝑚 = 𝑞
𝑋 ≥ 0

We can convert the matrix 𝑋 into a vector by stacking all of its columns into a column vector.

Doing this is called vectorization, an operation that we denote vec(𝑋).
Similarly, we convert the matrix 𝐶 into an 𝑚𝑛-dimensional vector vec(𝐶).
The objective function can be expressed as the inner product between vec(𝐶) and vec(𝑋):

vec(𝐶)′ ⋅ vec(𝑋).

To express the constraints in terms of vec(𝑋), we use a Kronecker product denoted by ⊗ and defined as follows.

Suppose 𝐴 is an 𝑚 × 𝑠 matrix with entries (𝑎𝑖𝑗) and that 𝐵 is an 𝑛 × 𝑡 matrix.
The Kronecker product of 𝐴 and 𝐵 is defined, in block matrix form, by

𝐴 ⊗ 𝐵 =
⎡
⎢⎢
⎣

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑠𝐵
𝑎21𝐵 𝑎22𝐵 … 𝑎2𝑠𝐵

⋮
𝑎𝑚1𝐵 𝑎𝑚2𝐵 … 𝑎𝑚𝑠𝐵

⎤
⎥⎥
⎦

.
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𝐴 ⊗ 𝐵 is an 𝑚𝑛 × 𝑠𝑡 matrix.
It has the property that for any 𝑚 × 𝑛 matrix 𝑋

vec(𝐴′𝑋𝐵) = (𝐵′ ⊗ 𝐴′) vec(𝑋). (32.3)

We can now express our constraints in terms of vec(𝑋).
Let 𝐴 = I′𝑚, 𝐵 = 1𝑛.

By equation (32.3)

𝑋 1𝑛 = vec(𝑋 1𝑛) = vec(I𝑚𝑋 1𝑛) = (1′
𝑛 ⊗ I𝑚) vec(𝑋).

where I𝑚 denotes the 𝑚 × 𝑚 identity matrix.

Constraint 𝑋 1𝑛 = 𝑝 can now be written as:

(1′
𝑛 ⊗ I𝑚) vec(𝑋) = 𝑝.

Similarly, the constraint 𝑋′ 1𝑚 = 𝑞 can be rewriten as:

(I𝑛 ⊗ 1′
𝑚) vec(𝑋) = 𝑞.

With 𝑧 ∶= vec(𝑋), our problem can now be expressed in terms of an 𝑚𝑛-dimensional vector of decision variables:

min
𝑧

vec(𝐶)′𝑧
subject to 𝐴𝑧 = 𝑏

𝑧 ≥ 0
(32.4)

where

𝐴 = [1
′
𝑛 ⊗ I𝑚
I𝑛 ⊗ 1′

𝑚
] and 𝑏 = [𝑝

𝑞]

32.3.2 An Application

We now provide an example that takes the form (32.4) that we’ll solve by deploying the function linprog.

The table below provides numbers for the requirements vector 𝑞, the capacity vector 𝑝, and entries 𝑐𝑖𝑗 of the cost-of-
shipping matrix 𝐶.

The numbers in the above table tell us to set 𝑚 = 3, 𝑛 = 5, and construct the following objects:

𝑝 = ⎡⎢
⎣

50
100
150

⎤⎥
⎦

, 𝑞 =
⎡
⎢
⎢
⎢
⎣

25
115
60
30
70

⎤
⎥
⎥
⎥
⎦

and 𝐶 = ⎡⎢
⎣

10 15 20 20 40
20 40 15 30 30
30 35 40 55 25

⎤⎥
⎦

.

Let’s write Python code that sets up the problem and solves it.

# Define parameters
m = 3
n = 5

p = np.array([50.0, 100.0, 150.0])

(continues on next page)
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q = np.array([25.0, 115.0, 60.0, 30.0, 70.0])

C = np.array([[10.0, 15.0, 20.0, 20.0, 40.0],
[20.0, 40.0, 15.0, 30.0, 30.0],
[30.0, 35.0, 40.0, 55.0, 25.0]])

# Vectorize matrix C
C_vec = C.reshape((m*n, 1), order='F')

# Construct matrix A by Kronecker product
A1 = np.kron(np.ones((1, n)), np.identity(m))
A2 = np.kron(np.identity(n), np.ones((1, m)))
A = np.vstack([A1, A2])

# Construct vector b
b = np.hstack([p, q])

# Solve the primal problem
res = linprog(C_vec, A_eq=A, b_eq=b)

# Print results
print("message:", res.message)
print("nit:", res.nit)
print("fun:", res.fun)
print("z:", res.x)
print("X:", res.x.reshape((m,n), order='F'))

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
nit: 8
fun: 7225.0
z: [ 0. 10. 15. 50. 0. 65. 0. 60. 0. 0. 30. 0. 0. 0. 70.]
X: [[ 0. 50. 0. 0. 0.]
[10. 0. 60. 30. 0.]
[15. 65. 0. 0. 70.]]

Notice how, in the line C_vec = C.reshape((m*n, 1), order='F'), we are careful to vectorize using the
flag order='F'.

This is consistent with converting 𝐶 into a vector by stacking all of its columns into a column vector.

Here 'F' stands for “Fortran”, and we are using Fortran style column-major order.

(For an alternative approach, using Python’s default row-major ordering, see this lecture by Alfred Galichon.)

Interpreting the solver behavior:

Looking at matrix 𝐴, we can see that it is rank deficient.
np.linalg.matrix_rank(A) < min(A.shape)

np.True_

This indicates that the linear program has been set up to include one or more redundant constraints.

Here, the source of the redundancy is the structure of restrictions (32.2).

Let’s explore this further by printing out 𝐴 and staring at it.
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A

array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.],
[0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0.],
[0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1.],
[1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1.]])

The singularity of𝐴 reflects that the first three constraints and the last five constraints both require that “total requirements
equal total capacities” expressed in (32.2).

One equality constraint here is redundant.

Fortunately, SciPy’s linprog function handles the redundant constraints automatically without explicitly warning about
rank deficiency.

But we can drop one of the equality constraints, and use only 7 of them.

After doing this, we attain the same minimized cost.

However, we find a different transportation plan.

Though it is a different plan, it attains the same cost!

linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]
marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00

0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00]
marginals: [ 5.000e+00 1.500e+01 2.500e+01 5.000e+00

1.000e+01 -0.000e+00 1.500e+01]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

%time linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1])

CPU times: user 2.35 ms, sys: 0 ns, total: 2.35 ms
Wall time: 2.09 ms
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message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]
marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00

0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00]
marginals: [ 5.000e+00 1.500e+01 2.500e+01 5.000e+00

1.000e+01 -0.000e+00 1.500e+01]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

%time linprog(C_vec, A_eq=A, b_eq=b)

CPU times: user 2.38 ms, sys: 51 μs, total: 2.43 ms
Wall time: 2.23 ms

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]
marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00

0.000e+00]
eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.000e+00 0.000e+00 0.000e+00 0.000e+00]
marginals: [ 1.000e+01 2.000e+01 3.000e+01 -0.000e+00

5.000e+00 -5.000e+00 1.000e+01 -5.000e+00]
ineqlin: residual: []

marginals: []
mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Evidently, it is slightly quicker to work with the system that removed a redundant constraint.

Let’s drill down and do some more calculations to help us understand whether or not our finding two different optimal
transport plans reflects our having dropped a redundant equality constraint.
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Hint

It will turn out that dropping a redundant equality isn’t really what mattered.

To verify our hint, we shall simply use all of the original equality constraints (including a redundant one), but we’ll just
shuffle the order of the constraints.

arr = np.arange(m+n)

sol_found = []
cost = []

# simulate 1000 times
for i in range(1000):

np.random.shuffle(arr)
res_shuffle = linprog(C_vec, A_eq=A[arr], b_eq=b[arr])

# if find a new solution
sol = tuple(res_shuffle.x)
if sol not in sol_found:

sol_found.append(sol)
cost.append(res_shuffle.fun)

for i in range(len(sol_found)):
print(f"transportation plan {i}: ", sol_found[i])
print(f" minimized cost {i}: ", cost[i])

transportation plan 0: (np.float64(0.0), np.float64(10.0), np.float64(15.0), np.
↪float64(50.0), np.float64(0.0), np.float64(65.0), np.float64(0.0), np.float64(60.
↪0), np.float64(0.0), np.float64(0.0), np.float64(30.0), np.float64(0.0), np.
↪float64(0.0), np.float64(0.0), np.float64(70.0))

minimized cost 0: 7225.0

Ah hah! As you can see, putting constraints in different orders in this case uncovers two optimal transportation plans that
achieve the same minimized cost.

These are the same two plans computed earlier.

Next, we show that leaving out the first constraint “accidentally” leads to the initial plan that we computed.

linprog(C_vec, A_eq=A[1:], b_eq=b[1:])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
success: True
status: 0

fun: 7225.0
x: [ 0.000e+00 1.000e+01 ... 0.000e+00 7.000e+01]

nit: 8
lower: residual: [ 0.000e+00 1.000e+01 ... 0.000e+00

7.000e+01]
marginals: [ 0.000e+00 0.000e+00 ... 1.500e+01

0.000e+00]
upper: residual: [ inf inf ... inf

inf]

(continues on next page)

620 Chapter 32. Optimal Transport



Intermediate Quantitative Economics with Python

(continued from previous page)

marginals: [ 0.000e+00 0.000e+00 ... 0.000e+00
0.000e+00]

eqlin: residual: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00]

marginals: [ 1.000e+01 2.000e+01 1.000e+01 1.500e+01
5.000e+00 2.000e+01 5.000e+00]

ineqlin: residual: []
marginals: []

mip_node_count: 0
mip_dual_bound: 0.0

mip_gap: 0.0

Let’s compare this transport plan with

res.x

array([ 0., 10., 15., 50., 0., 65., 0., 60., 0., 0., 30., 0., 0.,
0., 70.])

Here the matrix 𝑋 contains entries 𝑥𝑖𝑗 that tell amounts shipped from factor 𝑖 = 1, 2, 3 to location 𝑗 = 1, 2, … , 5.
The vector 𝑧 evidently equals vec(𝑋).
The minimized cost from the optimal transport plan is given by the 𝑓𝑢𝑛 variable.

32.3.3 Using a Just-in-Time Compiler

We can also solve optimal transportation problems using a powerful tool from QuantEcon, namely, quantecon.
optimize.linprog_simplex.

While scipy.optimize.linprog uses the HiGHS solver by default, quantecon.optimize.
linprog_simplex implements the simplex algorithm accelerated by using a just-in-time compiler shipped in
the numba library.

As you will see very soon, by using quantecon.optimize.linprog_simplex the time required to solve an
optimal transportation problem can be reduced significantly.

# construct matrices/vectors for linprog_simplex
c = C.flatten()

# Equality constraints
A_eq = np.zeros((m+n, m*n))
for i in range(m):

for j in range(n):
A_eq[i, i*n+j] = 1
A_eq[m+j, i*n+j] = 1

b_eq = np.hstack([p, q])

Since quantecon.optimize.linprog_simplex does maximization instead of minimization, we need to put a
negative sign before vector c.

res_qe = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)

While the two LP solvers use different algorithms (HiGHS vs. simplex), both should find optimal solutions.

The solutions differs since there are multiple optimal solutions, but the objective values are the same
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np.allclose(-res_qe.fun, res.fun)

True

res_qe.x.reshape((m, n), order='C')

array([[15., 35., 0., 0., 0.],
[10., 0., 60., 30., 0.],
[ 0., 80., 0., 0., 70.]])

res.x.reshape((m, n), order='F')

array([[ 0., 50., 0., 0., 0.],
[10., 0., 60., 30., 0.],
[15., 65., 0., 0., 70.]])

Let’s do a speed comparison between scipy.optimize.linprog and quantecon.optimize.
linprog_simplex.

# scipy.optimize.linprog
%time res = linprog(C_vec, A_eq=A[:-1, :], b_eq=b[:-1])

CPU times: user 2.47 ms, sys: 32 μs, total: 2.5 ms
Wall time: 2.32 ms

# quantecon.optimize.linprog_simplex
%time out = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)

CPU times: user 60 μs, sys: 4 μs, total: 64 μs
Wall time: 67.9 μs

As you can see, the quantecon.optimize.linprog_simplex is much faster.

(Note however, that the SciPy version is probably more stable than the QuantEcon version, having been tested more
extensively over a longer period of time.)

32.4 The Dual Problem

Let 𝑢, 𝑣 denotes vectors of dual decision variables with entries (𝑢𝑖), (𝑣𝑗).
The dual to minimization problem (32.1) is the maximization problem:

max
𝑢𝑖,𝑣𝑗

𝑚
∑
𝑖=1

𝑝𝑖𝑢𝑖 +
𝑛

∑
𝑗=1

𝑞𝑗𝑣𝑗

subject to 𝑢𝑖 + 𝑣𝑗 ≤ 𝑐𝑖𝑗, 𝑖 = 1, 2, … , 𝑚; 𝑗 = 1, 2, … , 𝑛
(32.5)

The dual problem is also a linear programming problem.

It has 𝑚 + 𝑛 dual variables and 𝑚𝑛 constraints.

Vectors 𝑢 and 𝑣 of values are attached to the first and the second sets of primal constraits, respectively.
Thus, 𝑢 is attached to the constraints
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• (1′
𝑛 ⊗ I𝑚) vec(𝑋) = 𝑝

and 𝑣 is attached to constraints
• (I𝑛 ⊗ 1′

𝑚) vec(𝑋) = 𝑞.
Components of the vectors 𝑢 and 𝑣 of per unit values are shadow prices of the quantities appearing on the right sides
of those constraints.

We can write the dual problem as

max
𝑢𝑖,𝑣𝑗

𝑝𝑢 + 𝑞𝑣

subject to 𝐴′ [𝑢
𝑣] = vec(𝐶)

(32.6)

For the same numerical example described above, let’s solve the dual problem.

# Solve the dual problem
res_dual = linprog(-b, A_ub=A.T, b_ub=C_vec,

bounds=[(None, None)]*(m+n))

#Print results
print("message:", res_dual.message)
print("nit:", res_dual.nit)
print("fun:", res_dual.fun)
print("u:", res_dual.x[:m])
print("v:", res_dual.x[-n:])

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
nit: 9
fun: -7225.0
u: [-20. -10. 0.]
v: [30. 35. 25. 40. 25.]

quantecon.optimize.linprog_simplex computes and returns the dual variables alongside the primal solu-
tion.

The dual variables (shadow prices) can be extracted directly from the primal solution:

# The dual variables are returned by linprog_simplex
print("Dual variables from linprog_simplex:")
print("u:", -res_qe.lambd[:m])
print("v:", -res_qe.lambd[m:])

Dual variables from linprog_simplex:
u: [-20. -10. -0.]
v: [30. 35. 25. 40. 25.]

We can verify these match the dual solution from SciPy:

print("Dual variables from SciPy linprog:")
print("u:", res_dual.x[:m])
print("v:", res_dual.x[-n:])

Dual variables from SciPy linprog:
u: [-20. -10. 0.]
v: [30. 35. 25. 40. 25.]
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32.4.1 Interpretation of dual problem

By strong duality (please see this lecture Linear Programming), we know that:

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 =
𝑚

∑
𝑖=1

𝑝𝑖𝑢𝑖 +
𝑛

∑
𝑗=1

𝑞𝑗𝑣𝑗

One unit more capacity in factory 𝑖, i.e. 𝑝𝑖, results in 𝑢𝑖 more transportation costs.

Thus, 𝑢𝑖 describes the cost of shipping one unit from factory 𝑖.
Call this the ship-out cost of one unit shipped from factory 𝑖.
Similarly, 𝑣𝑗 is the cost of shipping one unit to location 𝑗.
Call this the ship-in cost of one unit to location 𝑗.
Strong duality implies that total transprotation costs equals total ship-out costs plus total ship-in costs.

It is reasonable that, for one unit of a product, ship-out cost 𝑢𝑖 plus ship-in cost 𝑣𝑗 should equal transportation cost 𝑐𝑖𝑗.

This equality is assured by complementary slackness conditions that state that whenever 𝑥𝑖𝑗 > 0, meaning that there
are positive shipments from factory 𝑖 to location 𝑗, it must be true that 𝑢𝑖 + 𝑣𝑗 = 𝑐𝑖𝑗.

32.5 The Python Optimal Transport Package

There is an excellent Python package for optimal transport that simplifies some of the steps we took above.

In particular, the package takes care of the vectorization steps before passing the data out to a linear programming routine.

(That said, the discussion provided above on vectorization remains important, since we want to understand what happens
under the hood.)

32.5.1 Replicating Previous Results

The following line of code solves the example application discussed above using linear programming.

X = ot.emd(p, q, C)
X

array([[15., 35., 0., 0., 0.],
[10., 0., 60., 30., 0.],
[ 0., 80., 0., 0., 70.]])

Sure enough, we have the same solution and the same cost

total_cost = np.vdot(X, C)
total_cost

np.float64(7225.0)

Here we use np.vdot for the trace inner product of X and C
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32.5.2 A Larger Application

Now let’s try using the same package on a slightly larger application.

The application has the same interpretation as above but we will also give each node (i.e., vertex) a location in the plane.

This will allow us to plot the resulting transport plan as edges in a graph.

The following class defines a node by

• its location (𝑥, 𝑦) ∈ ℝ2,

• its group (factory or location, denoted by p or q) and

• its mass (e.g., 𝑝𝑖 or 𝑞𝑗).

class Node:

def __init__(self, x, y, mass, group, name):

self.x, self.y = x, y
self.mass, self.group = mass, group
self.name = name

Next we write a function that repeatedly calls the class above to build instances.

It allocates to the nodes it creates their location, mass, and group.

Locations are assigned randomly.

def build_nodes_of_one_type(group='p', n=100, seed=123):

nodes = []
np.random.seed(seed)

for i in range(n):

if group == 'p':
m = 1/n
x = np.random.uniform(-2, 2)
y = np.random.uniform(-2, 2)

else:
m = betabinom.pmf(i, n-1, 2, 2)
x = 0.6 * np.random.uniform(-1.5, 1.5)
y = 0.6 * np.random.uniform(-1.5, 1.5)

name = group + str(i)
nodes.append(Node(x, y, m, group, name))

return nodes

Now we build two lists of nodes, each one containing one type (factories or locations)

n_p = 32
n_q = 32
p_list = build_nodes_of_one_type(group='p', n=n_p)
q_list = build_nodes_of_one_type(group='q', n=n_q)

p_probs = [p.mass for p in p_list]
q_probs = [q.mass for q in q_list]
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For the cost matrix 𝐶, we use the Euclidean distance between each factory and location.

c = np.empty((n_p, n_q))
for i in range(n_p):

for j in range(n_q):
x0, y0 = p_list[i].x, p_list[i].y
x1, y1 = q_list[j].x, q_list[j].y
c[i, j] = np.sqrt((x0-x1)**2 + (y0-y1)**2)

Now we are ready to apply the solver

%time pi = ot.emd(p_probs, q_probs, c)

CPU times: user 710 μs, sys: 48 μs, total: 758 μs
Wall time: 476 μs

Finally, let’s plot the results using networkx.

In the plot below,

• node size is proportional to probability mass

• an edge (arrow) from 𝑖 to 𝑗 is drawn when a positive transfer is made from 𝑖 to 𝑗 under the optimal transport plan.
g = nx.DiGraph()
g.add_nodes_from([p.name for p in p_list])
g.add_nodes_from([q.name for q in q_list])

for i in range(n_p):
for j in range(n_q):

if pi[i, j] > 0:
g.add_edge(p_list[i].name, q_list[j].name, weight=pi[i, j])

node_pos_dict={}
for p in p_list:

node_pos_dict[p.name] = (p.x, p.y)

for q in q_list:
node_pos_dict[q.name] = (q.x, q.y)

node_color_list = []
node_size_list = []
scale = 8_000
for p in p_list:

node_color_list.append('blue')
node_size_list.append(p.mass * scale)

for q in q_list:
node_color_list.append('red')
node_size_list.append(q.mass * scale)

fig, ax = plt.subplots(figsize=(7, 10))
plt.axis('off')

nx.draw_networkx_nodes(g,
node_pos_dict,
node_color=node_color_list,
node_size=node_size_list,
edgecolors='grey',

(continues on next page)
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(continued from previous page)

linewidths=1,
alpha=0.5,
ax=ax)

nx.draw_networkx_edges(g,
node_pos_dict,
arrows=True,
connectionstyle='arc3,rad=0.1',
alpha=0.6)

plt.show()
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VON NEUMANN GROWTH MODEL (AND A GENERALIZATION)

Contents
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– Duality

– Interpretation as Two-player Zero-sum Game

This lecture uses the class Neumann to calculate key objects of a linear growth model of John von Neumann [von
Neumann, 1937] that was generalized by Kemeny, Morgenstern and Thompson [Kemeny et al., 1956].

Objects of interest are the maximal expansion rate (𝛼), the interest factor (𝛽), the optimal intensities (𝑥), and prices (𝑝).
In addition to watching how the towering mind of John von Neumann formulated an equilibrium model of price and
quantity vectors in balanced growth, this lecture shows how fruitfully to employ the following important tools:

• a zero-sum two-player game

• linear programming

• the Perron-Frobenius theorem

We’ll begin with some imports:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve, linprog
from textwrap import dedent

np.set_printoptions(precision=2)

The code below provides the Neumann class

class Neumann:

"""
This class describes the Generalized von Neumann growth model as it was
discussed in Kemeny et al. (1956, ECTA) and Gale (1960, Chapter 9.5):

(continues on next page)
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Let:
n ... number of goods
m ... number of activities
A ... input matrix is m-by-n

a_{i,j} - amount of good j consumed by activity i
B ... output matrix is m-by-n

b_{i,j} - amount of good j produced by activity i

x ... intensity vector (m-vector) with non-negative entries
x'B - the vector of goods produced
x'A - the vector of goods consumed

p ... price vector (n-vector) with non-negative entries
Bp - the revenue vector for every activity
Ap - the cost of each activity

Both A and B have non-negative entries. Moreover, we assume that
(1) Assumption I (every good which is consumed is also produced):

for all j, b_{.,j} > 0, i.e. at least one entry is strictly positive
(2) Assumption II (no free lunch):

for all i, a_{i,.} > 0, i.e. at least one entry is strictly positive

Parameters
----------
A : array_like or scalar(float)

Part of the state transition equation. It should be `n x n`
B : array_like or scalar(float)

Part of the state transition equation. It should be `n x k`
"""

def __init__(self, A, B):

self.A, self.B = list(map(self.convert, (A, B)))
self.m, self.n = self.A.shape

# Check if (A, B) satisfy the basic assumptions
assert self.A.shape == self.B.shape, 'The input and output matrices \

must have the same dimensions!'
assert (self.A >= 0).all() and (self.B >= 0).all(), 'The input and \

output matrices must have only non-negative entries!'

# (1) Check whether Assumption I is satisfied:
if (np.sum(B, 0) <= 0).any():

self.AI = False
else:

self.AI = True

# (2) Check whether Assumption II is satisfied:
if (np.sum(A, 1) <= 0).any():

self.AII = False
else:

self.AII = True

def __repr__(self):
return self.__str__()

def __str__(self):

(continues on next page)
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me = """
Generalized von Neumann expanding model:
- number of goods : {n}
- number of activities : {m}

Assumptions:
- AI: every column of B has a positive entry : {AI}
- AII: every row of A has a positive entry : {AII}

"""
# Irreducible : {irr}
return dedent(me.format(n=self.n, m=self.m,

AI=self.AI, AII=self.AII))

def convert(self, x):
"""
Convert array_like objects (lists of lists, floats, etc.) into
well-formed 2D NumPy arrays
"""
return np.atleast_2d(np.asarray(x))

def bounds(self):
"""
Calculate the trivial upper and lower bounds for alpha (expansion rate)
and beta (interest factor). See the proof of Theorem 9.8 in Gale (1960)
"""

n, m = self.n, self.m
A, B = self.A, self.B

f = lambda α: ((B - α * A) @ np.ones((n, 1))).max()
g = lambda β: (np.ones((1, m)) @ (B - β * A)).min()

UB = fsolve(f, 1).item() # Upper bound for α, β
LB = fsolve(g, 2).item() # Lower bound for α, β

return LB, UB

def zerosum(self, γ, dual=False):
"""
Given gamma, calculate the value and optimal strategies of a
two-player zero-sum game given by the matrix

M(gamma) = B - gamma * A

Row player maximizing, column player minimizing

Zero-sum game as an LP (primal --> α)

max (0', 1) @ (x', v)
subject to
[-M', ones(n, 1)] @ (x', v)' <= 0
(x', v) @ (ones(m, 1), 0) = 1
(x', v) >= (0', -inf)

(continues on next page)
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Zero-sum game as an LP (dual --> beta)

min (0', 1) @ (p', u)
subject to
[M, -ones(m, 1)] @ (p', u)' <= 0
(p', u) @ (ones(n, 1), 0) = 1
(p', u) >= (0', -inf)

Outputs:
--------
value: scalar

value of the zero-sum game

strategy: vector
if dual = False, it is the intensity vector,
if dual = True, it is the price vector

"""

A, B, n, m = self.A, self.B, self.n, self.m
M = B - γ * A

if dual == False:
# Solve the primal LP (for details see the description)
# (1) Define the problem for v as a maximization (linprog minimizes)
c = np.hstack([np.zeros(m), -1])

# (2) Add constraints :
# ... non-negativity constraints
bounds = tuple(m * [(0, None)] + [(None, None)])
# ... inequality constraints
A_iq = np.hstack([-M.T, np.ones((n, 1))])
b_iq = np.zeros((n, 1))
# ... normalization
A_eq = np.hstack([np.ones(m), 0]).reshape(1, m + 1)
b_eq = 1

res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq,
bounds=bounds)

else:
# Solve the dual LP (for details see the description)
# (1) Define the problem for v as a maximization (linprog minimizes)
c = np.hstack([np.zeros(n), 1])

# (2) Add constraints :
# ... non-negativity constraints
bounds = tuple(n * [(0, None)] + [(None, None)])
# ... inequality constraints
A_iq = np.hstack([M, -np.ones((m, 1))])
b_iq = np.zeros((m, 1))
# ... normalization
A_eq = np.hstack([np.ones(n), 0]).reshape(1, n + 1)
b_eq = 1

res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq,
bounds=bounds)

(continues on next page)
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if res.status != 0:
print(res.message)

# Pull out the required quantities
value = res.x[-1]
strategy = res.x[:-1]

return value, strategy

def expansion(self, tol=1e-8, maxit=1000):
"""
The algorithm used here is described in Hamburger-Thompson-Weil
(1967, ECTA). It is based on a simple bisection argument and utilizes
the idea that for a given γ (= α or β), the matrix "M = B - γ * A"
defines a two-player zero-sum game, where the optimal strategies are
the (normalized) intensity and price vector.

Outputs:
--------
alpha: scalar

optimal expansion rate
"""

LB, UB = self.bounds()

for iter in range(maxit):

γ = (LB + UB) / 2
ZS = self.zerosum(γ=γ)
V = ZS[0] # value of the game with γ

if V >= 0:
LB = γ

else:
UB = γ

if abs(UB - LB) < tol:
γ = (UB + LB) / 2
x = self.zerosum(γ=γ)[1]
p = self.zerosum(γ=γ, dual=True)[1]
break

return γ, x, p

def interest(self, tol=1e-8, maxit=1000):
"""
The algorithm used here is described in Hamburger-Thompson-Weil
(1967, ECTA). It is based on a simple bisection argument and utilizes
the idea that for a given gamma (= alpha or beta),
the matrix "M = B - γ * A" defines a two-player zero-sum game,
where the optimal strategies are the (normalized) intensity and price
vector

Outputs:
--------
beta: scalar

(continues on next page)
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optimal interest rate
"""

LB, UB = self.bounds()

for iter in range(maxit):
γ = (LB + UB) / 2
ZS = self.zerosum(γ=γ, dual=True)
V = ZS[0]

if V > 0:
LB = γ

else:
UB = γ

if abs(UB - LB) < tol:
γ = (UB + LB) / 2
p = self.zerosum(γ=γ, dual=True)[1]
x = self.zerosum(γ=γ)[1]
break

return γ, x, p

33.1 Notation

We use the following notation.

0 denotes a vector of zeros.

We call an 𝑛-vector positive and write 𝑥 ≫ 0 if 𝑥𝑖 > 0 for all 𝑖 = 1, 2, … , 𝑛.
We call a vector non-negative and write 𝑥 ≥ 0 if 𝑥𝑖 ≥ 0 for all 𝑖 = 1, 2, … , 𝑛.
We call a vector semi-positive written 𝑥 > 0 if 𝑥 ≥ 0 and 𝑥 ≠ 0.

For two conformable vectors 𝑥 and 𝑦, 𝑥 ≫ 𝑦, 𝑥 ≥ 𝑦 and 𝑥 > 𝑦 mean 𝑥−𝑦 ≫ 0, 𝑥−𝑦 ≥ 0, and 𝑥−𝑦 > 0, respectively.

We let all vectors in this lecture be column vectors; 𝑥⊤ denotes the transpose of 𝑥 (i.e., a row vector).

Let 𝜄𝑛 denote a column vector composed of 𝑛 ones, i.e. 𝜄𝑛 = (1, 1, … , 1)⊤.

Let 𝑒𝑖 denote a vector (of arbitrary size) containing zeros except for the 𝑖 th position where it is one.
We denote matrices by capital letters. For an arbitrary matrix 𝐴, 𝑎𝑖,𝑗 represents the entry in its 𝑖 th row and 𝑗 th column.
𝑎⋅𝑗 and 𝑎𝑖⋅ denote the 𝑗 th column and 𝑖 th row of 𝐴, respectively.
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33.2 Model Ingredients and Assumptions

A pair (𝐴, 𝐵) of 𝑚 × 𝑛 non-negative matrices defines an economy.

• 𝑚 is the number of activities (or sectors)

• 𝑛 is the number of goods (produced and/or consumed).

• 𝐴 is called the input matrix; 𝑎𝑖,𝑗 denotes the amount of good 𝑗 consumed by activity 𝑖
• 𝐵 is called the output matrix; 𝑏𝑖,𝑗 represents the amount of good 𝑗 produced by activity 𝑖

Two key assumptions restrict economy (𝐴, 𝐵):

Assumption 33.2.1 (every good that is consumed is also produced)

𝑏.,𝑗 > 0 ∀𝑗 = 1, 2, … , 𝑛

Assumption 33.2.2 (no free lunch)

𝑎𝑖,. > 0 ∀𝑖 = 1, 2, … , 𝑚

A semi-positive intensity 𝑚-vector 𝑥 denotes levels at which activities are operated.

Therefore,

• vector 𝑥⊤𝐴 gives the total amount of goods used in production

• vector 𝑥⊤𝐵 gives total outputs

An economy (𝐴, 𝐵) is said to be productive, if there exists a non-negative intensity vector 𝑥 ≥ 0 such that 𝑥⊤𝐵 > 𝑥⊤𝐴.
The semi-positive 𝑛-vector 𝑝 contains prices assigned to the 𝑛 goods.

The 𝑝 vector implies cost and revenue vectors

• the vector 𝐴𝑝 tells costs of the vector of activities
• the vector 𝐵𝑝 tells revenues from the vector of activities

Satisfaction of a property of an input-output pair (𝐴, 𝐵) called irreducibility (or indecomposability) determines whether
an economy can be decomposed into multiple “sub-economies”.

Definition 33.2.1

For an economy (𝐴, 𝐵), the set of goods 𝑆 ⊂ {1, 2, … , 𝑛} is called an independent subset if it is possible to produce
every good in 𝑆 without consuming goods from outside 𝑆.
Formally, the set 𝑆 is independent if ∃𝑇 ⊂ {1, 2, … , 𝑚} (a subset of activities) such that 𝑎𝑖,𝑗 = 0, ∀𝑖 ∈ 𝑇 and
𝑗 ∈ 𝑆𝑐 and for all 𝑗 ∈ 𝑆, ∃𝑖 ∈ 𝑇 for which 𝑏𝑖,𝑗 > 0.
The economy is irreducible if there are no proper independent subsets.

We study two examples, both in Chapter 9.6 of Gale [Gale, 1989]
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# (1) Irreducible (A, B) example: α_0 = β_0
A1 = np.array([[0, 1, 0, 0],

[1, 0, 0, 1],
[0, 0, 1, 0]])

B1 = np.array([[1, 0, 0, 0],
[0, 0, 2, 0],
[0, 1, 0, 1]])

# (2) Reducible (A, B) example: β_0 < α_0
A2 = np.array([[0, 1, 0, 0, 0, 0],

[1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0]])

B2 = np.array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 2, 0],
[0, 0, 0, 1, 0, 1]])

The following code sets up our first Neumann economy or Neumann instance

n1 = Neumann(A1, B1)
n1

Generalized von Neumann expanding model:
- number of goods : 4
- number of activities : 3

Assumptions:
- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True

Here is a second instance of a Neumann economy

n2 = Neumann(A2, B2)
n2

Generalized von Neumann expanding model:
- number of goods : 6
- number of activities : 5

Assumptions:
- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True
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33.3 Dynamic Interpretation

Attach a time index 𝑡 to the preceding objects, regard an economy as a dynamic system, and study sequences

{(𝐴𝑡, 𝐵𝑡)}𝑡≥0, {𝑥𝑡}𝑡≥0, {𝑝𝑡}𝑡≥0

An interesting special case holds the technology process constant and investigates the dynamics of quantities and prices
only.

Accordingly, in the rest of this lecture, we assume that (𝐴𝑡, 𝐵𝑡) = (𝐴, 𝐵) for all 𝑡 ≥ 0.
A crucial element of the dynamic interpretation involves the timing of production.

We assume that production (consumption of inputs) takes place in period 𝑡, while the consequent output materializes in
period 𝑡 + 1, i.e., consumption of 𝑥⊤

𝑡 𝐴 in period 𝑡 results in 𝑥⊤
𝑡 𝐵 amounts of output in period 𝑡 + 1.

These timing conventions imply the following feasibility condition:

𝑥⊤
𝑡 𝐵 ≥ 𝑥⊤

𝑡+1𝐴 ∀𝑡 ≥ 1

which asserts that no more goods can be used today than were produced yesterday.

Accordingly, 𝐴𝑝𝑡 tells the costs of production in period 𝑡 and 𝐵𝑝𝑡 tells revenues in period 𝑡 + 1.

33.3.1 Balanced Growth

We follow John von Neumann in studying “balanced growth”.

Let ./ denote an elementwise division of one vector by another and let 𝛼 > 0 be a scalar.
Then balanced growth is a situation in which

𝑥𝑡+1./𝑥𝑡 = 𝛼, ∀𝑡 ≥ 0

With balanced growth, the law of motion of 𝑥 is evidently 𝑥𝑡+1 = 𝛼𝑥𝑡 and so we can rewrite the feasibility constraint as

𝑥⊤
𝑡 𝐵 ≥ 𝛼𝑥⊤

𝑡 𝐴 ∀𝑡

In the same spirit, define 𝛽 ∈ ℝ as the interest factor per unit of time.

We assume that it is always possible to earn a gross return equal to the constant interest factor 𝛽 by investing “outside the
model”.

Under this assumption about outside investment opportunities, a no-arbitrage condition gives rise to the following (no
profit) restriction on the price sequence:

𝛽𝐴𝑝𝑡 ≥ 𝐵𝑝𝑡 ∀𝑡

This says that production cannot yield a return greater than that offered by the outside investment opportunity (here we
compare values in period 𝑡 + 1).
The balanced growth assumption allows us to drop time subscripts and conduct an analysis purely in terms of a time-
invariant growth rate 𝛼 and interest factor 𝛽.
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33.4 Duality

Two problems are connected by a remarkable dual relationship between technological and valuation characteristics of the
economy:

Definition 33.4.1

The technological expansion problem (TEP) for the economy (𝐴, 𝐵) is to find a semi-positive 𝑚-vector 𝑥 > 0 and
a number 𝛼 ∈ ℝ that satisfy

max
𝛼

𝛼
s.t. 𝑥⊤𝐵 ≥ 𝛼𝑥⊤𝐴

Theorem 9.3 of David Gale’s book [Gale, 1989] asserts that ifAssumption 33.2.1 andAssumption 33.2.2 are both satisfied,
then a maximum value of 𝛼 exists and that it is positive.

The maximal value is called the technological expansion rate and is denoted by 𝛼0. The associated intensity vector 𝑥0 is
the optimal intensity vector.

Definition 33.4.2

The economic expansion problem (EEP) for (𝐴, 𝐵) is to find a semi-positive 𝑛-vector 𝑝 > 0 and a number 𝛽 ∈ ℝ
that satisfy

min
𝛽

𝛽

s.t. 𝐵𝑝 ≤ 𝛽𝐴𝑝

Assumption 33.2.1 and Assumption 33.2.2 imply existence of a minimum value 𝛽0 > 0 called the economic expansion
rate.

The corresponding price vector 𝑝0 is the optimal price vector.

Because the criterion functions in the technological expansion problem and the economical expansion problem are both
linearly homogeneous, the optimality of 𝑥0 and 𝑝0 are defined only up to a positive scale factor.

For convenience (and to emphasize a close connection to zero-sum games), we normalize both vectors 𝑥0 and 𝑝0 to have
unit length.

A standard duality argument (see Lemma 9.4. in (Gale, 1960) [Gale, 1989]) implies that under Assumption 33.2.1 and
Assumption 33.2.2, 𝛽0 ≤ 𝛼0.

But to deduce that 𝛽0 ≥ 𝛼0, Assumption 33.2.1 and Assumption 33.2.2 are not sufficient.

Therefore, von Neumann [von Neumann, 1937] went on to prove the following remarkable “duality” result that connects
TEP and EEP.

Theorem 33.4.1 (von Neumann)

If the economy (𝐴, 𝐵) satisfies Assumption 33.2.1 and Assumption 33.2.2, then there exist (𝛾∗, 𝑥0, 𝑝0), where 𝛾∗ ∈
[𝛽0, 𝛼0] ⊂ ℝ, 𝑥0 > 0 is an 𝑚-vector, 𝑝0 > 0 is an 𝑛-vector, and the following arbitrage conditions hold

𝑥⊤
0 𝐵 ≥ 𝛾∗𝑥⊤

0 𝐴
𝐵𝑝0 ≤ 𝛾∗𝐴𝑝0

𝑥⊤
0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0
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Proof. (Sketch)

Assumption 33.2.1 and Assumption 33.2.2 imply that there exist (𝛼0, 𝑥0) and (𝛽0, 𝑝0) that solve the TEP and EEP,
respectively.

If 𝛾∗ > 𝛼0, then by definition of 𝛼0, there cannot exist a semi-positive 𝑥 that satisfies 𝑥⊤𝐵 ≥ 𝛾∗𝑥⊤𝐴.
Similarly, if 𝛾∗ < 𝛽0, there is no semi-positive 𝑝 for which 𝐵𝑝 ≤ 𝛾∗𝐴𝑝. Let 𝛾∗ ∈ [𝛽0, 𝛼0], then 𝑥⊤

0 𝐵 ≥ 𝛼0𝑥⊤
0 𝐴 ≥

𝛾∗𝑥⊤
0 𝐴.

Moreover, 𝐵𝑝0 ≤ 𝛽0𝐴𝑝0 ≤ 𝛾∗𝐴𝑝0. These two inequalities imply 𝑥0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0.

Here the constant 𝛾∗ is both an expansion factor and an interest factor (not necessarily optimal).

We have already encountered and discussed the first two inequalities that represent feasibility and no-profit conditions.

Moreover, the equality 𝑥⊤
0 (𝐵 − 𝛾∗𝐴) 𝑝0 = 0 concisely expresses the requirements that if any good grows at a rate larger

than 𝛾∗ (i.e., if it is oversupplied), then its price must be zero; and that if any activity provides negative profit, it must be
unused.

Therefore, the conditions stated in Theorem 33.4.1 encode all equilibrium conditions.

So Theorem 33.4.1 essentially states that under Assumption 33.2.1 and Assumption 33.2.2 there always exists an equilib-
rium (𝛾∗, 𝑥0, 𝑝0) with balanced growth.
Note that Theorem 33.4.1 is silent about uniqueness of the equilibrium. In fact, it does not rule out (trivial) cases with
𝑥⊤

0 𝐵𝑝0 = 0 so that nothing of value is produced.
To exclude such uninteresting cases, Kemeny,Morgenstern and Thompson [Kemeny et al., 1956] add an extra requirement

𝑥⊤
0 𝐵𝑝0 > 0

and call the associated equilibria economic solutions.

They show that this extra condition does not affect the existence result, while it significantly reduces the number of
(relevant) solutions.

33.5 Interpretation as Two-player Zero-sum Game

To compute the equilibrium (𝛾∗, 𝑥0, 𝑝0), we follow the algorithm proposed by Hamburger, Thompson and Weil (1967),
building on the key insight that an equilibrium (with balanced growth) can be solved as a particular two-player zero-sum
game.

First, we introduce some notation.

Consider the 𝑚 × 𝑛 matrix 𝐶 as a payoff matrix, with the entries representing payoffs from the minimizing column
player to themaximizing row player and assume that the players can use mixed strategies. Thus,

• the row player chooses the 𝑚-vector 𝑥 > 0 subject to 𝜄⊤
𝑚𝑥 = 1

• the column player chooses the 𝑛-vector 𝑝 > 0 subject to 𝜄⊤
𝑛𝑝 = 1.
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Definition 33.5.1

The 𝑚 × 𝑛 matrix game 𝐶 has the solution (𝑥∗, 𝑝∗, 𝑉 (𝐶)) in mixed strategies if

(𝑥∗)⊤𝐶𝑒𝑗 ≥ 𝑉 (𝐶) ∀𝑗 ∈ {1, … , 𝑛} and (𝑒𝑖)⊤𝐶𝑝∗ ≤ 𝑉 (𝐶) ∀𝑖 ∈ {1, … , 𝑚}

The number 𝑉 (𝐶) is called the value of the game.

From the above definition, it is clear that the value 𝑉 (𝐶) has two alternative interpretations:
• by playing the appropriate mixed strategy, the maximizing player can assure himself at least 𝑉 (𝐶) (no matter what
the column player chooses)

• by playing the appropriate mixed strategy, the minimizing player can make sure that the maximizing player will
not get more than 𝑉 (𝐶) (irrespective of what is the maximizing player’s choice)

A famous theorem of Nash (1951) tells us that there always exists a mixed strategy Nash equilibrium for any finite
two-player zero-sum game.

Moreover, von Neumann’s Minmax Theorem [von Neumann, 1928] implies that

𝑉 (𝐶) = max
𝑥

min
𝑝

𝑥⊤𝐶𝑝 = min
𝑝

max
𝑥

𝑥⊤𝐶𝑝 = (𝑥∗)⊤𝐶𝑝∗

33.5.1 Connection with Linear Programming (LP)

Nash equilibria of a finite two-player zero-sum game solve a linear programming problem.

To see this, we introduce the following notation

• For a fixed 𝑥, let 𝑣 be the value of the minimization problem: 𝑣 ≡ min𝑝 𝑥⊤𝐶𝑝 = min𝑗 𝑥⊤𝐶𝑒𝑗

• For a fixed 𝑝, let 𝑢 be the value of the maximization problem: 𝑢 ≡ max𝑥 𝑥⊤𝐶𝑝 = max𝑖(𝑒𝑖)⊤𝐶𝑝
Then the max-min problem (the game from the maximizing player’s point of view) can be written as the primal LP

𝑉 (𝐶) =max 𝑣
s.t. 𝑣𝜄⊤

𝑛 ≤ 𝑥⊤𝐶
𝑥 ≥ 0

𝜄⊤
𝑛𝑥 = 1

while the min-max problem (the game from the minimizing player’s point of view) is the dual LP

𝑉 (𝐶) =min 𝑢
s.t. 𝑢𝜄𝑚 ≥ 𝐶𝑝

𝑝 ≥ 0
𝜄⊤
𝑚𝑝 = 1

Hamburger, Thompson and Weil [Hamburger et al., 1967] view the input-output pair of the economy as payoff matrices
of two-player zero-sum games.

Using this interpretation, they restate Assumption 33.2.1 and Assumption 33.2.2 as follows

𝑉 (−𝐴) < 0 and 𝑉 (𝐵) > 0
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Proof. (Sketch)

• ⇒ 𝑉 (𝐵) > 0 implies 𝑥⊤
0 𝐵 ≫ 0, where 𝑥0 is a maximizing vector. Since 𝐵 is non-negative, this requires that

each column of 𝐵 has at least one positive entry, which is Assumption 33.2.1.

• ⇐ From Assumption 33.2.1 and the fact that 𝑝 > 0, it follows that 𝐵𝑝 > 0. This implies that the maximizing
player can always choose 𝑥 so that 𝑥⊤𝐵𝑝 > 0 so that it must be the case that 𝑉 (𝐵) > 0.

In order to (re)state Theorem 33.4.1 in terms of a particular two-player zero-sum game, we define a matrix for 𝛾 ∈ ℝ

𝑀(𝛾) ≡ 𝐵 − 𝛾𝐴

For fixed 𝛾, treating 𝑀(𝛾) as a matrix game, calculating the solution of the game implies
• If 𝛾 > 𝛼0, then for all 𝑥 > 0, there ∃𝑗 ∈ {1, … , 𝑛}, s.t. [𝑥⊤𝑀(𝛾)]𝑗 < 0 implying that 𝑉 (𝑀(𝛾)) < 0.
• If 𝛾 < 𝛽0, then for all 𝑝 > 0, there ∃𝑖 ∈ {1, … , 𝑚}, s.t. [𝑀(𝛾)𝑝]𝑖 > 0 implying that 𝑉 (𝑀(𝛾)) > 0.
• If 𝛾 ∈ {𝛽0, 𝛼0}, then (by Theorem 33.4.1) the optimal intensity and price vectors 𝑥0 and 𝑝0 satisfy

𝑥⊤
0 𝑀(𝛾) ≥ 0⊤ and 𝑀(𝛾)𝑝0 ≤ 0

That is, (𝑥0, 𝑝0, 0) is a solution of the game 𝑀(𝛾) so that 𝑉 (𝑀(𝛽0)) = 𝑉 (𝑀(𝛼0)) = 0.
• If 𝛽0 < 𝛼0 and 𝛾 ∈ (𝛽0, 𝛼0), then 𝑉 (𝑀(𝛾)) = 0.

Moreover, if 𝑥′ is optimal for the maximizing player in 𝑀(𝛾′) for 𝛾′ ∈ (𝛽0, 𝛼0) and 𝑝″ is optimal for the minimizing
player in 𝑀(𝛾″) where 𝛾″ ∈ (𝛽0, 𝛾′), then (𝑥′, 𝑝″, 0) is a solution for 𝑀(𝛾) ∀𝛾 ∈ (𝛾″, 𝛾′).

Proof. (Sketch) If 𝑥′ is optimal for a maximizing player in game 𝑀(𝛾′), then (𝑥′)⊤𝑀(𝛾′) ≥ 0⊤ and so for all
𝛾 < 𝛾′.

(𝑥′)⊤𝑀(𝛾) = (𝑥′)⊤𝑀(𝛾′) + (𝑥′)⊤(𝛾′ − 𝛾)𝐴 ≥ 0⊤

hence 𝑉 (𝑀(𝛾)) ≥ 0. If 𝑝″ is optimal for a minimizing player in game𝑀(𝛾″), then𝑀(𝛾″)𝑝″ ≤ 0 and so for all 𝛾″ < 𝛾

𝑀(𝛾)𝑝″ = 𝑀(𝛾″) + (𝛾″ − 𝛾)𝐴𝑝″ ≤ 0

hence 𝑉 (𝑀(𝛾)) ≤ 0.
It is clear from the above argument that 𝛽0, 𝛼0 are the minimal and maximal 𝛾 for which 𝑉 (𝑀(𝛾)) = 0.
Furthermore, Hamburger et al. [Hamburger et al., 1967] show that the function 𝛾 ↦ 𝑉 (𝑀(𝛾)) is continuous and
nonincreasing in 𝛾.
This suggests an algorithm to compute (𝛼0, 𝑥0) and (𝛽0, 𝑝0) for a given input-output pair (𝐴, 𝐵).

33.5. Interpretation as Two-player Zero-sum Game 641



Intermediate Quantitative Economics with Python

33.5.2 Algorithm

Hamburger, Thompson and Weil [Hamburger et al., 1967] propose a simple bisection algorithm to find the minimal and
maximal roots (i.e. 𝛽0 and 𝛼0) of the function 𝛾 ↦ 𝑉 (𝑀(𝛾)).

Step 1

First, notice that we can easily find trivial upper and lower bounds for 𝛼0 and 𝛽0.

• TEP requires that 𝑥⊤(𝐵 − 𝛼𝐴) ≥ 0⊤ and 𝑥 > 0, so if 𝛼 is so large that max𝑖{[(𝐵 − 𝛼𝐴)𝜄𝑛]𝑖} < 0, then TEP
ceases to have a solution.

Accordingly, let UB be the 𝛼∗ that solves max𝑖{[(𝐵 − 𝛼∗𝐴)𝜄𝑛]𝑖} = 0.
• Similar to the upper bound, if 𝛽 is so low that min𝑗{[𝜄⊤

𝑚(𝐵 − 𝛽𝐴)]𝑗} > 0, then the EEP has no solution and so
we can define LB as the 𝛽∗ that solves min𝑗{[𝜄⊤

𝑚(𝐵 − 𝛽∗𝐴)]𝑗} = 0.
The bounds method calculates these trivial bounds for us

n1.bounds()

(1.0, 2.0)

Step 2

Compute 𝛼0 and 𝛽0

• Finding 𝛼0

1. Fix 𝛾 = 𝑈𝐵+𝐿𝐵
2 and compute the solution of the two-player zero-sum game associated with 𝑀(𝛾). We can

use either the primal or the dual LP problem.

2. If 𝑉 (𝑀(𝛾)) ≥ 0, then set 𝐿𝐵 = 𝛾, otherwise let 𝑈𝐵 = 𝛾.
3. Iterate on 1. and 2. until |𝑈𝐵 − 𝐿𝐵| < 𝜖.

• Finding 𝛽0

1. Fix 𝛾 = 𝑈𝐵+𝐿𝐵
2 and compute the solution of the two-player zero-sum game associated with 𝑀(𝛾). We can

use either the primal or the dual LP problem.

2. If 𝑉 (𝑀(𝛾)) > 0, then set 𝐿𝐵 = 𝛾, otherwise let 𝑈𝐵 = 𝛾.
3. Iterate on 1. and 2. until |𝑈𝐵 − 𝐿𝐵| < 𝜖.

• Existence: Since 𝑉 (𝑀(𝐿𝐵)) > 0 and 𝑉 (𝑀(𝑈𝐵)) < 0 and 𝑉 (𝑀(⋅)) is a continuous, nonincreasing function,
there is at least one 𝛾 ∈ [𝐿𝐵, 𝑈𝐵], s.t. 𝑉 (𝑀(𝛾)) = 0.

The zerosum method calculates the value and optimal strategies associated with a given 𝛾.
γ = 2

print(f'Value of the game with γ = {γ}')
print(n1.zerosum(γ=γ)[0])
print('Intensity vector (from the primal)')
print(n1.zerosum(γ=γ)[1])
print('Price vector (from the dual)')
print(n1.zerosum(γ=γ, dual=True)[1])
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Value of the game with γ = 2
-0.24
Intensity vector (from the primal)
[0.32 0.28 0.4 ]
Price vector (from the dual)
[0.4 0.32 0.28 0. ]

numb_grid = 100
γ_grid = np.linspace(0.4, 2.1, numb_grid)

value_ex1_grid = np.asarray([n1.zerosum(γ=γ_grid[i])[0]
for i in range(numb_grid)])

value_ex2_grid = np.asarray([n2.zerosum(γ=γ_grid[i])[0]
for i in range(numb_grid)])

fig, axes = plt.subplots(1, 2, figsize=(14, 5), sharey=True)
fig.suptitle(r'The function $V(M(\gamma))$', fontsize=16)

for ax, grid, N, i in zip(axes, (value_ex1_grid, value_ex2_grid),
(n1, n2), (1, 2)):

ax.plot(γ_grid, grid)
ax.set(title=f'Example {i}', xlabel=r'$\gamma$')
ax.axhline(0, c='k', lw=1)
ax.axvline(N.bounds()[0], c='r', ls='--', label='lower bound')
ax.axvline(N.bounds()[1], c='g', ls='--', label='upper bound')

plt.show()

The expansion method implements the bisection algorithm for 𝛼0 (and uses the primal LP problem for 𝑥0)

α_0, x, p = n1.expansion()
print(f'α_0 = {α_0}')
print(f'x_0 = {x}')
print(f'The corresponding p from the dual = {p}')

α_0 = 1.2599210478365421
x_0 = [0.33 0.26 0.41]
The corresponding p from the dual = [0.41 0.33 0.26 0. ]
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The interest method implements the bisection algorithm for 𝛽0 (and uses the dual LP problem for 𝑝0)

β_0, x, p = n1.interest()
print(f'β_0 = {β_0}')
print(f'p_0 = {p}')
print(f'The corresponding x from the primal = {x}')

β_0 = 1.2599210478365421
p_0 = [0.41 0.33 0.26 0. ]
The corresponding x from the primal = [0.33 0.26 0.41]

Of course, when 𝛾∗ is unique, it is irrelevant which one of the two methods we use – both work.

In particular, as will be shown below, in case of an irreducible (𝐴, 𝐵) (like in Example 1), the maximal and minimal
roots of 𝑉 (𝑀(𝛾)) necessarily coincide implying a ‘‘full duality’’ result, i.e. 𝛼0 = 𝛽0 = 𝛾∗ so that the expansion (and
interest) rate 𝛾∗ is unique.

33.5.3 Uniqueness and Irreducibility

As an illustration, compute first the maximal and minimal roots of 𝑉 (𝑀(⋅)) for our Example 2 that has a reducible
input-output pair (𝐴, 𝐵)
α_0, x, p = n2.expansion()
print(f'α_0 = {α_0}')
print(f'x_0 = {x}')
print(f'The corresponding p from the dual = {p}')

α_0 = 1.259921052493155
x_0 = [5.27e-10 0.00e+00 3.27e-01 2.60e-01 4.13e-01]
The corresponding p from the dual = [0. 0.21 0.33 0.26 0.21 0. ]

β_0, x, p = n2.interest()
print(f'β_0 = {β_0}')
print(f'p_0 = {p}')
print(f'The corresponding x from the primal = {x}')

β_0 = 1.0000000009313226
p_0 = [ 5.00e-01 5.00e-01 -1.55e-09 -1.24e-09 -9.31e-10 0.00e+00]
The corresponding x from the primal = [-0. 0. 0.25 0.25 0.5 ]

Aswe can see, with a reducible (𝐴, 𝐵), the roots found by the bisection algorithmsmight differ, so there might be multiple
𝛾∗ that make the value of the game with 𝑀(𝛾∗) zero. (see the figure above).
Indeed, although the von Neumann theorem assures existence of the equilibrium, Assumption 33.2.1 and Assumption
33.2.2 are not sufficient for uniqueness. Nonetheless, Kemeny et al. (1967) show that there are at most finitely many
economic solutions, meaning that there are only finitely many 𝛾∗ that satisfy 𝑉 (𝑀(𝛾∗)) = 0 and 𝑥⊤

0 𝐵𝑝0 > 0 and
that for each such 𝛾∗

𝑖 , there is a self-contained part of the economy (a sub-economy) that in equilibrium can expand
independently with the expansion coefficient 𝛾∗

𝑖 .

The following theorem (see Theorem 9.10. in Gale [Gale, 1989]) asserts that imposing irreducibility is sufficient for
uniqueness of (𝛾∗, 𝑥0, 𝑝0).

Theorem 33.5.1

Adopt the conditions of Theorem 33.4.1. If the economy (𝐴, 𝐵) is irreducible, then 𝛾∗ = 𝛼0 = 𝛽0.
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33.5.4 A Special Case

There is a special (𝐴, 𝐵) that allows us to simplify the solution method significantly by invoking the powerful Perron-
Frobenius theorem for non-negative matrices.

Definition 33.5.2

We call an economy simple if it satisfies

• 𝑛 = 𝑚
• Each activity produces exactly one good

• Each good is produced by one and only one activity.

These assumptions imply that 𝐵 = 𝐼𝑛, i.e., that 𝐵 can be written as an identity matrix (possibly after reshuffling its rows
and columns).

The simple model has the following special property (Theorem 9.11. in Gale [Gale, 1989]): if 𝑥0 and 𝛼0 > 0 solve the
TEP with (𝐴, 𝐼𝑛), then

𝑥⊤
0 = 𝛼0𝑥⊤

0 𝐴 ⇔ 𝑥⊤
0 𝐴 = ( 1

𝛼0
) 𝑥⊤

0

The latter shows that 1/𝛼0 is a positive eigenvalue of 𝐴 and 𝑥0 is the corresponding non-negative left eigenvector.

The classic result of Perron and Frobenius implies that a non-negative matrix has a non-negative eigenvalue-eigenvector
pair.

Moreover, if 𝐴 is irreducible, then the optimal intensity vector 𝑥0 is positive and unique up to multiplication by a positive
scalar.

Suppose that 𝐴 is reducible with 𝑘 irreducible subsets 𝑆1, … , 𝑆𝑘. Let 𝐴𝑖 be the submatrix corresponding to 𝑆𝑖 and let
𝛼𝑖 and 𝛽𝑖 be the associated expansion and interest factors, respectively. Then we have

𝛼0 = max
𝑖

{𝛼𝑖} and 𝛽0 = min
𝑖

{𝛽𝑖}
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

34.1 Overview

Markov chains are one of the most useful classes of stochastic processes, being

• simple, flexible and supported by many elegant theoretical results

• valuable for building intuition about random dynamic models

• central to quantitative modeling in their own right

You will find them in many of the workhorse models of economics and finance.

In this lecture, we review some of the theory of Markov chains.

We will also introduce some of the high-quality routines for working with Markov chains available in QuantEcon.py.

Prerequisite knowledge is basic probability and linear algebra.

Let’s start with some standard imports:
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import matplotlib.pyplot as plt
import quantecon as qe
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

34.2 Definitions

The following concepts are fundamental.

34.2.1 Stochastic Matrices

A stochastic matrix (orMarkov matrix) is an 𝑛 × 𝑛 square matrix 𝑃 such that

1. each element of 𝑃 is nonnegative, and

2. each row of 𝑃 sums to one

Each row of 𝑃 can be regarded as a probability mass function over 𝑛 possible outcomes.

It is too not difficult to check1 that if 𝑃 is a stochastic matrix, then so is the 𝑘-th power 𝑃 𝑘 for all 𝑘 ∈ ℕ.

34.2.2 Markov Chains

There is a close connection between stochastic matrices and Markov chains.

To begin, let 𝑆 be a finite set with 𝑛 elements {𝑥1, … , 𝑥𝑛}.
The set 𝑆 is called the state space and 𝑥1, … , 𝑥𝑛 are the state values.

AMarkov chain {𝑋𝑡} on 𝑆 is a sequence of random variables on 𝑆 that have theMarkov property.

This means that, for any date 𝑡 and any state 𝑦 ∈ 𝑆,
ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡} = ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡, 𝑋𝑡−1, …} (34.1)

In other words, knowing the current state is enough to know probabilities for future states.

In particular, the dynamics of a Markov chain are fully determined by the set of values

𝑃(𝑥, 𝑦) ∶= ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} (𝑥, 𝑦 ∈ 𝑆) (34.2)

By construction,

• 𝑃(𝑥, 𝑦) is the probability of going from 𝑥 to 𝑦 in one unit of time (one step)
• 𝑃(𝑥, ⋅) is the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥

We can view 𝑃 as a stochastic matrix where

𝑃𝑖𝑗 = 𝑃(𝑥𝑖, 𝑥𝑗) 1 ≤ 𝑖, 𝑗 ≤ 𝑛
Going the other way, if we take a stochastic matrix 𝑃 , we can generate a Markov chain {𝑋𝑡} as follows:

• draw 𝑋0 from a marginal distribution 𝜓
• for each 𝑡 = 0, 1, …, draw 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅)

By construction, the resulting process satisfies (34.2).
1 Hint: First show that if 𝑃 and 𝑄 are stochastic matrices then so is their product — to check the row sums, try post multiplying by a column vector

of ones. Finally, argue that 𝑃 𝑛 is a stochastic matrix using induction.
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34.2.3 Example 1

Consider a worker who, at any given time 𝑡, is either unemployed (state 0) or employed (state 1).
Suppose that, over a one month period,

1. An unemployed worker finds a job with probability 𝛼 ∈ (0, 1).
2. An employed worker loses her job and becomes unemployed with probability 𝛽 ∈ (0, 1).

In terms of a Markov model, we have

• 𝑆 = {0, 1}
• 𝑃(0, 1) = 𝛼 and 𝑃(1, 0) = 𝛽

We can write out the transition probabilities in matrix form as

𝑃 = ( 1 − 𝛼 𝛼
𝛽 1 − 𝛽 ) (34.3)

Once we have the values 𝛼 and 𝛽, we can address a range of questions, such as
• What is the average duration of unemployment?

• Over the long-run, what fraction of time does a worker find herself unemployed?

• Conditional on employment, what is the probability of becoming unemployed at least once over the next 12months?

We’ll cover such applications below.

34.2.4 Example 2

From US unemployment data, Hamilton [Hamilton, 2005] estimated the stochastic matrix

𝑃 = ⎛⎜
⎝

0.971 0.029 0
0.145 0.778 0.077

0 0.508 0.492
⎞⎟
⎠

where

• the frequency is monthly

• the first state represents “normal growth”

• the second state represents “mild recession”

• the third state represents “severe recession”

For example, the matrix tells us that when the state is normal growth, the state will again be normal growth next month
with probability 0.97.

In general, large values on the main diagonal indicate persistence in the process {𝑋𝑡}.
This Markov process can also be represented as a directed graph, with edges labeled by transition probabilities

Here “ng” is normal growth, “mr” is mild recession, etc.
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34.3 Simulation

One natural way to answer questions about Markov chains is to simulate them.

(To approximate the probability of event 𝐸, we can simulate many times and count the fraction of times that 𝐸 occurs).

Nice functionality for simulating Markov chains exists in QuantEcon.py.

• Efficient, bundled with lots of other useful routines for handling Markov chains.

However, it’s also a good exercise to roll our own routines — let’s do that first and then come back to the methods in
QuantEcon.py.

In these exercises, we’ll take the state space to be 𝑆 = 0, … , 𝑛 − 1.

34.3.1 Rolling Our Own

To simulate a Markov chain, we need its stochastic matrix 𝑃 and a marginal probability distribution 𝜓 from which to
draw a realization of 𝑋0.

The Markov chain is then constructed as discussed above. To repeat:

1. At time 𝑡 = 0, draw a realization of 𝑋0 from 𝜓.
2. At each subsequent time 𝑡, draw a realization of the new state 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅).

To implement this simulation procedure, we need a method for generating draws from a discrete distribution.

For this task, we’ll use random.draw from QuantEcon, which works as follows:

ψ = (0.3, 0.7) # probabilities over {0, 1}
cdf = np.cumsum(ψ) # convert into cummulative distribution
qe.random.draw(cdf, 5) # generate 5 independent draws from ψ

array([1, 1, 1, 0, 1])

We’ll write our code as a function that accepts the following three arguments

• A stochastic matrix P

• An initial state init

• A positive integer sample_size representing the length of the time series the function should return

def mc_sample_path(P, ψ_0=None, sample_size=1_000):

# set up

(continues on next page)
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(continued from previous page)

P = np.asarray(P)
X = np.empty(sample_size, dtype=int)

# Convert each row of P into a cdf
n = len(P)
P_dist = [np.cumsum(P[i, :]) for i in range(n)]

# draw initial state, defaulting to 0
if ψ_0 is not None:

X_0 = qe.random.draw(np.cumsum(ψ_0))
else:

X_0 = 0

# simulate
X[0] = X_0
for t in range(sample_size - 1):

X[t+1] = qe.random.draw(P_dist[X[t]])

return X

Let’s see how it works using the small matrix

P = [[0.4, 0.6],
[0.2, 0.8]]

As we’ll see later, for a long series drawn from P, the fraction of the sample that takes value 0 will be about 0.25.

Moreover, this is true, regardless of the initial distribution from which 𝑋0 is drawn.

The following code illustrates this

X = mc_sample_path(P, ψ_0=[0.1, 0.9], sample_size=100_000)
np.mean(X == 0)

np.float64(0.24956)

You can try changing the initial distribution to confirm that the output is always close to 0.25, at least for the P matrix
above.

34.3.2 Using QuantEcon’s Routines

As discussed above, QuantEcon.py has routines for handling Markov chains, including simulation.

Here’s an illustration using the same P as the preceding example

from quantecon import MarkovChain

mc = qe.MarkovChain(P)
X = mc.simulate(ts_length=1_000_000)
np.mean(X == 0)

np.float64(0.250057)

The QuantEcon.py routine is JIT compiled and much faster.
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%time mc_sample_path(P, sample_size=1_000_000) # Our homemade code version

CPU times: user 1.23 s, sys: 1.77 ms, total: 1.23 s
Wall time: 1.23 s

array([0, 1, 1, ..., 0, 1, 0])

%time mc.simulate(ts_length=1_000_000) # qe code version

CPU times: user 16.8 ms, sys: 3.99 ms, total: 20.8 ms
Wall time: 20.5 ms

array([0, 0, 1, ..., 0, 0, 0])

Adding State Values and Initial Conditions

If we wish to, we can provide a specification of state values to MarkovChain.

These state values can be integers, floats, or even strings.

The following code illustrates

mc = qe.MarkovChain(P, state_values=('unemployed', 'employed'))
mc.simulate(ts_length=4, init='employed')

array(['employed', 'unemployed', 'employed', 'employed'], dtype='<U10')

mc.simulate(ts_length=4, init='unemployed')

array(['unemployed', 'unemployed', 'employed', 'unemployed'], dtype='<U10')

mc.simulate(ts_length=4) # Start at randomly chosen initial state

array(['employed', 'employed', 'unemployed', 'employed'], dtype='<U10')

If we want to see indices rather than state values as outputs as we can use

mc.simulate_indices(ts_length=4)

array([1, 1, 1, 1])

34.4 Marginal Distributions

Suppose that

1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃
2. the marginal distribution of 𝑋𝑡 is known to be 𝜓𝑡
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What then is the marginal distribution of 𝑋𝑡+1, or, more generally, of 𝑋𝑡+𝑚?

To answer this, we let 𝜓𝑡 be the marginal distribution of 𝑋𝑡 for 𝑡 = 0, 1, 2, ….

Our first aim is to find 𝜓𝑡+1 given 𝜓𝑡 and 𝑃 .

To begin, pick any 𝑦 ∈ 𝑆.
Using the law of total probability, we can decompose the probability that 𝑋𝑡+1 = 𝑦 as follows:

ℙ{𝑋𝑡+1 = 𝑦} = ∑
𝑥∈𝑆

ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} ⋅ ℙ{𝑋𝑡 = 𝑥}

In words, to get the probability of being at 𝑦 tomorrow, we account for all ways this can happen and sum their probabilities.

Rewriting this statement in terms of marginal and conditional probabilities gives

𝜓𝑡+1(𝑦) = ∑
𝑥∈𝑆

𝑃(𝑥, 𝑦)𝜓𝑡(𝑥)

There are 𝑛 such equations, one for each 𝑦 ∈ 𝑆.
If we think of 𝜓𝑡+1 and 𝜓𝑡 as row vectors, these 𝑛 equations are summarized by the matrix expression

𝜓𝑡+1 = 𝜓𝑡𝑃 (34.4)

Thus, to move a marginal distribution forward one unit of time, we postmultiply by 𝑃 .

By postmultiplying 𝑚 times, we move a marginal distribution forward 𝑚 steps into the future.

Hence, iterating on (34.4), the expression 𝜓𝑡+𝑚 = 𝜓𝑡𝑃 𝑚 is also valid — here 𝑃 𝑚 is the 𝑚-th power of 𝑃 .

As a special case, we see that if 𝜓0 is the initial distribution from which 𝑋0 is drawn, then 𝜓0𝑃 𝑚 is the distribution of
𝑋𝑚.

This is very important, so let’s repeat it

𝑋0 ∼ 𝜓0 ⟹ 𝑋𝑚 ∼ 𝜓0𝑃 𝑚 (34.5)

and, more generally,

𝑋𝑡 ∼ 𝜓𝑡 ⟹ 𝑋𝑡+𝑚 ∼ 𝜓𝑡𝑃 𝑚 (34.6)

34.4.1 Multiple Step Transition Probabilities

We know that the probability of transitioning from 𝑥 to 𝑦 in one step is 𝑃(𝑥, 𝑦).
It turns out that the probability of transitioning from 𝑥 to 𝑦 in 𝑚 steps is 𝑃 𝑚(𝑥, 𝑦), the (𝑥, 𝑦)-th element of the 𝑚-th
power of 𝑃 .

To see why, consider again (34.6), but now with a 𝜓𝑡 that puts all probability on state 𝑥 so that the transition probabilities
are

• 1 in the 𝑥-th position and zero elsewhere
Inserting this into (34.6), we see that, conditional on 𝑋𝑡 = 𝑥, the distribution of 𝑋𝑡+𝑚 is the 𝑥-th row of 𝑃 𝑚.

In particular

ℙ{𝑋𝑡+𝑚 = 𝑦 | 𝑋𝑡 = 𝑥} = 𝑃 𝑚(𝑥, 𝑦) = (𝑥, 𝑦)-th element of 𝑃 𝑚
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34.4.2 Example: Probability of Recession

Recall the stochastic matrix 𝑃 for recession and growth considered above.

Suppose that the current state is unknown — perhaps statistics are available only at the end of the current month.

We guess that the probability that the economy is in state 𝑥 is 𝜓(𝑥).
The probability of being in recession (either mild or severe) in 6 months time is given by the inner product

𝜓𝑃 6 ⋅ ⎛⎜
⎝

0
1
1

⎞⎟
⎠

34.4.3 Example 2: Cross-Sectional Distributions

The marginal distributions we have been studying can be viewed either as probabilities or as cross-sectional frequencies
that a Law of Large Numbers leads us to anticipate for large samples.

To illustrate, recall our model of employment/unemployment dynamics for a given worker discussed above.

Consider a large population of workers, each of whose lifetime experience is described by the specified dynamics, with
each worker’s outcomes being realizations of processes that are statistically independent of all other workers’ processes.

Let 𝜓 be the current cross-sectional distribution over {0, 1}.
The cross-sectional distribution records fractions of workers employed and unemployed at a given moment.

• For example, 𝜓(0) is the unemployment rate.
What will the cross-sectional distribution be in 10 periods hence?

The answer is 𝜓𝑃 10, where 𝑃 is the stochastic matrix in (34.3).

This is because each worker’s state evolves according to 𝑃 , so 𝜓𝑃 10 is a marginal distibution for a single randomly
selected worker.

But when the sample is large, outcomes and probabilities are roughly equal (by an application of the Law of Large
Numbers).

So for a very large (tending to infinite) population, 𝜓𝑃 10 also represents fractions of workers in each state.

This is exactly the cross-sectional distribution.

34.5 Irreducibility and Aperiodicity

Irreducibility and aperiodicity are central concepts of modern Markov chain theory.

Let’s see what they’re about.
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34.5.1 Irreducibility

Let 𝑃 be a fixed stochastic matrix.

Two states 𝑥 and 𝑦 are said to communicate with each other if there exist positive integers 𝑗 and 𝑘 such that

𝑃 𝑗(𝑥, 𝑦) > 0 and 𝑃 𝑘(𝑦, 𝑥) > 0

In view of our discussion above, this means precisely that

• state 𝑥 can eventually be reached from state 𝑦, and
• state 𝑦 can eventually be reached from state 𝑥

The stochastic matrix 𝑃 is called irreducible if all states communicate; that is, if 𝑥 and 𝑦 communicate for all (𝑥, 𝑦) in
𝑆 × 𝑆.
For example, consider the following transition probabilities for wealth of a fictitious set of households

We can translate this into a stochastic matrix, putting zeros where there’s no edge between nodes

𝑃 ∶= ⎛⎜
⎝

0.9 0.1 0
0.4 0.4 0.2
0.1 0.1 0.8

⎞⎟
⎠

It’s clear from the graph that this stochastic matrix is irreducible: we can eventually reach any state from any other state.

We can also test this using QuantEcon.py’s MarkovChain class

P = [[0.9, 0.1, 0.0],
[0.4, 0.4, 0.2],
[0.1, 0.1, 0.8]]

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

True

Here’s a more pessimistic scenario in which poor people remain poor forever

This stochastic matrix is not irreducible, since, for example, rich is not accessible from poor.

Let’s confirm this
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P = [[1.0, 0.0, 0.0],
[0.1, 0.8, 0.1],
[0.0, 0.2, 0.8]]

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

False

We can also determine the “communication classes”

mc.communication_classes

[array(['poor'], dtype='<U6'), array(['middle', 'rich'], dtype='<U6')]

It might be clear to you already that irreducibility is going to be important in terms of long run outcomes.

For example, poverty is a life sentence in the second graph but not the first.

We’ll come back to this a bit later.

34.5.2 Aperiodicity

Loosely speaking, a Markov chain is called periodic if it cycles in a predictable way, and aperiodic otherwise.

Here’s a trivial example with three states

The chain cycles with period 3:

P = [[0, 1, 0],
[0, 0, 1],
[1, 0, 0]]

mc = qe.MarkovChain(P)
mc.period
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3

More formally, the period of a state 𝑥 is the largest common divisor of a set of integers

𝐷(𝑥) ∶= {𝑗 ≥ 1 ∶ 𝑃 𝑗(𝑥, 𝑥) > 0}

In the last example, 𝐷(𝑥) = {3, 6, 9, …} for every state 𝑥, so the period is 3.
A stochastic matrix is called aperiodic if the period of every state is 1, and periodic otherwise.

For example, the stochastic matrix associated with the transition probabilities below is periodic because, for example,
state 𝑎 has period 2

We can confirm that the stochastic matrix is periodic with the following code

P = [[0.0, 1.0, 0.0, 0.0],
[0.5, 0.0, 0.5, 0.0],
[0.0, 0.5, 0.0, 0.5],
[0.0, 0.0, 1.0, 0.0]]

mc = qe.MarkovChain(P)
mc.period

2

mc.is_aperiodic

False

34.6 Stationary Distributions

As seen in (34.4), we can shift a marginal distribution forward one unit of time via postmultiplication by 𝑃 .

Some distributions are invariant under this updating process — for example,

P = np.array([[0.4, 0.6],
[0.2, 0.8]])

(continues on next page)
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(continued from previous page)

ψ = (0.25, 0.75)
ψ @ P

array([0.25, 0.75])

Such distributions are called stationary or invariant.

Formally, a marginal distribution 𝜓∗ on 𝑆 is called stationary for 𝑃 if 𝜓∗ = 𝜓∗𝑃 .

(This is the same notion of stationarity that we learned about in the lecture on AR(1) processes applied to a different
setting.)

From this equality, we immediately get 𝜓∗ = 𝜓∗𝑃 𝑡 for all 𝑡.
This tells us an important fact: If the distribution of𝑋0 is a stationary distribution, then𝑋𝑡 will have this same distribution
for all 𝑡.
Hence stationary distributions have a natural interpretation as stochastic steady states—we’ll discuss this more soon.

Mathematically, a stationary distribution is a fixed point of 𝑃 when 𝑃 is thought of as the map 𝜓 ↦ 𝜓𝑃 from (row)
vectors to (row) vectors.

Theorem. Every stochastic matrix 𝑃 has at least one stationary distribution.

(We are assuming here that the state space 𝑆 is finite; if not more assumptions are required)

For proof of this result, you can apply Brouwer’s fixed point theorem, or see EDTC, theorem 4.3.5.

There can be many stationary distributions corresponding to a given stochastic matrix 𝑃 .

• For example, if 𝑃 is the identity matrix, then all marginal distributions are stationary.

To get uniqueness an invariant distribution, the transition matrix 𝑃 must have the property that no nontrivial subsets of
the state space are infinitely persistent.

A subset of the state space is infinitely persistent if other parts of the state space cannot be accessed from it.

Thus, infinite persistence of a non-trivial subset is the opposite of irreducibility.

This gives some intuition for the following fundamental theorem.

Theorem. If 𝑃 is both aperiodic and irreducible, then

1. 𝑃 has exactly one stationary distribution 𝜓∗.

2. For any initial marginal distribution 𝜓0, we have ‖𝜓0𝑃 𝑡 − 𝜓∗‖ → 0 as 𝑡 → ∞.

For a proof, see, for example, theorem 5.2 of [Häggström, 2002].

(Note that part 1 of the theorem only requires irreducibility, whereas part 2 requires both irreducibility and aperiodicity)

A stochastic matrix that satisfies the conditions of the theorem is sometimes called uniformly ergodic.

A sufficient condition for aperiodicity and irreducibility is that every element of 𝑃 is strictly positive.

• Try to convince yourself of this.
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34.6.1 Example

Recall our model of the employment/unemployment dynamics of a particular worker discussed above.

Assuming 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), the uniform ergodicity condition is satisfied.

Let 𝜓∗ = (𝑝, 1 − 𝑝) be the stationary distribution, so that 𝑝 corresponds to unemployment (state 0).
Using 𝜓∗ = 𝜓∗𝑃 and a bit of algebra yields

𝑝 = 𝛽
𝛼 + 𝛽

This is, in some sense, a steady state probability of unemployment — more about the interpretation of this below.

Not surprisingly it tends to zero as 𝛽 → 0, and to one as 𝛼 → 0.

34.6.2 Calculating Stationary Distributions

As discussed above, a particular Markov matrix 𝑃 can have many stationary distributions.

That is, there can be many row vectors 𝜓 such that 𝜓 = 𝜓𝑃 .

In fact if 𝑃 has two distinct stationary distributions 𝜓1, 𝜓2 then it has infinitely many, since in this case, as you can verify,
for any 𝜆 ∈ [0, 1]

𝜓3 ∶= 𝜆𝜓1 + (1 − 𝜆)𝜓2

is a stationary distribution for 𝑃 .

If we restrict attention to the case in which only one stationary distribution exists, one way to finding it is to solve the
system

𝜓(𝐼𝑛 − 𝑃) = 0 (34.7)

for 𝜓, where 𝐼𝑛 is the 𝑛 × 𝑛 identity.

But the zero vector solves system (34.7), so we must proceed cautiously.

We want to impose the restriction that 𝜓 is a probability distribution.

There are various ways to do this.

One option is to regard solving system (34.7) as an eigenvector problem: a vector 𝜓 such that 𝜓 = 𝜓𝑃 is a left eigenvector
associated with the unit eigenvalue 𝜆 = 1.
A stable and sophisticated algorithm specialized for stochastic matrices is implemented in QuantEcon.py.

This is the one we recommend:

P = [[0.4, 0.6],
[0.2, 0.8]]

mc = qe.MarkovChain(P)
mc.stationary_distributions # Show all stationary distributions

array([[0.25, 0.75]])
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34.6.3 Convergence to Stationarity

Part 2 of the Markov chain convergence theorem stated above tells us that the marginal distribution of 𝑋𝑡 converges to
the stationary distribution regardless of where we begin.

This adds considerable authority to our interpretation of 𝜓∗ as a stochastic steady state.

The convergence in the theorem is illustrated in the next figure

P = ((0.971, 0.029, 0.000),
(0.145, 0.778, 0.077),
(0.000, 0.508, 0.492))

P = np.array(P)

ψ = (0.0, 0.2, 0.8) # Initial condition

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

ax.set(xlim=(0, 1), ylim=(0, 1), zlim=(0, 1),
xticks=(0.25, 0.5, 0.75),
yticks=(0.25, 0.5, 0.75),
zticks=(0.25, 0.5, 0.75))

x_vals, y_vals, z_vals = [], [], []
for t in range(20):

x_vals.append(ψ[0])
y_vals.append(ψ[1])
z_vals.append(ψ[2])
ψ = ψ @ P

ax.scatter(x_vals, y_vals, z_vals, c='r', s=60)
ax.view_init(30, 210)

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ax.scatter(ψ_star[0], ψ_star[1], ψ_star[2], c='k', s=60)

plt.show()
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Here

• 𝑃 is the stochastic matrix for recession and growth considered above.

• The highest red dot is an arbitrarily chosen initial marginal probability distribution 𝜓, represented as a vector in
ℝ3.

• The other red dots are the marginal distributions 𝜓𝑃 𝑡 for 𝑡 = 1, 2, ….

• The black dot is 𝜓∗.

You might like to try experimenting with different initial conditions.

34.7 Ergodicity

Under irreducibility, yet another important result obtains: for all 𝑥 ∈ 𝑆,

1
𝑚

𝑚
∑
𝑡=1

1{𝑋𝑡 = 𝑥} → 𝜓∗(𝑥) as 𝑚 → ∞ (34.8)

Here

• 1{𝑋𝑡 = 𝑥} = 1 if 𝑋𝑡 = 𝑥 and zero otherwise

• convergence is with probability one

• the result does not depend on the marginal distribution of 𝑋0
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The result tells us that the fraction of time the chain spends at state 𝑥 converges to 𝜓∗(𝑥) as time goes to infinity.
This gives us another way to interpret the stationary distribution— provided that the convergence result in (34.8) is valid.

The convergence asserted in (34.8) is a special case of a law of large numbers result for Markov chains — see EDTC,
section 4.3.4 for some additional information.

34.7.1 Example

Recall our cross-sectional interpretation of the employment/unemployment model discussed above.

Assume that 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), so that irreducibility and aperiodicity both hold.
We saw that the stationary distribution is (𝑝, 1 − 𝑝), where

𝑝 = 𝛽
𝛼 + 𝛽

In the cross-sectional interpretation, this is the fraction of people unemployed.

In view of our latest (ergodicity) result, it is also the fraction of time that a single worker can expect to spend unemployed.

Thus, in the long-run, cross-sectional averages for a population and time-series averages for a given person coincide.

This is one aspect of the concept of ergodicity.

34.8 Computing Expectations

We sometimes want to compute mathematical expectations of functions of 𝑋𝑡 of the form

𝔼[ℎ(𝑋𝑡)] (34.9)

and conditional expectations such as

𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] (34.10)

where

• {𝑋𝑡} is a Markov chain generated by 𝑛 × 𝑛 stochastic matrix 𝑃
• ℎ is a given function, which, in terms of matrix algebra, we’ll think of as the column vector

ℎ = ⎛⎜
⎝

ℎ(𝑥1)
⋮

ℎ(𝑥𝑛)
⎞⎟
⎠

Computing the unconditional expectation (34.9) is easy.

We just sum over the marginal distribution of 𝑋𝑡 to get

𝔼[ℎ(𝑋𝑡)] = ∑
𝑥∈𝑆

(𝜓𝑃 𝑡)(𝑥)ℎ(𝑥)

Here 𝜓 is the distribution of 𝑋0.

Since 𝜓 and hence 𝜓𝑃 𝑡 are row vectors, we can also write this as

𝔼[ℎ(𝑋𝑡)] = 𝜓𝑃 𝑡ℎ

For the conditional expectation (34.10), we need to sum over the conditional distribution of 𝑋𝑡+𝑘 given 𝑋𝑡 = 𝑥.
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We already know that this is 𝑃 𝑘(𝑥, ⋅), so
𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] = (𝑃 𝑘ℎ)(𝑥) (34.11)

The vector 𝑃 𝑘ℎ stores the conditional expectation 𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥] over all 𝑥.

34.8.1 Iterated Expectations

The law of iterated expectations states that

𝔼 [𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥]] = 𝔼[ℎ(𝑋𝑡+𝑘)]
where the outer 𝔼 on the left side is an unconditional distribution taken with respect to the marginal distribution 𝜓𝑡 of
𝑋𝑡 (again see equation (34.6)).

To verify the law of iterated expectations, use equation (34.11) to substitute (𝑃 𝑘ℎ)(𝑥) for 𝐸[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥], write
𝔼 [𝔼[ℎ(𝑋𝑡+𝑘) ∣ 𝑋𝑡 = 𝑥]] = 𝜓𝑡𝑃 𝑘ℎ,

and note 𝜓𝑡𝑃 𝑘ℎ = 𝜓𝑡+𝑘ℎ = 𝔼[ℎ(𝑋𝑡+𝑘)].

34.8.2 Expectations of Geometric Sums

Sometimes we want to compute the mathematical expectation of a geometric sum, such as ∑𝑡 𝛽𝑡ℎ(𝑋𝑡).
In view of the preceding discussion, this is

𝔼[
∞

∑
𝑗=0

𝛽𝑗ℎ(𝑋𝑡+𝑗) ∣ 𝑋𝑡 = 𝑥] = [(𝐼 − 𝛽𝑃)−1ℎ](𝑥)

where

(𝐼 − 𝛽𝑃)−1 = 𝐼 + 𝛽𝑃 + 𝛽2𝑃 2 + ⋯
Premultiplication by (𝐼 − 𝛽𝑃)−1 amounts to “applying the resolvent operator”.

34.9 Exercises

Exercise 34.9.1

According to the discussion above, if a worker’s employment dynamics obey the stochastic matrix

𝑃 = ( 1 − 𝛼 𝛼
𝛽 1 − 𝛽 )

with 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), then, in the long-run, the fraction of time spent unemployed will be

𝑝 ∶= 𝛽
𝛼 + 𝛽

In other words, if {𝑋𝑡} represents the Markov chain for employment, then 𝑋̄𝑚 → 𝑝 as 𝑚 → ∞, where

𝑋̄𝑚 ∶= 1
𝑚

𝑚
∑
𝑡=1

1{𝑋𝑡 = 0}
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This exercise asks you to illustrate convergence by computing 𝑋̄𝑚 for large 𝑚 and checking that it is close to 𝑝.
You will see that this statement is true regardless of the choice of initial condition or the values of 𝛼, 𝛽, provided
both lie in (0, 1).

Solution to Exercise 34.9.1

We will address this exercise graphically.

The plots show the time series of 𝑋̄𝑚 − 𝑝 for two initial conditions.
As 𝑚 gets large, both series converge to zero.

α = β = 0.1
N = 10000
p = β / (α + β)

P = ((1 - α, α), # Careful: P and p are distinct
( β, 1 - β))

mc = MarkovChain(P)

fig, ax = plt.subplots(figsize=(9, 6))
ax.set_ylim(-0.25, 0.25)
ax.grid()
ax.hlines(0, 0, N, lw=2, alpha=0.6) # Horizonal line at zero

for x0, col in ((0, 'blue'), (1, 'green')):
# Generate time series for worker that starts at x0
X = mc.simulate(N, init=x0)
# Compute fraction of time spent unemployed, for each n
X_bar = (X == 0).cumsum() / (1 + np.arange(N, dtype=float))
# Plot
ax.fill_between(range(N), np.zeros(N), X_bar - p, color=col, alpha=0.1)
ax.plot(X_bar - p, color=col, label=fr'$X_0 = \, {x0} $')
# Overlay in black--make lines clearer
ax.plot(X_bar - p, 'k-', alpha=0.6)

ax.legend(loc='upper right')
plt.show()
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Exercise 34.9.2

A topic of interest for economics and many other disciplines is ranking.

Let’s now consider one of the most practical and important ranking problems — the rank assigned to web pages by
search engines.

(Although the problem is motivated from outside of economics, there is in fact a deep connection between search
ranking systems and prices in certain competitive equilibria — see [Du et al., 2013].)

To understand the issue, consider the set of results returned by a query to a web search engine.

For the user, it is desirable to

1. receive a large set of accurate matches

2. have the matches returned in order, where the order corresponds to some measure of “importance”

Ranking according to a measure of importance is the problem we now consider.

The methodology developed to solve this problem by Google founders Larry Page and Sergey Brin is known as
PageRank.

To illustrate the idea, consider the following diagram
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Imagine that this is a miniature version of the WWW, with

• each node representing a web page

• each arrow representing the existence of a link from one page to another

Now let’s think about which pages are likely to be important, in the sense of being valuable to a search engine user.

One possible criterion for the importance of a page is the number of inbound links — an indication of popularity.

By this measure, m and j are the most important pages, with 5 inbound links each.

However, what if the pages linking to m, say, are not themselves important?

Thinking this way, it seems appropriate to weight the inbound nodes by relative importance.

The PageRank algorithm does precisely this.

A slightly simplified presentation that captures the basic idea is as follows.

Letting 𝑗 be (the integer index of) a typical page and 𝑟𝑗 be its ranking, we set

𝑟𝑗 = ∑
𝑖∈𝐿𝑗

𝑟𝑖
ℓ𝑖

where

• ℓ𝑖 is the total number of outbound links from 𝑖
• 𝐿𝑗 is the set of all pages 𝑖 such that 𝑖 has a link to 𝑗

This is a measure of the number of inbound links, weighted by their own ranking (and normalized by 1/ℓ𝑖).

There is, however, another interpretation, and it brings us back to Markov chains.

Let 𝑃 be the matrix given by 𝑃(𝑖, 𝑗) = 1{𝑖 → 𝑗}/ℓ𝑖 where 1{𝑖 → 𝑗} = 1 if 𝑖 has a link to 𝑗 and zero otherwise.
The matrix 𝑃 is a stochastic matrix provided that each page has at least one link.
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With this definition of 𝑃 we have

𝑟𝑗 = ∑
𝑖∈𝐿𝑗

𝑟𝑖
ℓ𝑖

= ∑
all 𝑖

1{𝑖 → 𝑗}𝑟𝑖
ℓ𝑖

= ∑
all 𝑖

𝑃(𝑖, 𝑗)𝑟𝑖

Writing 𝑟 for the row vector of rankings, this becomes 𝑟 = 𝑟𝑃 .

Hence 𝑟 is the stationary distribution of the stochastic matrix 𝑃 .

Let’s think of 𝑃(𝑖, 𝑗) as the probability of “moving” from page 𝑖 to page 𝑗.
The value 𝑃(𝑖, 𝑗) has the interpretation

• 𝑃(𝑖, 𝑗) = 1/𝑘 if 𝑖 has 𝑘 outbound links and 𝑗 is one of them
• 𝑃(𝑖, 𝑗) = 0 if 𝑖 has no direct link to 𝑗

Thus, motion from page to page is that of a web surfer who moves from one page to another by randomly clicking on
one of the links on that page.

Here “random” means that each link is selected with equal probability.

Since 𝑟 is the stationary distribution of 𝑃 , assuming that the uniform ergodicity condition is valid, we can interpret
𝑟𝑗 as the fraction of time that a (very persistent) random surfer spends at page 𝑗.
Your exercise is to apply this ranking algorithm to the graph pictured above and return the list of pages ordered by
rank.

There is a total of 14 nodes (i.e., web pages), the first named a and the last named n.

A typical line from the file has the form

d -> h;

This should be interpreted as meaning that there exists a link from d to h.

The data for this graph is shown below, and read into a file calledweb_graph_data.txtwhen the cell is executed.
%%file web_graph_data.txt
a -> d;
a -> f;
b -> j;
b -> k;
b -> m;
c -> c;
c -> g;
c -> j;
c -> m;
d -> f;
d -> h;
d -> k;
e -> d;
e -> h;
e -> l;
f -> a;
f -> b;
f -> j;
f -> l;
g -> b;
g -> j;
h -> d;
h -> g;
h -> l;
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h -> m;
i -> g;
i -> h;
i -> n;
j -> e;
j -> i;
j -> k;
k -> n;
l -> m;
m -> g;
n -> c;
n -> j;
n -> m;

Overwriting web_graph_data.txt

To parse this file and extract the relevant information, you can use regular expressions.

The following code snippet provides a hint as to how you can go about this

import re
re.findall(r'\w', 'x +++ y ****** z') # \w matches alphanumerics

['x', 'y', 'z']

re.findall(r'\w', 'a ^^ b &&& $$ c')

['a', 'b', 'c']

When you solve for the ranking, you will find that the highest ranked node is in fact g, while the lowest is a.

Solution to Exercise 34.9.2

Here is one solution:
"""
Return list of pages, ordered by rank
"""
import re
from operator import itemgetter

infile = 'web_graph_data.txt'
alphabet = 'abcdefghijklmnopqrstuvwxyz'

n = 14 # Total number of web pages (nodes)

# Create a matrix Q indicating existence of links
# * Q[i, j] = 1 if there is a link from i to j
# * Q[i, j] = 0 otherwise
Q = np.zeros((n, n), dtype=int)
with open(infile) as f:

edges = f.readlines()
for edge in edges:

from_node, to_node = re.findall(r'\w', edge)
i, j = alphabet.index(from_node), alphabet.index(to_node)
Q[i, j] = 1

# Create the corresponding Markov matrix P
P = np.empty((n, n))
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for i in range(n):
P[i, :] = Q[i, :] / Q[i, :].sum()

mc = MarkovChain(P)
# Compute the stationary distribution r
r = mc.stationary_distributions[0]
ranked_pages = {alphabet[i] : r[i] for i in range(n)}
# Print solution, sorted from highest to lowest rank
print('Rankings\n ***')
for name, rank in sorted(ranked_pages.items(), key=itemgetter(1), reverse=1):

print(f'{name}: {rank:.4}')

Rankings
***

g: 0.1607
j: 0.1594
m: 0.1195
n: 0.1088
k: 0.09106
b: 0.08326
e: 0.05312
i: 0.05312
c: 0.04834
h: 0.0456
l: 0.03202
d: 0.03056
f: 0.01164
a: 0.002911

Exercise 34.9.3

In numerical work, it is sometimes convenient to replace a continuous model with a discrete one.

In particular, Markov chains are routinely generated as discrete approximations to AR(1) processes of the form

𝑦𝑡+1 = 𝜌𝑦𝑡 + 𝑢𝑡+1

Here 𝑢𝑡 is assumed to be IID and 𝑁(0, 𝜎2
𝑢).

The variance of the stationary probability distribution of {𝑦𝑡} is

𝜎2
𝑦 ∶= 𝜎2

𝑢
1 − 𝜌2

Tauchen’s method [Tauchen, 1986] is the most common method for approximating this continuous state process with
a finite state Markov chain.

A routine for this already exists in QuantEcon.py but let’s write our own version as an exercise.

As a first step, we choose

• 𝑛, the number of states for the discrete approximation
• 𝑚, an integer that parameterizes the width of the state space

Next, we create a state space {𝑥0, … , 𝑥𝑛−1} ⊂ ℝ and a stochastic 𝑛 × 𝑛 matrix 𝑃 such that

• 𝑥0 = −𝑚 𝜎𝑦

• 𝑥𝑛−1 = 𝑚 𝜎𝑦
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• 𝑥𝑖+1 = 𝑥𝑖 + 𝑠 where 𝑠 = (𝑥𝑛−1 − 𝑥0)/(𝑛 − 1)
Let 𝐹 be the cumulative distribution function of the normal distribution 𝑁(0, 𝜎2

𝑢).
The values 𝑃(𝑥𝑖, 𝑥𝑗) are computed to approximate the AR(1) process — omitting the derivation, the rules are as
follows:

1. If 𝑗 = 0, then set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝑃(𝑥𝑖, 𝑥0) = 𝐹(𝑥0 − 𝜌𝑥𝑖 + 𝑠/2)

2. If 𝑗 = 𝑛 − 1, then set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝑃(𝑥𝑖, 𝑥𝑛−1) = 1 − 𝐹(𝑥𝑛−1 − 𝜌𝑥𝑖 − 𝑠/2)

3. Otherwise, set

𝑃(𝑥𝑖, 𝑥𝑗) = 𝐹(𝑥𝑗 − 𝜌𝑥𝑖 + 𝑠/2) − 𝐹(𝑥𝑗 − 𝜌𝑥𝑖 − 𝑠/2)

The exercise is to write a function approx_markov(rho, sigma_u, m=3, n=7) that returns
{𝑥0, … , 𝑥𝑛−1} ⊂ ℝ and 𝑛 × 𝑛 matrix 𝑃 as described above.

• Even better, write a function that returns an instance of QuantEcon.py’s MarkovChain class.

Solution to Exercise 34.9.3

A solution from the QuantEcon.py library can be found here.
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35.1 Overview

In this lecture we will study the time path of inventories for firms that follow so-called s-S inventory dynamics.

Such firms

1. wait until inventory falls below some level 𝑠 and then
2. order sufficient quantities to bring their inventory back up to capacity 𝑆.

These kinds of policies are common in practice and also optimal in certain circumstances.

A review of early literature and some macroeconomic implications can be found in [Caplin, 1985].

Here our main aim is to learn more about simulation, time series and Markov dynamics.

While our Markov environment and many of the concepts we consider are related to those found in our lecture on finite
Markov chains, the state space is a continuum in the current application.

Let’s start with some imports

import matplotlib.pyplot as plt
import numpy as np
from numba import jit, float64, prange
from numba.experimental import jitclass
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35.2 Sample Paths

Consider a firm with inventory 𝑋𝑡.

The firm waits until 𝑋𝑡 ≤ 𝑠 and then restocks up to 𝑆 units.

It faces stochastic demand {𝐷𝑡}, which we assume is IID.
With notation 𝑎+ ∶= max{𝑎, 0}, inventory dynamics can be written as

𝑋𝑡+1 = {(𝑆 − 𝐷𝑡+1)+ if 𝑋𝑡 ≤ 𝑠
(𝑋𝑡 − 𝐷𝑡+1)+ if 𝑋𝑡 > 𝑠

In what follows, we will assume that each 𝐷𝑡 is lognormal, so that

𝐷𝑡 = exp(𝜇 + 𝜎𝑍𝑡)

where 𝜇 and 𝜎 are parameters and {𝑍𝑡} is IID and standard normal.

Here’s a class that stores parameters and generates time paths for inventory.

firm_data = [
('s', float64), # restock trigger level
('S', float64), # capacity
('mu', float64), # shock location parameter
('sigma', float64) # shock scale parameter

]

@jitclass(firm_data)
class Firm:

def __init__(self, s=10, S=100, mu=1.0, sigma=0.5):

self.s, self.S, self.mu, self.sigma = s, S, mu, sigma

def update(self, x):
"Update the state from t to t+1 given current state x."

Z = np.random.randn()
D = np.exp(self.mu + self.sigma * Z)
if x <= self.s:

return max(self.S - D, 0)
else:

return max(x - D, 0)

def sim_inventory_path(self, x_init, sim_length):

X = np.empty(sim_length)
X[0] = x_init

for t in range(sim_length-1):
X[t+1] = self.update(X[t])

return X

Let’s run a first simulation, of a single path:
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firm = Firm()

s, S = firm.s, firm.S
sim_length = 100
x_init = 50

X = firm.sim_inventory_path(x_init, sim_length)

fig, ax = plt.subplots()
bbox = (0., 1.02, 1., .102)
legend_args = {'ncol': 3,

'bbox_to_anchor': bbox,
'loc': 3,
'mode': 'expand'}

ax.plot(X, label="inventory")
ax.plot(np.full(sim_length, s), 'k--', label="$s$")
ax.plot(np.full(sim_length, S), 'k-', label="$S$")
ax.set_ylim(0, S+10)
ax.set_xlabel("time")
ax.legend(**legend_args)

plt.show()

Now let’s simulate multiple paths in order to build a more complete picture of the probabilities of different outcomes:
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sim_length=200
fig, ax = plt.subplots()

ax.plot(np.full(sim_length, s), 'k--', label="$s$")
ax.plot(np.full(sim_length, S), 'k-', label="$S$")
ax.set_ylim(0, S+10)
ax.legend(**legend_args)

for i in range(400):
X = firm.sim_inventory_path(x_init, sim_length)
ax.plot(X, 'b', alpha=0.2, lw=0.5)

plt.show()

35.3 Marginal Distributions

Now let’s look at the marginal distribution 𝜓𝑇 of 𝑋𝑇 for some fixed 𝑇 .
We will do this by generating many draws of 𝑋𝑇 given initial condition 𝑋0.

With these draws of 𝑋𝑇 we can build up a picture of its distribution 𝜓𝑇 .

Here’s one visualization, with 𝑇 = 50.
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T = 50
M = 200 # Number of draws

ymin, ymax = 0, S + 10

fig, axes = plt.subplots(1, 2, figsize=(11, 6))

for ax in axes:
ax.grid(alpha=0.4)

ax = axes[0]

ax.set_ylim(ymin, ymax)
ax.set_ylabel('$X_t$', fontsize=16)
ax.vlines((T,), -1.5, 1.5)

ax.set_xticks((T,))
ax.set_xticklabels((r'$T$',))

sample = np.empty(M)
for m in range(M):

X = firm.sim_inventory_path(x_init, 2 * T)
ax.plot(X, 'b-', lw=1, alpha=0.5)
ax.plot((T,), (X[T+1],), 'ko', alpha=0.5)
sample[m] = X[T+1]

axes[1].set_ylim(ymin, ymax)

axes[1].hist(sample,
bins=16,
density=True,
orientation='horizontal',
histtype='bar',
alpha=0.5)

plt.show()
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We can build up a clearer picture by drawing more samples

T = 50
M = 50_000

fig, ax = plt.subplots()

sample = np.empty(M)
for m in range(M):

X = firm.sim_inventory_path(x_init, T+1)
sample[m] = X[T]

ax.hist(sample,
bins=36,
density=True,
histtype='bar',
alpha=0.75)

plt.show()
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Note that the distribution is bimodal

• Most firms have restocked twice but a few have restocked only once (see figure with paths above).

• Firms in the second category have lower inventory.

We can also approximate the distribution using a kernel density estimator.

Kernel density estimators can be thought of as smoothed histograms.

They are preferable to histograms when the distribution being estimated is likely to be smooth.

We will use a kernel density estimator from scikit-learn

from sklearn.neighbors import KernelDensity

def plot_kde(sample, ax, label=''):

xmin, xmax = 0.9 * min(sample), 1.1 * max(sample)
xgrid = np.linspace(xmin, xmax, 200)
kde = KernelDensity(kernel='gaussian').fit(sample[:, None])
log_dens = kde.score_samples(xgrid[:, None])

ax.plot(xgrid, np.exp(log_dens), label=label)

fig, ax = plt.subplots()
plot_kde(sample, ax)
plt.show()
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The allocation of probability mass is similar to what was shown by the histogram just above.

35.4 Exercises

Exercise 35.4.1

This model is asymptotically stationary, with a unique stationary distribution.

(See the discussion of stationarity in our lecture on AR(1) processes for background— the fundamental concepts are
the same.)

In particular, the sequence of marginal distributions {𝜓𝑡} is converging to a unique limiting distribution that does not
depend on initial conditions.

Although we will not prove this here, we can investigate it using simulation.

Your task is to generate and plot the sequence {𝜓𝑡} at times 𝑡 = 10, 50, 250, 500, 750 based on the discussion above.
(The kernel density estimator is probably the best way to present each distribution.)

You should see convergence, in the sense that differences between successive distributions are getting smaller.

Try different initial conditions to verify that, in the long run, the distribution is invariant across initial conditions.

Solution to Exercise 35.4.1

Below is one possible solution:
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The computations involve a lot of CPU cycles so we have tried to write the code efficiently.

This meant writing a specialized function rather than using the class above.

s, S, mu, sigma = firm.s, firm.S, firm.mu, firm.sigma

@jit(parallel=True)
def shift_firms_forward(current_inventory_levels, num_periods):

num_firms = len(current_inventory_levels)
new_inventory_levels = np.empty(num_firms)

for f in prange(num_firms):
x = current_inventory_levels[f]
for t in range(num_periods):

Z = np.random.randn()
D = np.exp(mu + sigma * Z)
if x <= s:

x = max(S - D, 0)
else:

x = max(x - D, 0)
new_inventory_levels[f] = x

return new_inventory_levels

x_init = 50
num_firms = 50_000

sample_dates = 0, 10, 50, 250, 500, 750

first_diffs = np.diff(sample_dates)

fig, ax = plt.subplots()

X = np.full(num_firms, x_init)

current_date = 0
for d in first_diffs:

X = shift_firms_forward(X, d)
current_date += d
plot_kde(X, ax, label=f't = {current_date}')

ax.set_xlabel('inventory')
ax.set_ylabel('probability')
ax.legend()
plt.show()
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Notice that by 𝑡 = 500 or 𝑡 = 750 the densities are barely changing.
We have reached a reasonable approximation of the stationary density.

You can convince yourself that initial conditions don’t matter by testing a few of them.

For example, try rerunning the code above with all firms starting at 𝑋0 = 20 or 𝑋0 = 80.

Exercise 35.4.2

Using simulation, calculate the probability that firms that start with 𝑋0 = 70 need to order twice or more in the first
50 periods.

You will need a large sample size to get an accurate reading.

Solution to Exercise 35.4.2

Here is one solution.

Again, the computations are relatively intensive so we have written a a specialized function rather than using the class
above.

We will also use parallelization across firms.
@jit(parallel=True)
def compute_freq(sim_length=50, x_init=70, num_firms=1_000_000):
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firm_counter = 0 # Records number of firms that restock 2x or more
for m in prange(num_firms):

x = x_init
restock_counter = 0 # Will record number of restocks for firm m

for t in range(sim_length):
Z = np.random.randn()
D = np.exp(mu + sigma * Z)
if x <= s:

x = max(S - D, 0)
restock_counter += 1

else:
x = max(x - D, 0)

if restock_counter > 1:
firm_counter += 1

return firm_counter / num_firms

Note the time the routine takes to run, as well as the output.

%%time

freq = compute_freq()
print(f"Frequency of at least two stock outs = {freq}")

Frequency of at least two stock outs = 0.446231
CPU times: user 3.29 s, sys: 3.01 ms, total: 3.29 s
Wall time: 776 ms

Try switching the parallel flag to False in the jitted function above.

Depending on your system, the difference can be substantial.

(On our desktop machine, the speed up is by a factor of 5.)
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“Wemay regard the present state of the universe as the effect of its past and the cause of its future” –Marquis
de Laplace

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

36.1 Overview

This lecture introduces the linear state space dynamic system.

The linear state space system is a generalization of the scalar AR(1) process we studied before.

This model is a workhorse that carries a powerful theory of prediction.

Its many applications include:

• representing dynamics of higher-order linear systems

• predicting the position of a system 𝑗 steps into the future
• predicting a geometric sum of future values of a variable like

– non-financial income
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– dividends on a stock

– the money supply

– a government deficit or surplus, etc.

• key ingredient of useful models

– Friedman’s permanent income model of consumption smoothing.

– Barro’s model of smoothing total tax collections.

– Rational expectations version of Cagan’s model of hyperinflation.

– Sargent and Wallace’s “unpleasant monetarist arithmetic,” etc.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from quantecon import LinearStateSpace
from scipy.stats import norm
import random

36.2 The Linear State Space Model

The objects in play are:

• An 𝑛 × 1 vector 𝑥𝑡 denoting the state at time 𝑡 = 0, 1, 2, ….

• An IID sequence of 𝑚 × 1 random vectors 𝑤𝑡 ∼ 𝑁(0, 𝐼).
• A 𝑘 × 1 vector 𝑦𝑡 of observations at time 𝑡 = 0, 1, 2, ….

• An 𝑛 × 𝑛 matrix 𝐴 called the transition matrix.

• An 𝑛 × 𝑚 matrix 𝐶 called the volatility matrix.

• A 𝑘 × 𝑛 matrix 𝐺 sometimes called the output matrix.

Here is the linear state-space system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡
𝑥0 ∼ 𝑁(𝜇0, Σ0)

36.2.1 Primitives

The primitives of the model are

1. the matrices 𝐴, 𝐶, 𝐺
2. shock distribution, which we have specialized to 𝑁(0, 𝐼)
3. the distribution of the initial condition 𝑥0, which we have set to 𝑁(𝜇0, Σ0)

Given 𝐴, 𝐶, 𝐺 and draws of 𝑥0 and 𝑤1, 𝑤2, …, the model (36.1) pins down the values of the sequences {𝑥𝑡} and {𝑦𝑡}.
Even without these draws, the primitives 1–3 pin down the probability distributions of {𝑥𝑡} and {𝑦𝑡}.
Later we’ll see how to compute these distributions and their moments.
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Martingale Difference Shocks

We’ve made the common assumption that the shocks are independent standardized normal vectors.

But some of what we say will be valid under the assumption that {𝑤𝑡+1} is a martingale difference sequence.
A martingale difference sequence is a sequence that is zero mean when conditioned on past information.

In the present case, since {𝑥𝑡} is our state sequence, this means that it satisfies

𝔼[𝑤𝑡+1|𝑥𝑡, 𝑥𝑡−1, …] = 0

This is a weaker condition than that {𝑤𝑡} is IID with 𝑤𝑡+1 ∼ 𝑁(0, 𝐼).

36.2.2 Examples

By appropriate choice of the primitives, a variety of dynamics can be represented in terms of the linear state space model.

The following examples help to highlight this point.

They also illustrate the wise dictum finding the state is an art.

Second-order Difference Equation

Let {𝑦𝑡} be a deterministic sequence that satisfies

𝑦𝑡+1 = 𝜙0 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 s.t. 𝑦0, 𝑦−1 given (36.1)

To map (36.1) into our state space system (36.1), we set

𝑥𝑡 = ⎡⎢
⎣

1
𝑦𝑡

𝑦𝑡−1

⎤⎥
⎦

𝐴 = ⎡⎢
⎣

1 0 0
𝜙0 𝜙1 𝜙2
0 1 0

⎤⎥
⎦

𝐶 = ⎡⎢
⎣

0
0
0
⎤⎥
⎦

𝐺 = [0 1 0]

You can confirm that under these definitions, (36.1) and (36.1) agree.

The next figure shows the dynamics of this process when 𝜙0 = 1.1, 𝜙1 = 0.8, 𝜙2 = −0.8, 𝑦0 = 𝑦−1 = 1.
def plot_lss(A,

C,
G,
n=3,
ts_length=50):

ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))
x, y = ar.simulate(ts_length)

fig, ax = plt.subplots()
y = y.flatten()
ax.plot(y, 'b-', lw=2, alpha=0.7)
ax.grid()
ax.set_xlabel('time', fontsize=12)
ax.set_ylabel('$y_t$', fontsize=12)
plt.show()
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ϕ_0, ϕ_1, ϕ_2 = 1.1, 0.8, -0.8

A = [[1, 0, 0 ],
[ϕ_0, ϕ_1, ϕ_2],
[0, 1, 0 ]]

C = np.zeros((3, 1))
G = [0, 1, 0]

plot_lss(A, C, G)

Later you’ll be asked to recreate this figure.

Univariate Autoregressive Processes

We can use (36.1) to represent the model

𝑦𝑡+1 = 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 + 𝜙3𝑦𝑡−2 + 𝜙4𝑦𝑡−3 + 𝜎𝑤𝑡+1 (36.2)

where {𝑤𝑡} is IID and standard normal.

To put this in the linear state space format we take 𝑥𝑡 = [𝑦𝑡 𝑦𝑡−1 𝑦𝑡−2 𝑦𝑡−3]′
and

𝐴 =
⎡
⎢⎢
⎣

𝜙1 𝜙2 𝜙3 𝜙4
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

𝐶 =
⎡
⎢⎢
⎣

𝜎
0
0
0

⎤
⎥⎥
⎦

𝐺 = [1 0 0 0]
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The matrix 𝐴 has the form of the companion matrix to the vector [𝜙1 𝜙2 𝜙3 𝜙4].
The next figure shows the dynamics of this process when

𝜙1 = 0.5, 𝜙2 = −0.2, 𝜙3 = 0, 𝜙4 = 0.5, 𝜎 = 0.2, 𝑦0 = 𝑦−1 = 𝑦−2 = 𝑦−3 = 1

ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.2

A_1 = [[ϕ_1, ϕ_2, ϕ_3, ϕ_4],
[1, 0, 0, 0 ],
[0, 1, 0, 0 ],
[0, 0, 1, 0 ]]

C_1 = [[σ],
[0],
[0],
[0]]

G_1 = [1, 0, 0, 0]

plot_lss(A_1, C_1, G_1, n=4, ts_length=200)
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Vector Autoregressions

Now suppose that

• 𝑦𝑡 is a 𝑘 × 1 vector
• 𝜙𝑗 is a 𝑘 × 𝑘 matrix and

• 𝑤𝑡 is 𝑘 × 1
Then (36.2) is termed a vector autoregression.

To map this into (36.1), we set

𝑥𝑡 =
⎡
⎢⎢
⎣

𝑦𝑡
𝑦𝑡−1
𝑦𝑡−2
𝑦𝑡−3

⎤
⎥⎥
⎦

𝐴 =
⎡
⎢⎢
⎣

𝜙1 𝜙2 𝜙3 𝜙4
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0

⎤
⎥⎥
⎦

𝐶 =
⎡
⎢⎢
⎣

𝜎
0
0
0

⎤
⎥⎥
⎦

𝐺 = [𝐼 0 0 0]

where 𝐼 is the 𝑘 × 𝑘 identity matrix and 𝜎 is a 𝑘 × 𝑘 matrix.

Seasonals

We can use (36.1) to represent

1. the deterministic seasonal 𝑦𝑡 = 𝑦𝑡−4

2. the indeterministic seasonal 𝑦𝑡 = 𝜙4𝑦𝑡−4 + 𝑤𝑡

In fact, both are special cases of (36.2).

With the deterministic seasonal, the transition matrix becomes

𝐴 =
⎡
⎢⎢
⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

It is easy to check that 𝐴4 = 𝐼 , which implies that 𝑥𝑡 is strictly periodic with period 4:
1

𝑥𝑡+4 = 𝑥𝑡

Such an 𝑥𝑡 process can be used to model deterministic seasonals in quarterly time series.

The indeterministic seasonal produces recurrent, but aperiodic, seasonal fluctuations.

Time Trends

The model 𝑦𝑡 = 𝑎𝑡 + 𝑏 is known as a linear time trend.

We can represent this model in the linear state space form by taking

𝐴 = [1 1
0 1] 𝐶 = [0

0] 𝐺 = [𝑎 𝑏] (36.3)

and starting at initial condition 𝑥0 = [0 1]′
.

In fact, it’s possible to use the state-space system to represent polynomial trends of any order.

1 The eigenvalues of 𝐴 are (1, −1, 𝑖, −𝑖).
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For instance, we can represent the model 𝑦𝑡 = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 in the linear state space form by taking

𝐴 = ⎡⎢
⎣

1 1 0
0 1 1
0 0 1

⎤⎥
⎦

𝐶 = ⎡⎢
⎣

0
0
0
⎤⎥
⎦

𝐺 = [2𝑎 𝑎 + 𝑏 𝑐]

and starting at initial condition 𝑥0 = [0 0 1]′
.

It follows that

𝐴𝑡 = ⎡⎢
⎣

1 𝑡 𝑡(𝑡 − 1)/2
0 1 𝑡
0 0 1

⎤⎥
⎦

Then 𝑥′
𝑡 = [𝑡(𝑡 − 1)/2 𝑡 1]. You can now confirm that 𝑦𝑡 = 𝐺𝑥𝑡 has the correct form.

36.2.3 Moving Average Representations

A nonrecursive expression for 𝑥𝑡 as a function of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡 can be found by using (36.1) repeatedly to obtain

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐶𝑤𝑡
= 𝐴2𝑥𝑡−2 + 𝐴𝐶𝑤𝑡−1 + 𝐶𝑤𝑡

⋮

=
𝑡−1
∑
𝑗=0

𝐴𝑗𝐶𝑤𝑡−𝑗 + 𝐴𝑡𝑥0

Representation (36.4) is a moving average representation.

It expresses {𝑥𝑡} as a linear function of
1. current and past values of the process {𝑤𝑡} and
2. the initial condition 𝑥0

As an example of a moving average representation, let the model be

𝐴 = [1 1
0 1] 𝐶 = [1

0]

You will be able to show that 𝐴𝑡 = [1 𝑡
0 1] and 𝐴𝑗𝐶 = [1 0]′

.

Substituting into the moving average representation (36.4), we obtain

𝑥1𝑡 =
𝑡−1
∑
𝑗=0

𝑤𝑡−𝑗 + [1 𝑡] 𝑥0

where 𝑥1𝑡 is the first entry of 𝑥𝑡.

The first term on the right is a cumulated sum of martingale differences and is therefore a martingale.

The second term is a translated linear function of time.

For this reason, 𝑥1𝑡 is called a martingale with drift.
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36.3 Distributions and Moments

36.3.1 Unconditional Moments

Using (36.1), it’s easy to obtain expressions for the (unconditional) means of 𝑥𝑡 and 𝑦𝑡.

We’ll explain what unconditional and conditional mean soon.

Letting 𝜇𝑡 ∶= 𝔼[𝑥𝑡] and using linearity of expectations, we find that

𝜇𝑡+1 = 𝐴𝜇𝑡 with 𝜇0 given (36.4)

Here 𝜇0 is a primitive given in (36.1).

The variance-covariance matrix of 𝑥𝑡 is Σ𝑡 ∶= 𝔼[(𝑥𝑡 − 𝜇𝑡)(𝑥𝑡 − 𝜇𝑡)′].
Using 𝑥𝑡+1 − 𝜇𝑡+1 = 𝐴(𝑥𝑡 − 𝜇𝑡) + 𝐶𝑤𝑡+1, we can determine this matrix recursively via

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ + 𝐶𝐶′ with Σ0 given (36.5)

As with 𝜇0, the matrix Σ0 is a primitive given in (36.1).

As a matter of terminology, we will sometimes call

• 𝜇𝑡 the unconditional mean of 𝑥𝑡

• Σ𝑡 the unconditional variance-covariance matrix of 𝑥𝑡

This is to distinguish 𝜇𝑡 and Σ𝑡 from related objects that use conditioning information, to be defined below.

However, you should be aware that these “unconditional” moments do depend on the initial distribution 𝑁(𝜇0, Σ0).

Moments of the Observables

Using linearity of expectations again we have

𝔼[𝑦𝑡] = 𝔼[𝐺𝑥𝑡] = 𝐺𝜇𝑡 (36.6)

The variance-covariance matrix of 𝑦𝑡 is easily shown to be

Var[𝑦𝑡] = Var[𝐺𝑥𝑡] = 𝐺Σ𝑡𝐺′ (36.7)

36.3.2 Distributions

In general, knowing the mean and variance-covariance matrix of a random vector is not quite as good as knowing the full
distribution.

However, there are some situations where these moments alone tell us all we need to know.

These are situations in which the mean vector and covariance matrix are all of the parameters that pin down the popu-
lation distribution.

One such situation is when the vector in question is Gaussian (i.e., normally distributed).

This is the case here, given

1. our Gaussian assumptions on the primitives

2. the fact that normality is preserved under linear operations
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In fact, it’s well-known that

𝑢 ∼ 𝑁(𝑢̄, 𝑆) and 𝑣 = 𝑎 + 𝐵𝑢 ⟹ 𝑣 ∼ 𝑁(𝑎 + 𝐵𝑢̄, 𝐵𝑆𝐵′) (36.8)

In particular, given our Gaussian assumptions on the primitives and the linearity of (36.1) we can see immediately that
both 𝑥𝑡 and 𝑦𝑡 are Gaussian for all 𝑡 ≥ 02.
Since 𝑥𝑡 is Gaussian, to find the distribution, all we need to do is find its mean and variance-covariance matrix.

But in fact we’ve already done this, in (36.4) and (36.5).

Letting 𝜇𝑡 and Σ𝑡 be as defined by these equations, we have

𝑥𝑡 ∼ 𝑁(𝜇𝑡, Σ𝑡) (36.9)

By similar reasoning combined with (36.6) and (36.7),

𝑦𝑡 ∼ 𝑁(𝐺𝜇𝑡, 𝐺Σ𝑡𝐺′) (36.10)

36.3.3 Ensemble Interpretations

How should we interpret the distributions defined by (36.9)–(36.10)?

Intuitively, the probabilities in a distribution correspond to relative frequencies in a large population drawn from that
distribution.

Let’s apply this idea to our setting, focusing on the distribution of 𝑦𝑇 for fixed 𝑇 .
We can generate independent draws of 𝑦𝑇 by repeatedly simulating the evolution of the system up to time 𝑇 , using an
independent set of shocks each time.

The next figure shows 20 simulations, producing 20 time series for {𝑦𝑡}, and hence 20 draws of 𝑦𝑇 .

The system in question is the univariate autoregressive model (36.2).

The values of 𝑦𝑇 are represented by black dots in the left-hand figure

def cross_section_plot(A,
C,
G,
T=20, # Set the time
ymin=-0.8,
ymax=1.25,
sample_size = 20, # 20 observations/simulations
n=4): # The number of dimensions for the initial x0

ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))

fig, axes = plt.subplots(1, 2, figsize=(16, 5))

for ax in axes:
ax.grid(alpha=0.4)
ax.set_ylim(ymin, ymax)

ax = axes[0]
ax.set_ylim(ymin, ymax)
ax.set_ylabel('$y_t$', fontsize=12)

(continues on next page)

2 The correct way to argue this is by induction. Suppose that 𝑥𝑡 is Gaussian. Then (36.1) and (36.8) imply that 𝑥𝑡+1 is Gaussian. Since 𝑥0 is
assumed to be Gaussian, it follows that every 𝑥𝑡 is Gaussian. Evidently, this implies that each 𝑦𝑡 is Gaussian.
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(continued from previous page)

ax.set_xlabel('time', fontsize=12)
ax.vlines((T,), -1.5, 1.5)

ax.set_xticks((T,))
ax.set_xticklabels(('$T$',))

sample = []
for i in range(sample_size):

rcolor = random.choice(('c', 'g', 'b', 'k'))
x, y = ar.simulate(ts_length=T+15)
y = y.flatten()
ax.plot(y, color=rcolor, lw=1, alpha=0.5)
ax.plot((T,), (y[T],), 'ko', alpha=0.5)
sample.append(y[T])

y = y.flatten()
axes[1].set_ylim(ymin, ymax)
axes[1].set_ylabel('$y_t$', fontsize=12)
axes[1].set_xlabel('relative frequency', fontsize=12)
axes[1].hist(sample, bins=16, density=True, orientation='horizontal', alpha=0.5)
plt.show()

ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.1

A_2 = [[ϕ_1, ϕ_2, ϕ_3, ϕ_4],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]]

C_2 = [[σ], [0], [0], [0]]

G_2 = [1, 0, 0, 0]

cross_section_plot(A_2, C_2, G_2)

In the right-hand figure, these values are converted into a rotated histogram that shows relative frequencies from our
sample of 20 𝑦𝑇 ’s.

Here is another figure, this time with 100 observations
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t = 100
cross_section_plot(A_2, C_2, G_2, T=t)

Let’s now try with 500,000 observations, showing only the histogram (without rotation)

T = 100
ymin=-0.8
ymax=1.25
sample_size = 500_000

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))
fig, ax = plt.subplots()
x, y = ar.simulate(sample_size)
mu_x, mu_y, Sigma_x, Sigma_y, Sigma_yx = ar.stationary_distributions()
f_y = norm(loc=float(mu_y.item()), scale=float(np.sqrt(Sigma_y.item())))
y = y.flatten()
ygrid = np.linspace(ymin, ymax, 150)

ax.hist(y, bins=50, density=True, alpha=0.4)
ax.plot(ygrid, f_y.pdf(ygrid), 'k-', lw=2, alpha=0.8, label='true density')
ax.set_xlim(ymin, ymax)
ax.set_xlabel('$y_t$', fontsize=12)
ax.set_ylabel('relative frequency', fontsize=12)
ax.legend(fontsize=12)
plt.show()
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The black line is the population density of 𝑦𝑇 calculated from (36.10).

The histogram and population distribution are close, as expected.

By looking at the figures and experimenting with parameters, you will gain a feel for how the population distribution
depends on the model primitives listed above, as intermediated by the distribution’s parameters.

Ensemble Means

In the preceding figure, we approximated the population distribution of 𝑦𝑇 by

1. generating 𝐼 sample paths (i.e., time series) where 𝐼 is a large number
2. recording each observation 𝑦𝑖

𝑇

3. histogramming this sample

Just as the histogram approximates the population distribution, the ensemble or cross-sectional average

̄𝑦𝑇 ∶= 1
𝐼

𝐼
∑
𝑖=1

𝑦𝑖
𝑇

approximates the expectation 𝔼[𝑦𝑇 ] = 𝐺𝜇𝑇 (as implied by the law of large numbers).

Here’s a simulation comparing the ensemble averages and population means at time points 𝑡 = 0, … , 50.
The parameters are the same as for the preceding figures, and the sample size is relatively small (𝐼 = 20).
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I = 20
T = 50
ymin = -0.5
ymax = 1.15

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))

fig, ax = plt.subplots()

ensemble_mean = np.zeros(T)
for i in range(I):

x, y = ar.simulate(ts_length=T)
y = y.flatten()
ax.plot(y, 'c-', lw=0.8, alpha=0.5)
ensemble_mean = ensemble_mean + y

ensemble_mean = ensemble_mean / I
ax.plot(ensemble_mean, color='b', lw=2, alpha=0.8, label='$\\bar y_t$')
m = ar.moment_sequence()

population_means = []
for t in range(T):

μ_x, μ_y, Σ_x, Σ_y = next(m)
population_means.append(float(μ_y.item()))

ax.plot(population_means, color='g', lw=2, alpha=0.8, label=r'$G\mu_t$')
ax.set_ylim(ymin, ymax)
ax.set_xlabel('time', fontsize=12)
ax.set_ylabel('$y_t$', fontsize=12)
ax.legend(ncol=2)
plt.show()
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The ensemble mean for 𝑥𝑡 is

̄𝑥𝑇 ∶= 1
𝐼

𝐼
∑
𝑖=1

𝑥𝑖
𝑇 → 𝜇𝑇 (𝐼 → ∞)

The limit 𝜇𝑇 is a “long-run average”.

(By long-run average we mean the average for an infinite (𝐼 = ∞) number of sample 𝑥𝑇 ’s)

Another application of the law of large numbers assures us that

1
𝐼

𝐼
∑
𝑖=1

(𝑥𝑖
𝑇 − ̄𝑥𝑇 )(𝑥𝑖

𝑇 − ̄𝑥𝑇 )′ → Σ𝑇 (𝐼 → ∞)

36.3.4 Joint Distributions

In the preceding discussion, we looked at the distributions of 𝑥𝑡 and 𝑦𝑡 in isolation.

This gives us useful information but doesn’t allow us to answer questions like

• what’s the probability that 𝑥𝑡 ≥ 0 for all 𝑡?
• what’s the probability that the process {𝑦𝑡} exceeds some value 𝑎 before falling below 𝑏?
• etc., etc.

Such questions concern the joint distributions of these sequences.

To compute the joint distribution of 𝑥0, 𝑥1, … , 𝑥𝑇 , recall that joint and conditional densities are linked by the rule

𝑝(𝑥, 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥) (joint = conditional × marginal)
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From this rule we get 𝑝(𝑥0, 𝑥1) = 𝑝(𝑥1 | 𝑥0)𝑝(𝑥0).
The Markov property 𝑝(𝑥𝑡 | 𝑥𝑡−1, … , 𝑥0) = 𝑝(𝑥𝑡 | 𝑥𝑡−1) and repeated applications of the preceding rule lead us to

𝑝(𝑥0, 𝑥1, … , 𝑥𝑇 ) = 𝑝(𝑥0)
𝑇 −1
∏
𝑡=0

𝑝(𝑥𝑡+1 | 𝑥𝑡)

The marginal 𝑝(𝑥0) is just the primitive 𝑁(𝜇0, Σ0).
In view of (36.1), the conditional densities are

𝑝(𝑥𝑡+1 | 𝑥𝑡) = 𝑁(𝐴𝑥𝑡, 𝐶𝐶′)

Autocovariance Functions

An important object related to the joint distribution is the autocovariance function

Σ𝑡+𝑗,𝑡 ∶= 𝔼[(𝑥𝑡+𝑗 − 𝜇𝑡+𝑗)(𝑥𝑡 − 𝜇𝑡)′] (36.11)

Elementary calculations show that

Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ𝑡 (36.12)

Notice that Σ𝑡+𝑗,𝑡 in general depends on both 𝑗, the gap between the two dates, and 𝑡, the earlier date.

36.4 Stationarity and Ergodicity

Stationarity and ergodicity are two properties that, when they hold, greatly aid analysis of linear state space models.

Let’s start with the intuition.

36.4.1 Visualizing Stability

Let’s look at some more time series from the same model that we analyzed above.

This picture shows cross-sectional distributions for 𝑦 at times 𝑇 , 𝑇 ′, 𝑇 ″

def cross_plot(A,
C,
G,
steady_state='False',
T0 = 10,
T1 = 50,
T2 = 75,
T4 = 100):

ar = LinearStateSpace(A, C, G, mu_0=np.ones(4))

if steady_state == 'True':
μ_x, μ_y, Σ_x, Σ_y, Σ_yx = ar.stationary_distributions()
ar_state = LinearStateSpace(A, C, G, mu_0=μ_x, Sigma_0=Σ_x)

ymin, ymax = -0.6, 0.6
fig, ax = plt.subplots()

(continues on next page)
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(continued from previous page)

ax.grid(alpha=0.4)
ax.set_ylim(ymin, ymax)
ax.set_ylabel('$y_t$', fontsize=12)
ax.set_xlabel('$time$', fontsize=12)

ax.vlines((T0, T1, T2), -1.5, 1.5)
ax.set_xticks((T0, T1, T2))
ax.set_xticklabels(("$T$", "$T'$", "$T''$"), fontsize=12)
for i in range(80):

rcolor = random.choice(('c', 'g', 'b'))

if steady_state == 'True':
x, y = ar_state.simulate(ts_length=T4)

else:
x, y = ar.simulate(ts_length=T4)

y = y.flatten()
ax.plot(y, color=rcolor, lw=0.8, alpha=0.5)
ax.plot((T0, T1, T2), (y[T0], y[T1], y[T2],), 'ko', alpha=0.5)

plt.show()

cross_plot(A_2, C_2, G_2)

Note how the time series “settle down” in the sense that the distributions at 𝑇 ′ and 𝑇 ″ are relatively similar to each other
— but unlike the distribution at 𝑇 .
Apparently, the distributions of 𝑦𝑡 converge to a fixed long-run distribution as 𝑡 → ∞.
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When such a distribution exists it is called a stationary distribution.

36.4.2 Stationary Distributions

In our setting, a distribution 𝜓∞ is said to be stationary for 𝑥𝑡 if

𝑥𝑡 ∼ 𝜓∞ and 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 ⟹ 𝑥𝑡+1 ∼ 𝜓∞

Since

1. in the present case, all distributions are Gaussian

2. a Gaussian distribution is pinned down by its mean and variance-covariance matrix

we can restate the definition as follows: 𝜓∞ is stationary for 𝑥𝑡 if

𝜓∞ = 𝑁(𝜇∞, Σ∞)

where 𝜇∞ and Σ∞ are fixed points of (36.4) and (36.5) respectively.

36.4.3 Covariance Stationary Processes

Let’s see what happens to the preceding figure if we start 𝑥0 at the stationary distribution.

cross_plot(A_2, C_2, G_2, steady_state='True')
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Now the differences in the observed distributions at 𝑇 , 𝑇 ′ and 𝑇 ″ come entirely from random fluctuations due to the
finite sample size.

By

• our choosing 𝑥0 ∼ 𝑁(𝜇∞, Σ∞)
• the definitions of 𝜇∞ and Σ∞ as fixed points of (36.4) and (36.5) respectively

we’ve ensured that

𝜇𝑡 = 𝜇∞ and Σ𝑡 = Σ∞ for all 𝑡

Moreover, in view of (36.12), the autocovariance function takes the form Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ∞, which depends on 𝑗 but not
on 𝑡.
This motivates the following definition.

A process {𝑥𝑡} is said to be covariance stationary if
• both 𝜇𝑡 and Σ𝑡 are constant in 𝑡
• Σ𝑡+𝑗,𝑡 depends on the time gap 𝑗 but not on time 𝑡

In our setting, {𝑥𝑡} will be covariance stationary if 𝜇0, Σ0, 𝐴, 𝐶 assume values that imply that none of 𝜇𝑡, Σ𝑡, Σ𝑡+𝑗,𝑡
depends on 𝑡.

36.4.4 Conditions for Stationarity

The Globally Stable Case

The difference equation 𝜇𝑡+1 = 𝐴𝜇𝑡 is known to have unique fixed point 𝜇∞ = 0 if all eigenvalues of 𝐴 have moduli
strictly less than unity.

That is, if (np.absolute(np.linalg.eigvals(A)) < 1).all() == True.

The difference equation (36.5) also has a unique fixed point in this case, and, moreover

𝜇𝑡 → 𝜇∞ = 0 and Σ𝑡 → Σ∞ as 𝑡 → ∞

regardless of the initial conditions 𝜇0 and Σ0.

This is the globally stable case— see these notes for more a theoretical treatment.

However, global stability is more than we need for stationary solutions, and often more than we want.

To illustrate, consider our second order difference equation example.

Here the state is 𝑥𝑡 = [1 𝑦𝑡 𝑦𝑡−1]′
.

Because of the constant first component in the state vector, we will never have 𝜇𝑡 → 0.
How can we find stationary solutions that respect a constant state component?
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Processes with a Constant State Component

To investigate such a process, suppose that 𝐴 and 𝐶 take the form

𝐴 = [𝐴1 𝑎
0 1] 𝐶 = [𝐶1

0 ]

where

• 𝐴1 is an (𝑛 − 1) × (𝑛 − 1) matrix
• 𝑎 is an (𝑛 − 1) × 1 column vector

Let 𝑥𝑡 = [𝑥′
1𝑡 1]′

where 𝑥1𝑡 is (𝑛 − 1) × 1.
It follows that

𝑥1,𝑡+1 = 𝐴1𝑥1𝑡 + 𝑎 + 𝐶1𝑤𝑡+1

Let 𝜇1𝑡 = 𝔼[𝑥1𝑡] and take expectations on both sides of this expression to get

𝜇1,𝑡+1 = 𝐴1𝜇1,𝑡 + 𝑎 (36.13)

Assume now that the moduli of the eigenvalues of 𝐴1 are all strictly less than one.

Then (36.13) has a unique stationary solution, namely,

𝜇1∞ = (𝐼 − 𝐴1)−1𝑎

The stationary value of 𝜇𝑡 itself is then 𝜇∞ ∶= [𝜇′
1∞ 1]′

.

The stationary values of Σ𝑡 and Σ𝑡+𝑗,𝑡 satisfy

Σ∞ = 𝐴Σ∞𝐴′ + 𝐶𝐶′

Σ𝑡+𝑗,𝑡 = 𝐴𝑗Σ∞

Notice that here Σ𝑡+𝑗,𝑡 depends on the time gap 𝑗 but not on calendar time 𝑡.
In conclusion, if

• 𝑥0 ∼ 𝑁(𝜇∞, Σ∞) and
• the moduli of the eigenvalues of 𝐴1 are all strictly less than unity

then the {𝑥𝑡} process is covariance stationary, with constant state component.

Note

If the eigenvalues of𝐴1 are less than unity in modulus, then (a) starting from any initial value, the mean and variance-
covariance matrix both converge to their stationary values; and (b) iterations on (36.5) converge to the fixed point of
the discrete Lyapunov equation in the first line of (36.14).
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36.4.5 Ergodicity

Let’s suppose that we’re working with a covariance stationary process.

In this case, we know that the ensemble mean will converge to 𝜇∞ as the sample size 𝐼 approaches infinity.

Averages over Time

Ensemble averages across simulations are interesting theoretically, but in real life, we usually observe only a single real-
ization {𝑥𝑡, 𝑦𝑡}𝑇

𝑡=0.

So now let’s take a single realization and form the time-series averages

̄𝑥 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝑥𝑡 and ̄𝑦 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝑦𝑡

Do these time series averages converge to something interpretable in terms of our basic state-space representation?

The answer depends on something called ergodicity.

Ergodicity is the property that time series and ensemble averages coincide.

More formally, ergodicity implies that time series sample averages converge to their expectation under the stationary
distribution.

In particular,

• 1
𝑇 ∑𝑇

𝑡=1 𝑥𝑡 → 𝜇∞

• 1
𝑇 ∑𝑇

𝑡=1(𝑥𝑡 − ̄𝑥𝑇 )(𝑥𝑡 − ̄𝑥𝑇 )′ → Σ∞

• 1
𝑇 ∑𝑇

𝑡=1(𝑥𝑡+𝑗 − ̄𝑥𝑇 )(𝑥𝑡 − ̄𝑥𝑇 )′ → 𝐴𝑗Σ∞

In our linear Gaussian setting, any covariance stationary process is also ergodic.

36.5 Noisy Observations

In some settings, the observation equation 𝑦𝑡 = 𝐺𝑥𝑡 is modified to include an error term.

Often this error term represents the idea that the true state can only be observed imperfectly.

To include an error term in the observation we introduce

• An IID sequence of ℓ × 1 random vectors 𝑣𝑡 ∼ 𝑁(0, 𝐼).
• A 𝑘 × ℓ matrix 𝐻 .

and extend the linear state-space system to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑣𝑡
𝑥0 ∼ 𝑁(𝜇0, Σ0)

The sequence {𝑣𝑡} is assumed to be independent of {𝑤𝑡}.
The process {𝑥𝑡} is not modified by noise in the observation equation and its moments, distributions and stability prop-
erties remain the same.
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The unconditional moments of 𝑦𝑡 from (36.6) and (36.7) now become

𝔼[𝑦𝑡] = 𝔼[𝐺𝑥𝑡 + 𝐻𝑣𝑡] = 𝐺𝜇𝑡 (36.14)

The variance-covariance matrix of 𝑦𝑡 is easily shown to be

Var[𝑦𝑡] = Var[𝐺𝑥𝑡 + 𝐻𝑣𝑡] = 𝐺Σ𝑡𝐺′ + 𝐻𝐻′ (36.15)

The distribution of 𝑦𝑡 is therefore

𝑦𝑡 ∼ 𝑁(𝐺𝜇𝑡, 𝐺Σ𝑡𝐺′ + 𝐻𝐻′)

36.6 Prediction

The theory of prediction for linear state space systems is elegant and simple.

36.6.1 Forecasting Formulas – Conditional Means

The natural way to predict variables is to use conditional distributions.

For example, the optimal forecast of 𝑥𝑡+1 given information known at time 𝑡 is

𝔼𝑡[𝑥𝑡+1] ∶= 𝔼[𝑥𝑡+1 ∣ 𝑥𝑡, 𝑥𝑡−1, … , 𝑥0] = 𝐴𝑥𝑡

The right-hand side follows from 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 and the fact that 𝑤𝑡+1 is zero mean and independent of
𝑥𝑡, 𝑥𝑡−1, … , 𝑥0.

That 𝔼𝑡[𝑥𝑡+1] = 𝔼[𝑥𝑡+1 ∣ 𝑥𝑡] is an implication of {𝑥𝑡} having the Markov property.

The one-step-ahead forecast error is

𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1] = 𝐶𝑤𝑡+1

The covariance matrix of the forecast error is

𝔼[(𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1])(𝑥𝑡+1 − 𝔼𝑡[𝑥𝑡+1])′] = 𝐶𝐶′

More generally, we’d like to compute the 𝑗-step ahead forecasts 𝔼𝑡[𝑥𝑡+𝑗] and 𝔼𝑡[𝑦𝑡+𝑗].
With a bit of algebra, we obtain

𝑥𝑡+𝑗 = 𝐴𝑗𝑥𝑡 + 𝐴𝑗−1𝐶𝑤𝑡+1 + 𝐴𝑗−2𝐶𝑤𝑡+2 + ⋯ + 𝐴0𝐶𝑤𝑡+𝑗

In view of the IID property, current and past state values provide no information about future values of the shock.

Hence 𝔼𝑡[𝑤𝑡+𝑘] = 𝔼[𝑤𝑡+𝑘] = 0.
It now follows from linearity of expectations that the 𝑗-step ahead forecast of 𝑥 is

𝔼𝑡[𝑥𝑡+𝑗] = 𝐴𝑗𝑥𝑡

The 𝑗-step ahead forecast of 𝑦 is therefore

𝔼𝑡[𝑦𝑡+𝑗] = 𝔼𝑡[𝐺𝑥𝑡+𝑗 + 𝐻𝑣𝑡+𝑗] = 𝐺𝐴𝑗𝑥𝑡
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36.6.2 Covariance of Prediction Errors

It is useful to obtain the covariance matrix of the vector of 𝑗-step-ahead prediction errors

𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗] =
𝑗−1
∑
𝑠=0

𝐴𝑠𝐶𝑤𝑡−𝑠+𝑗 (36.16)

Evidently,

𝑉𝑗 ∶= 𝔼𝑡[(𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗])(𝑥𝑡+𝑗 − 𝔼𝑡[𝑥𝑡+𝑗])′] =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝐶′𝐴𝑘′ (36.17)

𝑉𝑗 defined in (36.17) can be calculated recursively via 𝑉1 = 𝐶𝐶′ and

𝑉𝑗 = 𝐶𝐶′ + 𝐴𝑉𝑗−1𝐴′, 𝑗 ≥ 2 (36.18)

𝑉𝑗 is the conditional covariance matrix of the errors in forecasting 𝑥𝑡+𝑗, conditioned on time 𝑡 information 𝑥𝑡.

Under particular conditions, 𝑉𝑗 converges to

𝑉∞ = 𝐶𝐶′ + 𝐴𝑉∞𝐴′ (36.19)

Equation (36.19) is an example of a discrete Lyapunov equation in the covariance matrix 𝑉∞.

A sufficient condition for 𝑉𝑗 to converge is that the eigenvalues of 𝐴 be strictly less than one in modulus.

Weaker sufficient conditions for convergence associate eigenvalues equaling or exceeding one in modulus with elements
of 𝐶 that equal 0.

36.7 Code

Our preceding simulations and calculations are based on code in the file lss.py from the QuantEcon.py package.

The code implements a class for handling linear state space models (simulations, calculating moments, etc.).

One Python construct you might not be familiar with is the use of a generator function in the method mo-
ment_sequence().

Go back and read the relevant documentation if you’ve forgotten how generator functions work.

Examples of usage are given in the solutions to the exercises.

36.8 Exercises

Exercise 36.8.1

In several contexts, we want to compute forecasts of geometric sums of future random variables governed by the
linear state-space system (36.1).

We want the following objects

• Forecast of a geometric sum of future 𝑥’s, or 𝔼𝑡 [∑∞
𝑗=0 𝛽𝑗𝑥𝑡+𝑗].

• Forecast of a geometric sum of future 𝑦’s, or 𝔼𝑡 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗].
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These objects are important components of some famous and interesting dynamic models.

For example,

• if {𝑦𝑡} is a stream of dividends, then 𝔼 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗|𝑥𝑡] is a model of a stock price

• if {𝑦𝑡} is the money supply, then 𝔼 [∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗|𝑥𝑡] is a model of the price level

Show that:

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑥𝑡+𝑗] = [𝐼 − 𝛽𝐴]−1𝑥𝑡

and

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝐺[𝐼 − 𝛽𝐴]−1𝑥𝑡

what must the modulus for every eigenvalue of 𝐴 be less than?

Solution to Exercise 36.8.1

Suppose that every eigenvalue of 𝐴 has modulus strictly less than 1
𝛽 .

It then follows that 𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ = [𝐼 − 𝛽𝐴]−1.

This leads to our formulas:

• Forecast of a geometric sum of future 𝑥’s

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑥𝑡+𝑗] = [𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ ]𝑥𝑡 = [𝐼 − 𝛽𝐴]−1𝑥𝑡

• Forecast of a geometric sum of future 𝑦’s

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝐺[𝐼 + 𝛽𝐴 + 𝛽2𝐴2 + ⋯ ]𝑥𝑡 = 𝐺[𝐼 − 𝛽𝐴]−1𝑥𝑡
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CHAPTER

THIRTYSEVEN

SAMUELSON MULTIPLIER-ACCELERATOR

Contents

• Samuelson Multiplier-Accelerator

– Overview

– Details

– Implementation

– Stochastic shocks

– Government spending

– Wrapping everything into a class

– Using the LinearStateSpace class

– Pure multiplier model

– Summary

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

37.1 Overview

This lecture creates non-stochastic and stochastic versions of Paul Samuelson’s celebrated multiplier accelerator model
[Samuelson, 1939].

In doing so, we extend the example of the Solow model class in our second OOP lecture.

Our objectives are to

• provide a more detailed example of OOP and classes

• review a famous model

• review linear difference equations, both deterministic and stochastic

Let’s start with some standard imports:
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import matplotlib.pyplot as plt
import numpy as np

We’ll also use the following for various tasks described below:

from quantecon import LinearStateSpace
import cmath
import math
import sympy
from sympy import Symbol, init_printing
from cmath import sqrt

37.1.1 Samuelson’s model

Samuelson used a second-order linear difference equation to represent a model of national output based on three compo-
nents:

• a national output identity asserting that national output or national income is the sum of consumption plus investment
plus government purchases.

• a Keynesian consumption function asserting that consumption at time 𝑡 is equal to a constant times national output
at time 𝑡 − 1.

• an investment accelerator asserting that investment at time 𝑡 equals a constant called the accelerator coefficient times
the difference in output between period 𝑡 − 1 and 𝑡 − 2.

Consumption plus investment plus government purchases constitute aggregate demand, which automatically calls forth
an equal amount of aggregate supply.

(To read about linear difference equations see here or chapter IX of [Sargent, 1987].)

Samuelson used the model to analyze how particular values of the marginal propensity to consume and the accelerator
coefficient might give rise to transient business cycles in national output.

Possible dynamic properties include

• smooth convergence to a constant level of output

• damped business cycles that eventually converge to a constant level of output

• persistent business cycles that neither dampen nor explode

Later we present an extension that adds a random shock to the right side of the national income identity representing
random fluctuations in aggregate demand.

This modification makes national output become governed by a second-order stochastic linear difference equation that,
with appropriate parameter values, gives rise to recurrent irregular business cycles.

(To read about stochastic linear difference equations see chapter XI of [Sargent, 1987].)
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37.2 Details

Let’s assume that

• {𝐺𝑡} is a sequence of levels of government expenditures – we’ll start by setting 𝐺𝑡 = 𝐺 for all 𝑡.
• {𝐶𝑡} is a sequence of levels of aggregate consumption expenditures, a key endogenous variable in the model.
• {𝐼𝑡} is a sequence of rates of investment, another key endogenous variable.
• {𝑌𝑡} is a sequence of levels of national income, yet another endogenous variable.
• 𝛼 is the marginal propensity to consume in the Keynesian consumption function 𝐶𝑡 = 𝛼𝑌𝑡−1 + 𝛾.
• 𝛽 is the “accelerator coefficient” in the “investment accelerator” 𝐼𝑡 = 𝛽(𝑌𝑡−1 − 𝑌𝑡−2).
• {𝜖𝑡} is an IID sequence standard normal random variables.

• 𝜎 ≥ 0 is a “volatility” parameter — setting 𝜎 = 0 recovers the non-stochastic case that we’ll start with.
The model combines the consumption function

𝐶𝑡 = 𝛼𝑌𝑡−1 + 𝛾 (37.1)

with the investment accelerator

𝐼𝑡 = 𝛽(𝑌𝑡−1 − 𝑌𝑡−2) (37.2)

and the national income identity

𝑌𝑡 = 𝐶𝑡 + 𝐼𝑡 + 𝐺𝑡 (37.3)

• The parameter 𝛼 is peoples’ marginal propensity to consume out of income - equation (37.1) asserts that people
consume a fraction of 𝛼 ∈ (0, 1) of each additional dollar of income.

• The parameter 𝛽 > 0 is the investment accelerator coefficient - equation (37.2) asserts that people invest in physical
capital when income is increasing and disinvest when it is decreasing.

Equations (37.1), (37.2), and (37.3) imply the following second-order linear difference equation for national income:

𝑌𝑡 = (𝛼 + 𝛽)𝑌𝑡−1 − 𝛽𝑌𝑡−2 + (𝛾 + 𝐺𝑡)
or

𝑌𝑡 = 𝜌1𝑌𝑡−1 + 𝜌2𝑌𝑡−2 + (𝛾 + 𝐺𝑡) (37.4)

where 𝜌1 = (𝛼 + 𝛽) and 𝜌2 = −𝛽.
To complete the model, we require two initial conditions.

If the model is to generate time series for 𝑡 = 0, … , 𝑇 , we require initial values
𝑌−1 = ̄𝑌−1, 𝑌−2 = ̄𝑌−2

We’ll ordinarily set the parameters (𝛼, 𝛽) so that starting from an arbitrary pair of initial conditions ( ̄𝑌−1, ̄𝑌−2), national
income 𝑌𝑡 converges to a constant value as 𝑡 becomes large.
We are interested in studying

• the transient fluctuations in 𝑌𝑡 as it converges to its steady state level

• the rate at which it converges to a steady state level

The deterministic version of the model described so far — meaning that no random shocks hit aggregate demand — has
only transient fluctuations.

We can convert the model to one that has persistent irregular fluctuations by adding a random shock to aggregate demand.
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37.2.1 Stochastic version of the model

We create a random or stochastic version of the model by adding a random process of shocks or disturbances {𝜎𝜖𝑡} to
the right side of equation (37.4), leading to the second-order scalar linear stochastic difference equation:

𝑌𝑡 = (𝛼 + 𝛽)𝑌𝑡−1 − 𝛽𝑌𝑡−2 + (𝛾 + 𝐺𝑡) + 𝜎𝜖𝑡 (37.5)

37.2.2 Mathematical analysis of the model

To get started, let’s set 𝐺𝑡 ≡ 0, 𝜎 = 0, and 𝛾 = 0.
Then we can write equation (37.5) as

𝑌𝑡 = 𝜌1𝑌𝑡−1 + 𝜌2𝑌𝑡−2

or

𝑌𝑡+2 − 𝜌1𝑌𝑡+1 − 𝜌2𝑌𝑡 = 0 (37.6)

To discover the properties of the solution of (37.6), it is useful first to form the characteristic polynomial for (37.6):

𝑧2 − 𝜌1𝑧 − 𝜌2 (37.7)

where 𝑧 is possibly a complex number.
We want to find the two zeros (a.k.a. roots) – namely 𝜆1, 𝜆2 – of the characteristic polynomial.

These are two special values of 𝑧, say 𝑧 = 𝜆1 and 𝑧 = 𝜆2, such that if we set 𝑧 equal to one of these values in expression
(37.7), the characteristic polynomial (37.7) equals zero:

𝑧2 − 𝜌1𝑧 − 𝜌2 = (𝑧 − 𝜆1)(𝑧 − 𝜆2) = 0 (37.8)

Equation (37.8) is said to factor the characteristic polynomial.

When the roots are complex, they will occur as a complex conjugate pair.

When the roots are complex, it is convenient to represent them in the polar form

𝜆1 = 𝑟𝑒𝑖𝜔, 𝜆2 = 𝑟𝑒−𝑖𝜔

where 𝑟 is the amplitude of the complex number and 𝜔 is its angle or phase.

These can also be represented as

𝜆1 = 𝑟(𝑐𝑜𝑠(𝜔) + 𝑖 sin(𝜔))

𝜆2 = 𝑟(𝑐𝑜𝑠(𝜔) − 𝑖 sin(𝜔))
(To read about the polar form, see here)

Given initial conditions 𝑌−1, 𝑌−2, we want to generate a solution of the difference equation (37.6).

It can be represented as

𝑌𝑡 = 𝜆𝑡
1𝑐1 + 𝜆𝑡

2𝑐2

where 𝑐1 and 𝑐2 are constants that depend on the two initial conditions and on 𝜌1, 𝜌2.

When the roots are complex, it is useful to pursue the following calculations.
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Notice that

𝑌𝑡 = 𝑐1(𝑟𝑒𝑖𝜔)𝑡 + 𝑐2(𝑟𝑒−𝑖𝜔)𝑡

= 𝑐1𝑟𝑡𝑒𝑖𝜔𝑡 + 𝑐2𝑟𝑡𝑒−𝑖𝜔𝑡

= 𝑐1𝑟𝑡[cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡)] + 𝑐2𝑟𝑡[cos(𝜔𝑡) − 𝑖 sin(𝜔𝑡)]
= (𝑐1 + 𝑐2)𝑟𝑡 cos(𝜔𝑡) + 𝑖(𝑐1 − 𝑐2)𝑟𝑡 sin(𝜔𝑡)

The only way that 𝑌𝑡 can be a real number for each 𝑡 is if 𝑐1 + 𝑐2 is a real number and 𝑐1 − 𝑐2 is an imaginary number.

This happens only when 𝑐1 and 𝑐2 are complex conjugates, in which case they can be written in the polar forms

𝑐1 = 𝑣𝑒𝑖𝜃, 𝑐2 = 𝑣𝑒−𝑖𝜃

So we can write

𝑌𝑡 = 𝑣𝑒𝑖𝜃𝑟𝑡𝑒𝑖𝜔𝑡 + 𝑣𝑒−𝑖𝜃𝑟𝑡𝑒−𝑖𝜔𝑡

= 𝑣𝑟𝑡[𝑒𝑖(𝜔𝑡+𝜃) + 𝑒−𝑖(𝜔𝑡+𝜃)]
= 2𝑣𝑟𝑡 cos(𝜔𝑡 + 𝜃)

where 𝑣 and 𝜃 are constants that must be chosen to satisfy initial conditions for 𝑌−1, 𝑌−2.

This formula shows that when the roots are complex, 𝑌𝑡 displays oscillations with period ̌𝑝 = 2𝜋
𝜔 and damping factor 𝑟.

We say that ̌𝑝 is the period because in that amount of time the cosine wave cos(𝜔𝑡+𝜃) goes through exactly one complete
cycles.

(Draw a cosine function to convince yourself of this please)

Remark: Following [Samuelson, 1939], we want to choose the parameters 𝛼, 𝛽 of the model so that the absolute values
(of the possibly complex) roots 𝜆1, 𝜆2 of the characteristic polynomial are both strictly less than one:

|𝜆𝑗| < 1 for 𝑗 = 1, 2

Remark: When both roots 𝜆1, 𝜆2 of the characteristic polynomial have absolute values strictly less than one, the absolute
value of the larger one governs the rate of convergence to the steady state of the non stochastic version of the model.

37.2.3 Things this lecture does

We write a function to generate simulations of a {𝑌𝑡} sequence as a function of time.
The function requires that we put in initial conditions for 𝑌−1, 𝑌−2.

The function checks that 𝛼, 𝛽 are set so that 𝜆1, 𝜆2 are less than unity in absolute value (also called “modulus”).

The function also tells us whether the roots are complex, and, if they are complex, returns both their real and complex
parts.

If the roots are both real, the function returns their values.

We use our function written to simulate paths that are stochastic (when 𝜎 > 0).
We have written the function in a way that allows us to input {𝐺𝑡} paths of a few simple forms, e.g.,

• one time jumps in 𝐺 at some time

• a permanent jump in 𝐺 that occurs at some time

We proceed to use the Samuelson multiplier-accelerator model as a laboratory to make a simple OOP example.

The “state” that determines next period’s 𝑌𝑡+1 is now not just the current value 𝑌𝑡 but also the once lagged value 𝑌𝑡−1.

This involves a little more bookkeeping than is required in the Solow model class definition.
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We use the Samuelson multiplier-accelerator model as a vehicle for teaching how we can gradually add more features to
the class.

Wewant to have amethod in the class that automatically generates a simulation, either non-stochastic (𝜎 = 0) or stochastic
(𝜎 > 0).
We also show how to map the Samuelson model into a simple instance of the LinearStateSpace class described
here.

We can use a LinearStateSpace instance to do various things that we did above with our homemade function and
class.

Among other things, we show by example that the eigenvalues of the matrix 𝐴 that we use to form the instance of the
LinearStateSpace class for the Samuelson model equal the roots of the characteristic polynomial (37.7) for the
Samuelson multiplier accelerator model.

Here is the formula for the matrix 𝐴 in the linear state space system in the case that government expenditures are a
constant 𝐺:

𝐴 = ⎡⎢
⎣

1 0 0
𝛾 + 𝐺 𝜌1 𝜌2

0 1 0
⎤⎥
⎦

37.3 Implementation

We’ll start by drawing an informative graph from page 189 of [Sargent, 1987]

The graph portrays regions in which the (𝜆1, 𝜆2) root pairs implied by the (𝜌1 = (𝛼 + 𝛽), 𝜌2 = −𝛽) difference equation
parameter pairs in the Samuelson model are such that:
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• (𝜆1, 𝜆2) are complex with modulus less than 1 - in this case, the {𝑌𝑡} sequence displays damped oscillations.
• (𝜆1, 𝜆2) are both real, but one is strictly greater than 1 - this leads to explosive growth.
• (𝜆1, 𝜆2) are both real, but one is strictly less than −1 - this leads to explosive oscillations.
• (𝜆1, 𝜆2) are both real and both are less than 1 in absolute value - in this case, there is smooth convergence to the
steady state without damped cycles.

Later we’ll present the graph with a red mark showing the particular point implied by the setting of (𝛼, 𝛽).

37.3.1 Function to describe implications of characteristic polynomial

def categorize_solution(ρ1, ρ2):
"""
This function takes values of ρ1 and ρ2 and uses them
to classify the type of solution.
"""
discriminant = ρ1**2 + 4 * ρ2
if ρ2 > 1 + ρ1 or ρ2 < -1:

return "Explosive oscillations"
elif ρ1 + ρ2 > 1:

return "Explosive growth"
elif discriminant < 0:

return "Damped oscillations"
else:

return "Steady state convergence"

def analyze_roots(α, β, verbose=True):
"""
Unified function to calculate roots and analyze their properties.
"""
ρ1 = α + β
ρ2 = -β

# Compute characteristic polynomial roots
roots = np.roots([1, -ρ1, -ρ2])

# Classify solution type
solution_type = categorize_solution(ρ1, ρ2)

# Determine root properties
is_complex = all(isinstance(root, complex) for root in roots)
is_stable = all(abs(root) < 1 for root in roots)

if verbose:
print(f"ρ1 = {ρ1:.2f}, ρ2 = {ρ2:.2f}")
print(f"Roots: {[f'{root:.2f}' for root in roots]}")
print(f"Root type: {'Complex' if is_complex else 'Real'}")
print(f"Stability: {'Stable' if is_stable else 'Unstable'}")
print(f"Solution type: {solution_type}")

return {
'roots': roots,
'rho1': ρ1,
'rho2': ρ2,
'is_complex': is_complex,
'is_stable': is_stable,

(continues on next page)
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(continued from previous page)

'solution_type': solution_type
}

We also write a unified simulation function that can handle both non-stochastic and stochastic versions of the model.

It allows for government spending paths of a few simple forms which we specify via a dictionary g_params

def simulate_samuelson(
y_0, y_1, α, β, γ=10, n=100, σ=0, g_params=None, seed=0

):
"""
Unified simulation function for Samuelson model.

Parameters:
g_params: dict with keys 'g', 'g_t', 'duration' for government spending
seed: random seed for reproducible results
"""
analysis = analyze_roots(α, β, verbose=False)
ρ1, ρ2 = analysis['rho1'], analysis['rho2']

# Initialize time series
y_t = [y_0, y_1]

# Generate shocks if stochastic
if σ > 0:

np.random.seed(seed)
ϵ = np.random.normal(0, 1, n)

# Simulate forward
for t in range(2, n):

# Determine government spending
g = 0
if g_params:

g_val, g_t_val = g_params.get('g', 0), g_params.get('g_t', 0)
duration = g_params.get('duration', None)
if duration == 'permanent' and t >= g_t_val:

g = g_val
elif duration == 'one-off' and t == g_t_val:

g = g_val
elif duration is None:

g = g_val

# Calculate next value
y_next = ρ1 * y_t[t-1] + ρ2 * y_t[t-2] + γ + g
if σ > 0:

y_next += σ * ϵ[t]

y_t.append(y_next)

return y_t, analysis

We will use this function to run simulations of the model.

But before doing that, let’s test the analysis function

analysis = analyze_roots(α=1.3, β=0.4)
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ρ1 = 1.70, ρ2 = -0.40
Roots: ['1.42', '0.28']
Root type: Real
Stability: Unstable
Solution type: Explosive growth

37.3.2 Function for plotting paths

A useful function for our work below is

def plot_y(function=None):
"""Function plots path of Y_t"""

plt.subplots(figsize=(10, 6))
plt.plot(function)
plt.xlabel("$t$")
plt.ylabel("$Y_t$")
plt.show()

37.3.3 Manual or “by hand” root calculations

The following function calculates roots of the characteristic polynomial using high school algebra.

(We’ll calculate the roots in other ways later using analyze_roots.)

The function also plots a 𝑌𝑡 starting from initial conditions that we set

def y_nonstochastic(y_0=100, y_1=80, α=0.92, β=0.5, γ=10, n=80):
"""
This function calculates the roots of the characteristic polynomial
by hand and returns a path of y_t starting from initial conditions
"""
roots = []

ρ1 = α + β
ρ2 = -β

print(f"ρ_1 is {ρ1:.2f}")
print(f"ρ_2 is {ρ2:.2f}")

discriminant = ρ1**2 + 4 * ρ2

if discriminant == 0:
roots.append(-ρ1 / 2)
print("Single real root: ")
print("".join(f"{r:.2f}" for r in roots))

elif discriminant > 0:
roots.append((-ρ1 + sqrt(discriminant).real) / 2)
roots.append((-ρ1 - sqrt(discriminant).real) / 2)
print("Two real roots: ")
print(" ".join(f"{r:.2f}" for r in roots))

else:
roots.append((-ρ1 + sqrt(discriminant)) / 2)
roots.append((-ρ1 - sqrt(discriminant)) / 2)
print("Two complex roots: ")

(continues on next page)
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(continued from previous page)

print(" ".join(f"{r.real:.2f}{r.imag:+.2f}j" for r in roots))

if all(abs(root) < 1 for root in roots):
print("Absolute values of roots are less than one")

else:
print("Absolute values of roots are not less than one")

def transition(x, t):
return ρ1 * x[t - 1] + ρ2 * x[t - 2] + γ

y_t = [y_0, y_1]

for t in range(2, n):
y_t.append(transition(y_t, t))

return y_t

plot_y(y_nonstochastic())

ρ_1 is 1.42
ρ_2 is -0.50
Two real roots:
-0.65 -0.77
Absolute values of roots are less than one
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37.3.4 Reverse-engineering parameters to generate damped cycles

The next cell writes code that takes as inputs the modulus 𝑟 and phase 𝜙 of a conjugate pair of complex numbers in polar
form

𝜆1 = 𝑟 exp(𝑖𝜙), 𝜆2 = 𝑟 exp(−𝑖𝜙)

• The code assumes that these two complex numbers are the roots of the characteristic polynomial

• It then reverse-engineers (𝛼, 𝛽) and (𝜌1, 𝜌2), pairs that would generate those roots
def f(r, ϕ):

"""
Takes modulus r and angle ϕ of complex number r exp(j ϕ)
and creates ρ1 and ρ2 of characteristic polynomial for which
r exp(j ϕ) and r exp(- j ϕ) are complex roots.

Returns the multiplier coefficient $\alpha$
and the accelerator coefficient $\beta$
that verifies those roots.
"""
# Create complex conjugate pair from polar coordinates
g1 = cmath.rect(r, ϕ)
g2 = cmath.rect(r, -ϕ)

# Calculate corresponding ρ1, ρ2 parameters
ρ1 = g1 + g2
ρ2 = -g1 * g2

# Derive α and β coefficients from ρ parameters
β = -ρ2
α = ρ1 - β
return ρ1, ρ2, α, β

Now let’s use the function in an example.

Here are the example parameters

r = 0.95

# Cycle period in time units
period = 10
ϕ = 2 * math.pi / period

# Apply the reverse-engineering function
ρ1, ρ2, α, β = f(r, ϕ)

print(f"α, β = {α:.2f}, {β:.2f}")
print(f"ρ1, ρ2 = {ρ1:.2f}, {ρ2:.2f}")

α, β = 0.63+0.00j, 0.90-0.00j
ρ1, ρ2 = 1.54+0.00j, -0.90+0.00j

The real parts of the roots are

print(f"ρ1 = {ρ1.real:.2f}, ρ2 = {ρ2.real:.2f}")
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ρ1 = 1.54, ρ2 = -0.90

37.3.5 Root finding using numpy

Here we’ll use numpy to compute the roots of the characteristic polynomial

r1, r2 = np.roots([1, -ρ1, -ρ2])

p1 = cmath.polar(r1)
p2 = cmath.polar(r2)

print(f"r, ϕ = {r:.2f}, {ϕ:.2f}")
print(f"p1, p2 = ({p1[0]:.2f}, {p1[1]:.2f}), ({p2[0]:.2f}, {p2[1]:.2f})")

print(f"α, β = {α:.2f}, {β:.2f}")
print(f"ρ1, ρ2 = {ρ1:.2f}, {ρ2:.2f}")

r, ϕ = 0.95, 0.63
p1, p2 = (0.95, 0.63), (0.95, -0.63)
α, β = 0.63+0.00j, 0.90-0.00j
ρ1, ρ2 = 1.54+0.00j, -0.90+0.00j

def y_nonstochastic(y_0=100, y_1=80, α=0.9, β=0.8, γ=10, n=80):
"""
This function enlists numpy to calculate the roots of the characteristic
polynomial.
"""

y_series, analysis = simulate_samuelson(y_0, y_1, α, β, γ, n, 0, None, 42)

print(f"Solution type: {analysis['solution_type']}")
print(f"Roots are {analysis['roots']}")
print(f"Root type: {'Complex' if analysis['is_complex'] else 'Real'}")
print(f"Stability: {'Stable' if analysis['is_stable'] else 'Unstable'}")

return y_series

plot_y(y_nonstochastic())

Solution type: Damped oscillations
Roots are [0.85+0.27838822j 0.85-0.27838822j]
Root type: Complex
Stability: Stable
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37.3.6 Reverse-engineered complex roots: Example

The next cell studies the implications of reverse-engineered complex roots.

We’ll generate an undamped cycle of period 10

r = 1 # Generates undamped, nonexplosive cycles

period = 10 # Length of cycle in units of time
ϕ = 2 * math.pi / period

# Apply the reverse-engineering function f
ρ1, ρ2, α, β = f(r, ϕ)

# Extract real parts for numerical computation
α = α.real
β = β.real

print(f"α, β = {α:.2f}, {β:.2f}")

ytemp = y_nonstochastic(α=α, β=β, y_0=20, y_1=30)
plot_y(ytemp)

α, β = 0.62, 1.00
Solution type: Damped oscillations
Roots are [0.80901699+0.58778525j 0.80901699-0.58778525j]
Root type: Complex
Stability: Unstable
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37.3.7 Digression: Using Sympy to find roots

We can also use sympy to compute analytic formulas for the roots

init_printing()

r1 = Symbol("ρ_1")
r2 = Symbol("ρ_2")
z = Symbol("z")

sympy.solve(z**2 - r1 * z - r2, z)

α = Symbol("α")
β = Symbol("β")
r1 = α + β
r2 = -β

sympy.solve(z**2 - r1 * z - r2, z)
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37.4 Stochastic shocks

Now we’ll construct some code to simulate the stochastic version of the model that emerges when we add a random shock
process to aggregate demand

def y_stochastic(y_0=0, y_1=0, α=0.8, β=0.2, γ=10, n=100, σ=5):
"""
This function takes parameters of a stochastic version of
the model, analyzes the roots of the characteristic
polynomial and generates a simulation.
"""

y_series, analysis = simulate_samuelson(y_0, y_1, α, β, γ, n, σ, None, 42)

print(f"Solution type: {analysis['solution_type']}")
print(f"Roots are {[f'{root:.2f}' for root in analysis['roots']]}")
print(f"Root type: {'Complex' if analysis['is_complex'] else 'Real'}")
print(f"Stability: {'Stable' if analysis['is_stable'] else 'Unstable'}")

return y_series

plot_y(y_stochastic())

Solution type: Steady state convergence
Roots are ['0.72', '0.28']
Root type: Real
Stability: Stable

Let’s do a simulation in which there are shocks and the characteristic polynomial has complex roots
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r = 0.97

period = 10 # Length of cycle in units of time
ϕ = 2 * math.pi / period

# Apply the reverse-engineering function f
ρ1, ρ2, α, β = f(r, ϕ)

# Extract real parts for numerical computation
α = α.real
β = β.real

print(f"α, β = {α:.2f}, {β:.2f}")
plot_y(y_stochastic(y_0=40, y_1=42, α=α, β=β, σ=2, n=100))

α, β = 0.63, 0.94
Solution type: Damped oscillations
Roots are ['0.78+0.57j', '0.78-0.57j']
Root type: Complex
Stability: Stable
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37.5 Government spending

This function computes a response to either a permanent or one-off increase in government expenditures

def y_stochastic_g(
y_0=20, y_1=20, α=0.8, β=0.2, γ=10,
n=100, σ=2, g=0, g_t=0, duration="permanent"

):
"""
This program computes a response to a permanent increase
in government expenditures that occurs at time 20
"""

g_params = (
{'g': g, 'g_t': g_t, 'duration': duration} if g != 0 else None

)
y_series, analysis = simulate_samuelson(

y_0, y_1, α, β, γ, n, σ, g_params, 42
)

print(f"Solution type: {analysis['solution_type']}")
print(f"Roots: {analysis['roots']}")
print(f"Root type: {'Complex' if analysis['is_complex'] else 'Real'}")
print(f"Stability: {'Stable' if analysis['is_stable'] else 'Unstable'}")

return y_series

A permanent government spending shock can be simulated as follows

plot_y(y_stochastic_g(g=10, g_t=20, duration="permanent"))

Solution type: Steady state convergence
Roots: [0.7236068 0.2763932]
Root type: Real
Stability: Stable
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We can also see the response to a one time jump in government expenditures

plot_y(y_stochastic_g(g=500, g_t=50, duration="one-off"))

Solution type: Steady state convergence
Roots: [0.7236068 0.2763932]
Root type: Real
Stability: Stable
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37.6 Wrapping everything into a class

Up to now, we have written functions to do the work.

Now we’ll roll up our sleeves and write a Python class called Samuelson for the Samuelson model

class Samuelson:
"""
This class represents the Samuelson model, otherwise known as the
multiplier-accelerator model.
The model combines the Keynesian multiplier
with the accelerator theory of investment.

The path of output is governed by a linear
second-order difference equation

.. math::

Y_t = \alpha (1 + \beta) Y_{t-1} - \alpha \beta Y_{t-2}

Parameters
----------
y_0 : scalar

Initial condition for Y_0
y_1 : scalar

Initial condition for Y_1
α : scalar

Marginal propensity to consume
β : scalar

Accelerator coefficient

(continues on next page)
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n : int
Number of iterations

σ : scalar
Volatility parameter. It must be greater than or equal to 0. Set
equal to 0 for a non-stochastic model.

g : scalar
Government spending shock

g_t : int
Time at which government spending shock occurs. Must be specified
when duration != None.

duration : {None, 'permanent', 'one-off'}
Specifies type of government spending shock. If none, government
spending equal to g for all t.

"""

def __init__(
self, y_0=100, y_1=50,
α=1.3, β=0.2, γ=10, n=100, σ=0, g=0, g_t=0, duration=None

):

self.y_0, self.y_1, self.α, self.β = y_0, y_1, α, β
self.n, self.g, self.g_t, self.duration = n, g, g_t, duration
self.γ, self.σ = γ, σ

# Use unified analysis function
self.analysis = analyze_roots(α, β, verbose=False)
self.ρ1, self.ρ2 = self.analysis['rho1'], self.analysis['rho2']
self.roots = self.analysis['roots']

def root_type(self):
return "Complex conjugate" if self.analysis['is_complex'] else "Real"

def root_less_than_one(self):
return self.analysis['is_stable']

def solution_type(self):
return self.analysis['solution_type']

def generate_series(self, seed=0):
g_params = (

{'g': self.g, 'g_t': self.g_t, 'duration': self.duration}
if self.g != 0 else None

)
y_series, _ = simulate_samuelson(

self.y_0, self.y_1, self.α, self.β, self.γ,
self.n, self.σ, g_params, seed

)
return y_series

def summary(self):
print("Summary\n" + "-" * 50)
print(f"Root type: {self.root_type()}")
print(f"Solution type: {self.solution_type()}")
print(f"Roots: {str(self.roots)}")

if self.root_less_than_one() == True:
(continues on next page)
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print("Absolute value of roots is less than one")
else:

print("Absolute value of roots is not less than one")

if self.σ > 0:
print("Stochastic series with σ = " + str(self.σ))

else:
print("Non-stochastic series")

if self.g != 0:
print("Government spending equal to " + str(self.g))

if self.duration != None:
print(

self.duration.capitalize()
+ " government spending shock at t = "
+ str(self.g_t)

)

def plot(self, seed=0):
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(self.generate_series(seed))
ax.set(xlabel="iteration", xlim=(0, self.n))
ax.set_ylabel("$Y_t$", rotation=0)

# Display model parameters on the plot
paramstr = (

f"$α={self.α:.2f}$ \n $β={self.β:.2f}$ \n "
f"$\\gamma={self.γ:.2f}$ \n $\\sigma={self.σ:.2f}$ \n "
f"$\\rho_1={self.ρ1:.2f}$ \n $\\rho_2={self.ρ2:.2f}$"

)
props = dict(fc="white", pad=10, alpha=0.5)
ax.text(

0.87,
0.05,
paramstr,
transform=ax.transAxes,
fontsize=12,
bbox=props,
va="bottom",

)

return fig

def param_plot(self):

fig = param_plot()
ax = fig.gca()

# Display eigenvalues in the legend
for i, root in enumerate(self.roots):

if isinstance(root, complex):

# Handle sign formatting for complex number display
operator = ["+", ""]
root_real = self.roots[i].real

(continues on next page)
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root_imag = self.roots[i].imag
label = (

rf"$\lambda_{i+1} = {root_real:.2f}"
rf"{operator[i]} {root_imag:.2f}i$"

)
else:

label = rf"$\lambda_{i+1} = {self.roots[i].real:.2f}$"

# Add invisible point for legend entry
ax.scatter(

0, 0, s=0, label=label
)

# Mark current parameter values on the stability diagram
ax.scatter(

self.ρ1,
self.ρ2,
s=100,
c="red",
marker="+",
label=r"$(\rho_1, \rho_2)$",
zorder=5,

)

plt.legend(fontsize=12, loc=3)

return fig

37.6.1 Illustration of Samuelson class

Now we’ll put our Samuelson class to work on an example

sam = Samuelson(α=0.8, β=0.5, σ=2, g=10, g_t=20, duration="permanent")
sam.summary()

Summary
--------------------------------------------------
Root type: Complex conjugate
Solution type: Damped oscillations
Roots: [0.65+0.27838822j 0.65-0.27838822j]
Absolute value of roots is less than one
Stochastic series with σ = 2
Government spending equal to 10
Permanent government spending shock at t = 20

sam.plot()
plt.show()

730 Chapter 37. Samuelson Multiplier-Accelerator



Intermediate Quantitative Economics with Python

37.6.2 Using the graph

We’ll use our graph to show where the roots lie and how their location is consistent with the behavior of the path just
graphed.

The red + sign shows the location of the roots

sam.param_plot()
plt.show()
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37.7 Using the LinearStateSpace class

It turns out that we can use the QuantEcon.py LinearStateSpace class to do much of the work that we have done from
scratch above.

Here is how we map the Samuelson model into an instance of a LinearStateSpace class

α = 0.8
β = 0.9
ρ1 = α + β
ρ2 = -β
γ = 10
σ = 1
g = 10
n = 100

A = [[1, 0, 0], [γ + g, ρ1, ρ2], [0, 1, 0]]

G = [
[γ + g, ρ1, ρ2], # Y_{t+1}
[γ, α, 0], # C_{t+1}
[0, β, -β], # I_{t+1}

]

μ_0 = [1, 100, 50]
C = np.zeros((3, 1))
C[1] = σ # Shock variance

(continues on next page)
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sam_t = LinearStateSpace(A, C, G, mu_0=μ_0)

x, y = sam_t.simulate(ts_length=n)

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
titles = ["Output ($Y_t$)", "Consumption ($C_t$)", "Investment ($I_t$)"]
colors = ["darkblue", "red", "purple"]
for ax, series, title, color in zip(axes, y, titles, colors):

ax.plot(series, color=color)
ax.set(title=title, xlim=(0, n))

axes[-1].set_xlabel("iteration")

plt.show()

37.7.1 Other methods in the LinearStateSpace class

Let’s plot impulse response functions for the instance of the Samuelson model using a method in the LinearStateS-
pace class

imres = sam_t.impulse_response()
imres = np.asarray(imres)
y1 = imres[:, :, 0]
y2 = imres[:, :, 1]
y1.shape
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Now let’s compute the zeros of the characteristic polynomial by simply calculating the eigenvalues of 𝐴
A = np.asarray(A)
w, v = np.linalg.eig(A)
print(np.round(w, 2))

[0.85+0.42j 0.85-0.42j 1. +0.j ]

37.7.2 Inheriting methods from LinearStateSpace

Wecould also create a subclass ofLinearStateSpace (inheriting all its methods and attributes) to addmore functions
to use

class SamuelsonLSS(LinearStateSpace):
"""
This subclass creates a Samuelson multiplier-accelerator model
as a linear state space system.
"""

def __init__(self, y_0=100, y_1=50, α=0.8, β=0.9, γ=10, σ=1, g=10):

self.α, self.β = α, β
self.y_0, self.y_1, self.g = y_0, y_1, g
self.γ, self.σ = γ, σ

# Set initial state vector
self.initial_μ = [1, y_0, y_1]

self.ρ1 = α + β
self.ρ2 = -β

# Construct state transition matrix
self.A = [[1, 0, 0], [γ + g, self.ρ1, self.ρ2], [0, 1, 0]]

# Construct observation matrix
self.G = [

[γ + g, self.ρ1, self.ρ2], # Y_{t+1}
[γ, α, 0], # C_{t+1}
[0, β, -β], # I_{t+1}

]

self.C = np.zeros((3, 1))
self.C[1] = σ # Shock variance

# Initialize the LinearStateSpace instance
LinearStateSpace.__init__(

self, self.A, self.C, self.G, mu_0=self.initial_μ
)

# Create unicode aliases for mu_0 and Sigma_0 in the parent class
@property
def μ_0(self):

return self.mu_0

(continues on next page)
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@μ_0.setter
def μ_0(self, value):

self.mu_0 = value

@property
def Σ_0(self):

return self.Sigma_0

@Σ_0.setter
def Σ_0(self, value):

self.Sigma_0 = value

def plot_simulation(self, ts_length=100, stationary=True, seed=0):

# Store original distribution parameters
temp_μ = self.μ_0
temp_Σ = self.Σ_0

# Use stationary distribution for simulation
if stationary == True:

try:
(self.μ_x, self.μ_y, self.Σ_x, self.Σ_y, self.Σ_yx
) = self.stationary_distributions()
self.μ_0 = self.μ_x
self.Σ_0 = self.Σ_x

# Handle case where stationary distribution doesn't exist
except ValueError:

print("Stationary distribution does not exist")

np.random.seed(seed)
x, y = self.simulate(ts_length)

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
titles = ["Output ($Y_t$)",

"Consumption ($C_t$)",
"Investment ($I_t$)"]

colors = ["darkblue", "red", "purple"]
for ax, series, title, color in zip(axes, y, titles, colors):

ax.plot(series, color=color)
ax.set(title=title, xlim=(0, n))

axes[-1].set_xlabel("iteration")
plt.show()

# Restore original distribution parameters
self.μ_0 = temp_μ
self.Σ_0 = temp_Σ

def plot_irf(self, j=5):

x, y = self.impulse_response(j)

# Reshape impulse responses for plotting
yimf = np.array(y).flatten().reshape(j + 1, 3).T

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
(continues on next page)
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labels = ["$Y_t$", "$C_t$", "$I_t$"]
colors = ["darkblue", "red", "purple"]
for ax, series, label, color in zip(axes, yimf, labels, colors):

ax.plot(series, color=color)
ax.set(xlim=(0, j))
ax.set_ylabel(label, rotation=0, fontsize=14, labelpad=10)

axes[0].set_title("Impulse response functions")
axes[-1].set_xlabel("iteration")
plt.show()

def multipliers(self, j=5):
x, y = self.impulse_response(j)
return np.sum(np.array(y).flatten().reshape(j + 1, 3), axis=0)

37.7.3 Illustrations

Let’s show how we can use the SamuelsonLSS

samlss = SamuelsonLSS()

samlss.plot_simulation(100, stationary=False)
plt.show()
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samlss.plot_simulation(100, stationary=True)
plt.show()

samlss.plot_irf(100)
plt.show()
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samlss.multipliers()

array([7.414389, 6.835896, 0.578493])

37.8 Pure multiplier model

Let’s shut down the accelerator by setting 𝑏 = 0 to get a pure multiplier model
• the absence of cycles gives an idea about why Samuelson included the accelerator

pure_multiplier = SamuelsonLSS(α=0.95, β=0)

pure_multiplier.plot_simulation()
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pure_multiplier = SamuelsonLSS(α=0.8, β=0)

pure_multiplier.plot_simulation()
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pure_multiplier.plot_irf(100)
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37.9 Summary

In this lecture, we wrote functions and classes to represent non-stochastic and stochastic versions of the Samuelson (1939)
multiplier-accelerator model, described in [Samuelson, 1939].

We saw that different parameter values led to different output paths, which could either be stationary, explosive, or
oscillating.

We also were able to represent the model using the QuantEcon.py LinearStateSpace class.
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KESTEN PROCESSES AND FIRM DYNAMICS

Contents

• Kesten Processes and Firm Dynamics

– Overview

– Kesten Processes

– Heavy Tails

– Application: Firm Dynamics

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon
!pip install --upgrade yfinance

38.1 Overview

Previously we learned about linear scalar-valued stochastic processes (AR(1) models).

Now we generalize these linear models slightly by allowing the multiplicative coefficient to be stochastic.

Such processes are known as Kesten processes after German–American mathematician Harry Kesten (1931–2019)

Although simple to write down, Kesten processes are interesting for at least two reasons:

1. A number of significant economic processes are or can be described as Kesten processes.

2. Kesten processes generate interesting dynamics, including, in some cases, heavy-tailed cross-sectional distributions.

We will discuss these issues as we go along.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe

The following two lines are only added to avoid a FutureWarning caused by compatibility issues between pandas and
matplotlib.
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from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

Additional technical background related to this lecture can be found in the monograph of [Buraczewski et al., 2016].

38.2 Kesten Processes

A Kesten process is a stochastic process of the form

𝑋𝑡+1 = 𝑎𝑡+1𝑋𝑡 + 𝜂𝑡+1 (38.1)

where {𝑎𝑡}𝑡≥1 and {𝜂𝑡}𝑡≥1 are IID sequences.

We are interested in the dynamics of {𝑋𝑡}𝑡≥0 when 𝑋0 is given.

We will focus on the nonnegative scalar case, where 𝑋𝑡 takes values in ℝ+.

In particular, we will assume that

• the initial condition 𝑋0 is nonnegative,

• {𝑎𝑡}𝑡≥1 is a nonnegative IID stochastic process and

• {𝜂𝑡}𝑡≥1 is another nonnegative IID stochastic process, independent of the first.

38.2.1 Example: GARCH Volatility

The GARCH model is common in financial applications, where time series such as asset returns exhibit time varying
volatility.

For example, consider the following plot of daily returns on the Nasdaq Composite Index for the period 1st January 2006
to 1st November 2019.

import yfinance as yf

s = yf.download('^IXIC', '2006-1-1', '2019-11-1', auto_adjust=False)['Adj Close']

r = s.pct_change()

fig, ax = plt.subplots()

ax.plot(r, alpha=0.7)

ax.set_ylabel('returns', fontsize=12)
ax.set_xlabel('date', fontsize=12)

plt.show()

[*********************100%***********************] 1 of 1 completed
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Notice how the series exhibits bursts of volatility (high variance) and then settles down again.

GARCH models can replicate this feature.

The GARCH(1, 1) volatility process takes the form

𝜎2
𝑡+1 = 𝛼0 + 𝜎2

𝑡 (𝛼1𝜉2
𝑡+1 + 𝛽) (38.2)

where {𝜉𝑡} is IID with 𝔼𝜉2
𝑡 = 1 and all parameters are positive.

Returns on a given asset are then modeled as

𝑟𝑡 = 𝜎𝑡𝜁𝑡 (38.3)

where {𝜁𝑡} is again IID and independent of {𝜉𝑡}.
The volatility sequence {𝜎2

𝑡 }, which drives the dynamics of returns, is a Kesten process.

38.2.2 Example: Wealth Dynamics

Suppose that a given household saves a fixed fraction 𝑠 of its current wealth in every period.
The household earns labor income 𝑦𝑡 at the start of time 𝑡.
Wealth then evolves according to

𝑤𝑡+1 = 𝑅𝑡+1𝑠𝑤𝑡 + 𝑦𝑡+1 (38.4)

where {𝑅𝑡} is the gross rate of return on assets.
If {𝑅𝑡} and {𝑦𝑡} are both IID, then (38.4) is a Kesten process.
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38.2.3 Stationarity

In earlier lectures, such as the one on AR(1) processes, we introduced the notion of a stationary distribution.

In the present context, we can define a stationary distribution as follows:

The distribution 𝐹 ∗ on ℝ is called stationary for the Kesten process (38.1) if

𝑋𝑡 ∼ 𝐹 ∗ ⟹ 𝑎𝑡+1𝑋𝑡 + 𝜂𝑡+1 ∼ 𝐹 ∗ (38.5)

In other words, if the current state 𝑋𝑡 has distribution 𝐹 ∗, then so does the next period state 𝑋𝑡+1.

We can write this alternatively as

𝐹 ∗(𝑦) = ∫ ℙ{𝑎𝑡+1𝑥 + 𝜂𝑡+1 ≤ 𝑦}𝐹 ∗(𝑑𝑥) for all 𝑦 ≥ 0. (38.6)

The left hand side is the distribution of the next period state when the current state is drawn from 𝐹 ∗.

The equality in (38.6) states that this distribution is unchanged.

38.2.4 Cross-Sectional Interpretation

There is an important cross-sectional interpretation of stationary distributions, discussed previously but worth repeating
here.

Suppose, for example, that we are interested in the wealth distribution — that is, the current distribution of wealth across
households in a given country.

Suppose further that

• the wealth of each household evolves independently according to (38.4),

• 𝐹 ∗ is a stationary distribution for this stochastic process and

• there are many households.

Then 𝐹 ∗ is a steady state for the cross-sectional wealth distribution in this country.

In other words, if 𝐹 ∗ is the current wealth distribution then it will remain so in subsequent periods, ceteris paribus.

To see this, suppose that 𝐹 ∗ is the current wealth distribution.

What is the fraction of households with wealth less than 𝑦 next period?
To obtain this, we sum the probability that wealth is less than 𝑦 tomorrow, given that current wealth is 𝑤, weighted by the
fraction of households with wealth 𝑤.
Noting that the fraction of households with wealth in interval 𝑑𝑤 is 𝐹 ∗(𝑑𝑤), we get

∫ ℙ{𝑅𝑡+1𝑠𝑤 + 𝑦𝑡+1 ≤ 𝑦}𝐹 ∗(𝑑𝑤)

By the definition of stationarity and the assumption that 𝐹 ∗ is stationary for the wealth process, this is just 𝐹 ∗(𝑦).
Hence the fraction of households with wealth in [0, 𝑦] is the same next period as it is this period.
Since 𝑦 was chosen arbitrarily, the distribution is unchanged.
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38.2.5 Conditions for Stationarity

The Kesten process 𝑋𝑡+1 = 𝑎𝑡+1𝑋𝑡 + 𝜂𝑡+1 does not always have a stationary distribution.

For example, if 𝑎𝑡 ≡ 𝜂𝑡 ≡ 1 for all 𝑡, then 𝑋𝑡 = 𝑋0 + 𝑡, which diverges to infinity.
To prevent this kind of divergence, we require that {𝑎𝑡} is strictly less than 1 most of the time.
In particular, if

𝔼 ln 𝑎𝑡 < 0 and 𝔼𝜂𝑡 < ∞ (38.7)

then a unique stationary distribution exists on ℝ+.

• See, for example, theorem 2.1.3 of [Buraczewski et al., 2016], which provides slightly weaker conditions.

As one application of this result, we see that the wealth process (38.4) will have a unique stationary distribution whenever
labor income has finite mean and 𝔼 ln𝑅𝑡 + ln 𝑠 < 0.

38.3 Heavy Tails

Under certain conditions, the stationary distribution of a Kesten process has a Pareto tail.

(See our earlier lecture on heavy-tailed distributions for background.)

This fact is significant for economics because of the prevalence of Pareto-tailed distributions.

38.3.1 The Kesten–Goldie Theorem

To state the conditions under which the stationary distribution of a Kesten process has a Pareto tail, we first recall that a
random variable is called nonarithmetic if its distribution is not concentrated on {… , −2𝑡, −𝑡, 0, 𝑡, 2𝑡, …} for any 𝑡 ≥ 0.
For example, any random variable with a density is nonarithmetic.

The famous Kesten–Goldie Theorem (see, e.g., [Buraczewski et al., 2016], theorem 2.4.4) states that if

1. the stationarity conditions in (38.7) hold,

2. the random variable 𝑎𝑡 is positive with probability one and nonarithmetic,

3. ℙ{𝑎𝑡𝑥 + 𝜂𝑡 = 𝑥} < 1 for all 𝑥 ∈ ℝ+ and

4. there exists a positive constant 𝛼 such that

𝔼𝑎𝛼
𝑡 = 1, 𝔼𝜂𝛼

𝑡 < ∞, and 𝔼[𝑎𝛼+1
𝑡 ] < ∞

then the stationary distribution of the Kesten process has a Pareto tail with tail index 𝛼.
More precisely, if 𝐹 ∗ is the unique stationary distribution and 𝑋∗ ∼ 𝐹 ∗, then

lim
𝑥→∞

𝑥𝛼ℙ{𝑋∗ > 𝑥} = 𝑐

for some positive constant 𝑐.
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38.3.2 Intuition

Later we will illustrate the Kesten–Goldie Theorem using rank-size plots.

Prior to doing so, we can give the following intuition for the conditions.

Two important conditions are that 𝔼 ln 𝑎𝑡 < 0, so the model is stationary, and 𝔼𝑎𝛼
𝑡 = 1 for some 𝛼 > 0.

The first condition implies that the distribution of 𝑎𝑡 has a large amount of probability mass below 1.

The second condition implies that the distribution of 𝑎𝑡 has at least some probability mass at or above 1.

The first condition gives us existence of the stationary condition.

The second condition means that the current state can be expanded by 𝑎𝑡.

If this occurs for several concurrent periods, the effects compound each other, since 𝑎𝑡 is multiplicative.

This leads to spikes in the time series, which fill out the extreme right hand tail of the distribution.

The spikes in the time series are visible in the following simulation, which generates of 10 paths when 𝑎𝑡 and 𝑏𝑡 are
lognormal.

μ = -0.5
σ = 1.0

def kesten_ts(ts_length=100):
x = np.zeros(ts_length)
for t in range(ts_length-1):

a = np.exp(μ + σ * np.random.randn())
b = np.exp(np.random.randn())
x[t+1] = a * x[t] + b

return x

fig, ax = plt.subplots()

num_paths = 10
np.random.seed(12)

for i in range(num_paths):
ax.plot(kesten_ts())

ax.set(xlabel='time', ylabel='$X_t$')
plt.show()
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38.4 Application: Firm Dynamics

As noted in our lecture on heavy tails, for common measures of firm size such as revenue or employment, the US firm
size distribution exhibits a Pareto tail (see, e.g., [Axtell, 2001], [Gabaix, 2016]).

Let us try to explain this rather striking fact using the Kesten–Goldie Theorem.

38.4.1 Gibrat’s Law

It was postulated many years ago by Robert Gibrat [Gibrat, 1931] that firm size evolves according to a simple rule whereby
size next period is proportional to current size.

This is now known as Gibrat’s law of proportional growth.

We can express this idea by stating that a suitably defined measure 𝑠𝑡 of firm size obeys

𝑠𝑡+1
𝑠𝑡

= 𝑎𝑡+1 (38.8)

for some positive IID sequence {𝑎𝑡}.
One implication of Gibrat’s law is that the growth rate of individual firms does not depend on their size.

However, over the last few decades, research contradicting Gibrat’s law has accumulated in the literature.

For example, it is commonly found that, on average,

1. small firms grow faster than large firms (see, e.g., [Evans, 1987] and [Hall, 1987]) and

38.4. Application: Firm Dynamics 749

https://intro.quantecon.org/heavy_tails.html
https://en.wikipedia.org/wiki/Gibrat%27s_law


Intermediate Quantitative Economics with Python

2. the growth rate of small firms is more volatile than that of large firms [Dunne et al., 1989].

On the other hand, Gibrat’s law is generally found to be a reasonable approximation for large firms [Evans, 1987].

We can accommodate these empirical findings by modifying (38.8) to

𝑠𝑡+1 = 𝑎𝑡+1𝑠𝑡 + 𝑏𝑡+1 (38.9)

where {𝑎𝑡} and {𝑏𝑡} are both IID and independent of each other.

In the exercises you are asked to show that (38.9) is more consistent with the empirical findings presented above than
Gibrat’s law in (38.8).

38.4.2 Heavy Tails

So what has this to do with Pareto tails?

The answer is that (38.9) is a Kesten process.

If the conditions of the Kesten–Goldie Theorem are satisfied, then the firm size distribution is predicted to have heavy
tails — which is exactly what we see in the data.

In the exercises below we explore this idea further, generalizing the firm size dynamics and examining the corresponding
rank-size plots.

We also try to illustrate why the Pareto tail finding is significant for quantitative analysis.

38.5 Exercises

Exercise 38.5.1

Simulate and plot 15 years of daily returns (consider each year as having 250 working days) using the GARCH(1, 1)
process in (38.2)–(38.3).

Take 𝜉𝑡 and 𝜁𝑡 to be independent and standard normal.

Set 𝛼0 = 0.00001, 𝛼1 = 0.1, 𝛽 = 0.9 and 𝜎0 = 0.
Compare visually with the Nasdaq Composite Index returns shown above.

While the time path differs, you should see bursts of high volatility.

Solution to Exercise 38.5.1

Here is one solution:
α_0 = 1e-5
α_1 = 0.1
β = 0.9

years = 15
days = years * 250

def garch_ts(ts_length=days):
σ2 = 0
r = np.zeros(ts_length)

750 Chapter 38. Kesten Processes and Firm Dynamics



Intermediate Quantitative Economics with Python

for t in range(ts_length-1):
ξ = np.random.randn()
σ2 = α_0 + σ2 * (α_1 * ξ**2 + β)
r[t] = np.sqrt(σ2) * np.random.randn()

return r

fig, ax = plt.subplots()

np.random.seed(12)

ax.plot(garch_ts(), alpha=0.7)

ax.set(xlabel='time', ylabel='$\\sigma_t^2$')
plt.show()

Exercise 38.5.2

In our discussion of firm dynamics, it was claimed that (38.9) is more consistent with the empirical literature than
Gibrat’s law in (38.8).

(The empirical literature was reviewed immediately above (38.9).)

In what sense is this true (or false)?
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Solution to Exercise 38.5.2

The empirical findings are that

1. small firms grow faster than large firms and

2. the growth rate of small firms is more volatile than that of large firms.

Also, Gibrat’s law is generally found to be a reasonable approximation for large firms than for small firms

The claim is that the dynamics in (38.9) are more consistent with points 1-2 than Gibrat’s law.

To see why, we rewrite (38.9) in terms of growth dynamics:

𝑠𝑡+1
𝑠𝑡

= 𝑎𝑡+1 + 𝑏𝑡+1
𝑠𝑡

(38.10)

Taking 𝑠𝑡 = 𝑠 as given, the mean and variance of firm growth are

𝔼𝑎 + 𝔼𝑏
𝑠 and 𝕍𝑎 + 𝕍𝑏

𝑠2

Both of these decline with firm size 𝑠, consistent with the data.
Moreover, the law of motion (38.10) clearly approaches Gibrat’s law (38.8) as 𝑠𝑡 gets large.

Exercise 38.5.3

Consider an arbitrary Kesten process as given in (38.1).

Suppose that {𝑎𝑡} is lognormal with parameters (𝜇, 𝜎).
In other words, each 𝑎𝑡 has the same distribution as exp(𝜇 + 𝜎𝑍) when 𝑍 is standard normal.

Suppose further that 𝔼𝜂𝑟
𝑡 < ∞ for every 𝑟 > 0, as would be the case if, say, 𝜂𝑡 is also lognormal.

Show that the conditions of the Kesten–Goldie theorem are satisfied if and only if 𝜇 < 0.
Obtain the value of 𝛼 that makes the Kesten–Goldie conditions hold.
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Solution to Exercise 38.5.3

Since 𝑎𝑡 has a density it is nonarithmetic.

Since 𝑎𝑡 has the same density as 𝑎 = exp(𝜇 + 𝜎𝑍) when 𝑍 is standard normal, we have

𝔼 ln 𝑎𝑡 = 𝔼(𝜇 + 𝜎𝑍) = 𝜇,

and since 𝜂𝑡 has finite moments of all orders, the stationarity condition holds if and only if 𝜇 < 0.
Given the properties of the lognormal distribution (which has finite moments of all orders), the only other condition
in doubt is existence of a positive constant 𝛼 such that 𝔼𝑎𝛼

𝑡 = 1.
This is equivalent to the statement

exp(𝛼𝜇 + 𝛼2𝜎2

2 ) = 1.

Solving for 𝛼 gives 𝛼 = −2𝜇/𝜎2.

Exercise 38.5.4

One unrealistic aspect of the firm dynamics specified in (38.9) is that it ignores entry and exit.

In any given period and in any given market, we observe significant numbers of firms entering and exiting the market.

Empirical discussion of this can be found in a famous paper by Hugo Hopenhayn [Hopenhayn, 1992].

In the same paper, Hopenhayn builds a model of entry and exit that incorporates profit maximization by firms and
market clearing quantities, wages and prices.

In his model, a stationary equilibrium occurs when the number of entrants equals the number of exiting firms.

In this setting, firm dynamics can be expressed as

𝑠𝑡+1 = 𝑒𝑡+1𝟙{𝑠𝑡 < ̄𝑠} + (𝑎𝑡+1𝑠𝑡 + 𝑏𝑡+1)𝟙{𝑠𝑡 ≥ ̄𝑠} (38.11)

Here

• the state variable 𝑠𝑡 represents productivity (which is a proxy for output and hence firm size),

• the IID sequence {𝑒𝑡} is thought of as a productivity draw for a new entrant and

• the variable ̄𝑠 is a threshold value that we take as given, although it is determined endogenously in Hopenhayn’s
model.

The idea behind (38.11) is that firms stay in the market as long as their productivity 𝑠𝑡 remains at or above ̄𝑠.
• In this case, their productivity updates according to (38.9).

Firms choose to exit when their productivity 𝑠𝑡 falls below ̄𝑠.
• In this case, they are replaced by a new firm with productivity 𝑒𝑡+1.

What can we say about dynamics?

Although (38.11) is not a Kesten process, it does update in the same way as a Kesten process when 𝑠𝑡 is large.

So perhaps its stationary distribution still has Pareto tails?

Your task is to investigate this question via simulation and rank-size plots.

The approach will be to
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1. generate 𝑀 draws of 𝑠𝑇 when 𝑀 and 𝑇 are large and

2. plot the largest 1,000 of the resulting draws in a rank-size plot.

(The distribution of 𝑠𝑇 will be close to the stationary distribution when 𝑇 is large.)

In the simulation, assume that

• each of 𝑎𝑡, 𝑏𝑡 and 𝑒𝑡 is lognormal,

• the parameters are

μ_a = -0.5 # location parameter for a
σ_a = 0.1 # scale parameter for a
μ_b = 0.0 # location parameter for b
σ_b = 0.5 # scale parameter for b
μ_e = 0.0 # location parameter for e
σ_e = 0.5 # scale parameter for e
s_bar = 1.0 # threshold
T = 500 # sampling date
M = 1_000_000 # number of firms
s_init = 1.0 # initial condition for each firm

Solution to Exercise 38.5.4

Here’s one solution. First we generate the observations:

from numba import jit, prange
from numpy.random import randn

@jit(parallel=True)
def generate_draws(μ_a=-0.5,

σ_a=0.1,
μ_b=0.0,
σ_b=0.5,
μ_e=0.0,
σ_e=0.5,
s_bar=1.0,
T=500,
M=1_000_000,
s_init=1.0):

draws = np.empty(M)
for m in prange(M):

s = s_init
for t in range(T):

if s < s_bar:
new_s = np.exp(μ_e + σ_e * randn())

else:
a = np.exp(μ_a + σ_a * randn())
b = np.exp(μ_b + σ_b * randn())
new_s = a * s + b

s = new_s
draws[m] = s

return draws

data = generate_draws()
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Now we produce the rank-size plot:

fig, ax = plt.subplots()

rank_data, size_data = qe.rank_size(data, c=0.01)
ax.loglog(rank_data, size_data, 'o', markersize=3.0, alpha=0.5)
ax.set_xlabel("log rank")
ax.set_ylabel("log size")

plt.show()

The plot produces a straight line, consistent with a Pareto tail.
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– Overview

– Lorenz Curves and the Gini Coefficient
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– Implementation

– Applications

– Exercises

See also

A version of this lecture using JAX is available here

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

39.1 Overview

This notebook gives an introduction to wealth distribution dynamics, with a focus on

• modeling and computing the wealth distribution via simulation,

• measures of inequality such as the Lorenz curve and Gini coefficient, and

• how inequality is affected by the properties of wage income and returns on assets.

One interesting property of the wealth distribution we discuss is Pareto tails.

The wealth distribution in many countries exhibits a Pareto tail

• See this lecture for a definition.

• For a review of the empirical evidence, see, for example, [Benhabib and Bisin, 2018].
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This is consistent with high concentration of wealth amongst the richest households.

It also gives us a way to quantify such concentration, in terms of the tail index.

One question of interest is whether or not we can replicate Pareto tails from a relatively simple model.

39.1.1 A Note on Assumptions

The evolution of wealth for any given household depends on their savings behavior.

Modeling such behavior will form an important part of this lecture series.

However, in this particular lecture, we will be content with rather ad hoc (but plausible) savings rules.

We do this to more easily explore the implications of different specifications of income dynamics and investment returns.

At the same time, all of the techniques discussed here can be plugged into models that use optimization to obtain savings
rules.

We will use the following imports.

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from numba import jit, float64, prange
from numba.experimental import jitclass

39.2 Lorenz Curves and the Gini Coefficient

Before we investigate wealth dynamics, we briefly review some measures of inequality.

39.2.1 Lorenz Curves

One popular graphical measure of inequality is the Lorenz curve.

The package QuantEcon.py, already imported above, contains a function to compute Lorenz curves.

To illustrate, suppose that

n = 10_000 # size of sample
w = np.exp(np.random.randn(n)) # lognormal draws

is data representing the wealth of 10,000 households.

We can compute and plot the Lorenz curve as follows:

f_vals, l_vals = qe.lorenz_curve(w)

fig, ax = plt.subplots()
ax.plot(f_vals, l_vals, label='Lorenz curve, lognormal sample')
ax.plot(f_vals, f_vals, label='Lorenz curve, equality')
ax.legend()
plt.show()
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This curve can be understood as follows: if point (𝑥, 𝑦) lies on the curve, it means that, collectively, the bottom (100𝑥)%
of the population holds (100𝑦)% of the wealth.

The “equality” line is the 45 degree line (which might not be exactly 45 degrees in the figure, depending on the aspect
ratio).

A sample that produces this line exhibits perfect equality.

The other line in the figure is the Lorenz curve for the lognormal sample, which deviates significantly from perfect equality.

For example, the bottom 80% of the population holds around 40% of total wealth.

Here is another example, which shows how the Lorenz curve shifts as the underlying distribution changes.

We generate 10,000 observations using the Pareto distribution with a range of parameters, and then compute the Lorenz
curve corresponding to each set of observations.

a_vals = (1, 2, 5) # Pareto tail index
n = 10_000 # size of each sample
fig, ax = plt.subplots()
for a in a_vals:

u = np.random.uniform(size=n)
y = u**(-1/a) # distributed as Pareto with tail index a
f_vals, l_vals = qe.lorenz_curve(y)
ax.plot(f_vals, l_vals, label=f'$a = {a}$')

ax.plot(f_vals, f_vals, label='equality')
ax.legend()
plt.show()
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You can see that, as the tail parameter of the Pareto distribution increases, inequality decreases.

This is to be expected, because a higher tail index implies less weight in the tail of the Pareto distribution.

39.2.2 The Gini Coefficient

The definition and interpretation of the Gini coefficient can be found on the corresponding Wikipedia page.

A value of 0 indicates perfect equality (corresponding the case where the Lorenz curve matches the 45 degree line) and
a value of 1 indicates complete inequality (all wealth held by the richest household).

The QuantEcon.py library contains a function to calculate the Gini coefficient.

We can test it on the Weibull distribution with parameter 𝑎, where the Gini coefficient is known to be

𝐺 = 1 − 2−1/𝑎

Let’s see if the Gini coefficient computed from a simulated sample matches this at each fixed value of 𝑎.
a_vals = range(1, 20)
ginis = []
ginis_theoretical = []
n = 100

fig, ax = plt.subplots()
for a in a_vals:

y = np.random.weibull(a, size=n)
ginis.append(qe.gini_coefficient(y))
ginis_theoretical.append(1 - 2**(-1/a))

ax.plot(a_vals, ginis, label='estimated gini coefficient')

(continues on next page)
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(continued from previous page)

ax.plot(a_vals, ginis_theoretical, label='theoretical gini coefficient')
ax.legend()
ax.set_xlabel("Weibull parameter $a$")
ax.set_ylabel("Gini coefficient")
plt.show()

The simulation shows that the fit is good.

39.3 A Model of Wealth Dynamics

Having discussed inequality measures, let us now turn to wealth dynamics.

The model we will study is

𝑤𝑡+1 = (1 + 𝑟𝑡+1)𝑠(𝑤𝑡) + 𝑦𝑡+1 (39.1)

where

• 𝑤𝑡 is wealth at time 𝑡 for a given household,
• 𝑟𝑡 is the rate of return of financial assets,

• 𝑦𝑡 is current non-financial (e.g., labor) income and

• 𝑠(𝑤𝑡) is current wealth net of consumption
Letting {𝑧𝑡} be a correlated state process of the form

𝑧𝑡+1 = 𝑎𝑧𝑡 + 𝑏 + 𝜎𝑧𝜖𝑡+1
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we’ll assume that

𝑅𝑡 ∶= 1 + 𝑟𝑡 = 𝑐𝑟 exp(𝑧𝑡) + exp(𝜇𝑟 + 𝜎𝑟𝜉𝑡)

and

𝑦𝑡 = 𝑐𝑦 exp(𝑧𝑡) + exp(𝜇𝑦 + 𝜎𝑦𝜁𝑡)

Here {(𝜖𝑡, 𝜉𝑡, 𝜁𝑡)} is IID and standard normal in ℝ3.

The value of 𝑐𝑟 should be close to zero, since rates of return on assets do not exhibit large trends.

When we simulate a population of households, we will assume all shocks are idiosyncratic (i.e., specific to individual
households and independent across them).

Regarding the savings function 𝑠, our default model will be

𝑠(𝑤) = 𝑠0𝑤 ⋅ 𝟙{𝑤 ≥ 𝑤̂} (39.2)

where 𝑠0 is a positive constant.

Thus, for 𝑤 < 𝑤̂, the household saves nothing. For 𝑤 ≥ 𝑤̄, the household saves a fraction 𝑠0 of their wealth.

We are using something akin to a fixed savings rate model, while acknowledging that low wealth households tend to save
very little.

39.4 Implementation

Here’s some type information to help Numba.

wealth_dynamics_data = [
('w_hat', float64), # savings parameter
('s_0', float64), # savings parameter
('c_y', float64), # labor income parameter
('μ_y', float64), # labor income paraemter
('σ_y', float64), # labor income parameter
('c_r', float64), # rate of return parameter
('μ_r', float64), # rate of return parameter
('σ_r', float64), # rate of return parameter
('a', float64), # aggregate shock parameter
('b', float64), # aggregate shock parameter
('σ_z', float64), # aggregate shock parameter
('z_mean', float64), # mean of z process
('z_var', float64), # variance of z process
('y_mean', float64), # mean of y process
('R_mean', float64) # mean of R process

]

Here’s a class that stores instance data and implements methods that update the aggregate state and household wealth.

@jitclass(wealth_dynamics_data)
class WealthDynamics:

def __init__(self,
w_hat=1.0,
s_0=0.75,
c_y=1.0,

(continues on next page)
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(continued from previous page)

μ_y=1.0,
σ_y=0.2,
c_r=0.05,
μ_r=0.1,
σ_r=0.5,
a=0.5,
b=0.0,
σ_z=0.1):

self.w_hat, self.s_0 = w_hat, s_0
self.c_y, self.μ_y, self.σ_y = c_y, μ_y, σ_y
self.c_r, self.μ_r, self.σ_r = c_r, μ_r, σ_r
self.a, self.b, self.σ_z = a, b, σ_z

# Record stationary moments
self.z_mean = b / (1 - a)
self.z_var = σ_z**2 / (1 - a**2)
exp_z_mean = np.exp(self.z_mean + self.z_var / 2)
self.R_mean = c_r * exp_z_mean + np.exp(μ_r + σ_r**2 / 2)
self.y_mean = c_y * exp_z_mean + np.exp(μ_y + σ_y**2 / 2)

# Test a stability condition that ensures wealth does not diverge
# to infinity.
α = self.R_mean * self.s_0
if α >= 1:

raise ValueError("Stability condition failed.")

def parameters(self):
"""
Collect and return parameters.
"""
parameters = (self.w_hat, self.s_0,

self.c_y, self.μ_y, self.σ_y,
self.c_r, self.μ_r, self.σ_r,
self.a, self.b, self.σ_z)

return parameters

def update_states(self, w, z):
"""
Update one period, given current wealth w and persistent
state z.
"""

# Simplify names
params = self.parameters()
w_hat, s_0, c_y, μ_y, σ_y, c_r, μ_r, σ_r, a, b, σ_z = params
zp = a * z + b + σ_z * np.random.randn()

# Update wealth
y = c_y * np.exp(zp) + np.exp(μ_y + σ_y * np.random.randn())
wp = y
if w >= w_hat:

R = c_r * np.exp(zp) + np.exp(μ_r + σ_r * np.random.randn())
wp += R * s_0 * w

return wp, zp

Here’s function to simulate the time series of wealth for in individual households.
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@jit
def wealth_time_series(wdy, w_0, n):

"""
Generate a single time series of length n for wealth given
initial value w_0.

The initial persistent state z_0 for each household is drawn from
the stationary distribution of the AR(1) process.

* wdy: an instance of WealthDynamics
* w_0: scalar
* n: int

"""
z = wdy.z_mean + np.sqrt(wdy.z_var) * np.random.randn()
w = np.empty(n)
w[0] = w_0
for t in range(n-1):

w[t+1], z = wdy.update_states(w[t], z)
return w

Now here’s function to simulate a cross section of households forward in time.

Note the use of parallelization to speed up computation.

@jit(parallel=True)
def update_cross_section(wdy, w_distribution, shift_length=500):

"""
Shifts a cross-section of household forward in time

* wdy: an instance of WealthDynamics
* w_distribution: array_like, represents current cross-section

Takes a current distribution of wealth values as w_distribution
and updates each w_t in w_distribution to w_{t+j}, where
j = shift_length.

Returns the new distribution.

"""
new_distribution = np.empty_like(w_distribution)

# Update each household
for i in prange(len(new_distribution)):

z = wdy.z_mean + np.sqrt(wdy.z_var) * np.random.randn()
w = w_distribution[i]
for t in range(shift_length-1):

w, z = wdy.update_states(w, z)
new_distribution[i] = w

return new_distribution

Parallelization is very effective in the function above because the time path of each household can be calculated indepen-
dently once the path for the aggregate state is known.
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39.5 Applications

Let’s try simulating the model at different parameter values and investigate the implications for the wealth distribution.

39.5.1 Time Series

Let’s look at the wealth dynamics of an individual household.

wdy = WealthDynamics()
ts_length = 200
w = wealth_time_series(wdy, wdy.y_mean, ts_length)

fig, ax = plt.subplots()
ax.plot(w)
plt.show()

Notice the large spikes in wealth over time.

Such spikes are similar to what we observed in time series when we studied Kesten processes.
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39.5.2 Inequality Measures

Let’s look at how inequality varies with returns on financial assets.

The next function generates a cross section and then computes the Lorenz curve and Gini coefficient.

def generate_lorenz_and_gini(wdy, num_households=100_000, T=500):
"""
Generate the Lorenz curve data and gini coefficient corresponding to a
WealthDynamics mode by simulating num_households forward to time T.
"""
ψ_0 = np.full(num_households, wdy.y_mean)
z_0 = wdy.z_mean

ψ_star = update_cross_section(wdy, ψ_0, shift_length=T)
return qe.gini_coefficient(ψ_star), qe.lorenz_curve(ψ_star)

Now we investigate how the Lorenz curves associated with the wealth distribution change as return to savings varies.

The code below plots Lorenz curves for three different values of 𝜇𝑟.

If you are running this yourself, note that it will take one or two minutes to execute.

This is unavoidable because we are executing a CPU intensive task.

In fact the code, which is JIT compiled and parallelized, runs extremely fast relative to the number of computations.

%%time

fig, ax = plt.subplots()
μ_r_vals = (0.0, 0.025, 0.05)
gini_vals = []

for μ_r in μ_r_vals:
wdy = WealthDynamics(μ_r=μ_r)
gv, (f_vals, l_vals) = generate_lorenz_and_gini(wdy)
ax.plot(f_vals, l_vals, label=fr'$\psi^*$ at $\mu_r = {μ_r:0.2}$')
gini_vals.append(gv)

ax.plot(f_vals, f_vals, label='equality')
ax.legend(loc="upper left")
plt.show()
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CPU times: user 1min 9s, sys: 43.5 ms, total: 1min 9s
Wall time: 9.62 s

The Lorenz curve shifts downwards as returns on financial income rise, indicating a rise in inequality.

We will look at this again via the Gini coefficient immediately below, but first consider the following image of our system
resources when the code above is executing:

Since the code is both efficiently JIT compiled and fully parallelized, it’s close to impossible to make this sequence of
tasks run faster without changing hardware.

Now let’s check the Gini coefficient.

fig, ax = plt.subplots()
ax.plot(μ_r_vals, gini_vals, label='gini coefficient')
ax.set_xlabel(r"$\mu_r$")
ax.legend()
plt.show()
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Once again, we see that inequality increases as returns on financial income rise.

Let’s finish this section by investigating what happens when we change the volatility term 𝜎𝑟 in financial returns.

%%time

fig, ax = plt.subplots()
σ_r_vals = (0.35, 0.45, 0.52)
gini_vals = []

for σ_r in σ_r_vals:
wdy = WealthDynamics(σ_r=σ_r)
gv, (f_vals, l_vals) = generate_lorenz_and_gini(wdy)
ax.plot(f_vals, l_vals, label=fr'$\psi^*$ at $\sigma_r = {σ_r:0.2}$')
gini_vals.append(gv)

ax.plot(f_vals, f_vals, label='equality')
ax.legend(loc="upper left")
plt.show()
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CPU times: user 1min 8s, sys: 20.1 ms, total: 1min 8s
Wall time: 8.78 s

We see that greater volatility has the effect of increasing inequality in this model.

39.6 Exercises

Exercise 39.6.1

For a wealth or income distribution with Pareto tail, a higher tail index suggests lower inequality.

Indeed, it is possible to prove that the Gini coefficient of the Pareto distribution with tail index 𝑎 is 1/(2𝑎 − 1).
To the extent that you can, confirm this by simulation.

In particular, generate a plot of the Gini coefficient against the tail index using both the theoretical value just given
and the value computed from a sample via qe.gini_coefficient.

For the values of the tail index, use a_vals = np.linspace(1, 10, 25).

Use sample of size 1,000 for each 𝑎 and the sampling method for generating Pareto draws employed in the discussion
of Lorenz curves for the Pareto distribution.

To the extent that you can, interpret the monotone relationship between the Gini index and 𝑎.

Solution to Exercise 39.6.1
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Here is one solution, which produces a good match between theory and simulation.
a_vals = np.linspace(1, 10, 25) # Pareto tail index
ginis = np.empty_like(a_vals)

n = 1000 # size of each sample
fig, ax = plt.subplots()
for i, a in enumerate(a_vals):

y = np.random.uniform(size=n)**(-1/a)
ginis[i] = qe.gini_coefficient(y)

ax.plot(a_vals, ginis, label='sampled')
ax.plot(a_vals, 1/(2*a_vals - 1), label='theoretical')
ax.legend()
plt.show()

In general, for a Pareto distribution, a higher tail index implies less weight in the right hand tail.

This means less extreme values for wealth and hence more equality.

More equality translates to a lower Gini index.

Exercise 39.6.2

The wealth process (39.1) is similar to a Kesten process.

This is because, according to (39.2), savings is constant for all wealth levels above 𝑤̂.
When savings is constant, the wealth process has the same quasi-linear structure as a Kesten process, with multiplica-
tive and additive shocks.

770 Chapter 39. Wealth Distribution Dynamics



Intermediate Quantitative Economics with Python

The Kesten–Goldie theorem tells us that Kesten processes have Pareto tails under a range of parameterizations.

The theorem does not directly apply here, since savings is not always constant and since the multiplicative and additive
terms in (39.1) are not IID.

At the same time, given the similarities, perhaps Pareto tails will arise.

To test this, run a simulation that generates a cross-section of wealth and generate a rank-size plot.

If you like, you can use the function rank_size from the quantecon library (documentation here).

In viewing the plot, remember that Pareto tails generate a straight line. Is this what you see?

For sample size and initial conditions, use

num_households = 250_000
T = 500 # shift forward T periods
ψ_0 = np.full(num_households, wdy.y_mean) # initial distribution
z_0 = wdy.z_mean

Solution to Exercise 39.6.2

First let’s generate the distribution:

num_households = 250_000
T = 500 # how far to shift forward in time
wdy = WealthDynamics()
ψ_0 = np.full(num_households, wdy.y_mean)
z_0 = wdy.z_mean

ψ_star = update_cross_section(wdy, ψ_0, shift_length=T)

Now let’s see the rank-size plot:

fig, ax = plt.subplots()

rank_data, size_data = qe.rank_size(ψ_star, c=0.001)
ax.loglog(rank_data, size_data, 'o', markersize=3.0, alpha=0.5)
ax.set_xlabel("log rank")
ax.set_ylabel("log size")

plt.show()
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CHAPTER

FORTY

A FIRST LOOK AT THE KALMAN FILTER

Contents

• A First Look at the Kalman Filter

– Overview

– The Basic Idea

– Convergence

– Implementation

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

40.1 Overview

This lecture provides a simple and intuitive introduction to the Kalman filter, for those who either

• have heard of the Kalman filter but don’t know how it works, or

• know the Kalman filter equations, but don’t know where they come from

For additional (more advanced) reading on the Kalman filter, see

• [Ljungqvist and Sargent, 2018], section 2.7

• [Anderson and Moore, 2005]

The second reference presents a comprehensive treatment of the Kalman filter.

Required knowledge: Familiarity with matrix manipulations, multivariate normal distributions, covariance matrices, etc.

We’ll need the following imports:

import matplotlib.pyplot as plt
from scipy import linalg
import numpy as np
import matplotlib.cm as cm
from quantecon import Kalman, LinearStateSpace

(continues on next page)
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(continued from previous page)

from scipy.stats import norm
from scipy.integrate import quad
from scipy.linalg import eigvals

40.2 The Basic Idea

The Kalman filter has many applications in economics, but for now let’s pretend that we are rocket scientists.

A missile has been launched from country Y and our mission is to track it.

Let 𝑥 ∈ ℝ2 denote the current location of the missile—a pair indicating latitude-longitude coordinates on a map.

At the present moment in time, the precise location 𝑥 is unknown, but we do have some beliefs about 𝑥.
One way to summarize our knowledge is a point prediction ̂𝑥

• But what if the President wants to know the probability that the missile is currently over the Sea of Japan?

• Then it is better to summarize our initial beliefs with a bivariate probability density 𝑝
– ∫𝐸 𝑝(𝑥)𝑑𝑥 indicates the probability that we attach to the missile being in region 𝐸.

The density 𝑝 is called our prior for the random variable 𝑥.
To keep things tractable in our example, we assume that our prior is Gaussian.

In particular, we take

𝑝 = 𝑁( ̂𝑥, Σ) (40.1)

where ̂𝑥 is the mean of the distribution and Σ is a 2 × 2 covariance matrix. In our simulations, we will suppose that

̂𝑥 = ( 0.2
−0.2 ) , Σ = ( 0.4 0.3

0.3 0.45 ) (40.2)

This density 𝑝(𝑥) is shown below as a contour map, with the center of the red ellipse being equal to ̂𝑥.
# Set up the Gaussian prior density p
Σ = [[0.4, 0.3], [0.3, 0.45]]
Σ = np.matrix(Σ)
x_hat = np.matrix([0.2, -0.2]).T
# Define the matrices G and R from the equation y = G x + N(0, R)
G = [[1, 0], [0, 1]]
G = np.matrix(G)
R = 0.5 * Σ
# The matrices A and Q
A = [[1.2, 0], [0, -0.2]]
A = np.matrix(A)
Q = 0.3 * Σ
# The observed value of y
y = np.matrix([2.3, -1.9]).T

# Set up grid for plotting
x_grid = np.linspace(-1.5, 2.9, 100)
y_grid = np.linspace(-3.1, 1.7, 100)
X, Y = np.meshgrid(x_grid, y_grid)

def bivariate_normal(x, y, σ_x=1.0, σ_y=1.0, μ_x=0.0, μ_y=0.0, σ_xy=0.0):

(continues on next page)
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(continued from previous page)

"""
Compute and return the probability density function of bivariate normal
distribution of normal random variables x and y

Parameters
----------
x : array_like(float)

Random variable

y : array_like(float)
Random variable

σ_x : array_like(float)
Standard deviation of random variable x

σ_y : array_like(float)
Standard deviation of random variable y

μ_x : scalar(float)
Mean value of random variable x

μ_y : scalar(float)
Mean value of random variable y

σ_xy : array_like(float)
Covariance of random variables x and y

"""

x_μ = x - μ_x
y_μ = y - μ_y

ρ = σ_xy / (σ_x * σ_y)
z = x_μ**2 / σ_x**2 + y_μ**2 / σ_y**2 - 2 * ρ * x_μ * y_μ / (σ_x * σ_y)
denom = 2 * np.pi * σ_x * σ_y * np.sqrt(1 - ρ**2)
return np.exp(-z / (2 * (1 - ρ**2))) / denom

def gen_gaussian_plot_vals(μ, C):
"Z values for plotting the bivariate Gaussian N(μ, C)"
m_x, m_y = float(μ[0,0]), float(μ[1,0])
s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1])
s_xy = C[0, 1]
return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)

# Plot the figure

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
cs = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs, inline=1, fontsize=10)

plt.show()
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40.2.1 The Filtering Step

We are now presented with some good news and some bad news.

The good news is that themissile has been located by our sensors, which report that the current location is 𝑦 = (2.3, −1.9).
The next figure shows the original prior 𝑝(𝑥) and the new reported location 𝑦
fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
cs = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs, inline=1, fontsize=10)
ax.text(float(y[0].item()), float(y[1].item()), "$y$", fontsize=20, color="black")

plt.show()
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The bad news is that our sensors are imprecise.

In particular, we should interpret the output of our sensor not as 𝑦 = 𝑥, but rather as

𝑦 = 𝐺𝑥 + 𝑣, where 𝑣 ∼ 𝑁(0, 𝑅) (40.3)

Here 𝐺 and 𝑅 are 2 × 2 matrices with 𝑅 positive definite. Both are assumed known, and the noise term 𝑣 is assumed to
be independent of 𝑥.
How then should we combine our prior 𝑝(𝑥) = 𝑁( ̂𝑥, Σ) and this new information 𝑦 to improve our understanding of the
location of the missile?

As you may have guessed, the answer is to use Bayes’ theorem, which tells us to update our prior 𝑝(𝑥) to 𝑝(𝑥 | 𝑦) via

𝑝(𝑥 | 𝑦) = 𝑝(𝑦 | 𝑥) 𝑝(𝑥)
𝑝(𝑦)

where 𝑝(𝑦) = ∫ 𝑝(𝑦 | 𝑥) 𝑝(𝑥)𝑑𝑥.
In solving for 𝑝(𝑥 | 𝑦), we observe that

• 𝑝(𝑥) = 𝑁( ̂𝑥, Σ).
• In view of (40.3), the conditional density 𝑝(𝑦 | 𝑥) is 𝑁(𝐺𝑥, 𝑅).
• 𝑝(𝑦) does not depend on 𝑥, and enters into the calculations only as a normalizing constant.
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Because we are in a linear and Gaussian framework, the updated density can be computed by calculating population linear
regressions.

In particular, the solution is known1 to be

𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 )

where

̂𝑥𝐹 ∶= ̂𝑥 + Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1(𝑦 − 𝐺 ̂𝑥) and Σ𝐹 ∶= Σ − Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ (40.4)

Here Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1 is the matrix of population regression coefficients of the hidden object 𝑥 − ̂𝑥 on the surprise
𝑦 − 𝐺 ̂𝑥.
This new density 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) is shown in the next figure via contour lines and the color map.
The original density is left in as contour lines for comparison

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
new_Z = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0].item()), float(y[1].item()), "$y$", fontsize=20, color="black")

plt.show()

1 See, for example, page 93 of [Bishop, 2006]. To get from his expressions to the ones used above, you will also need to apply the Woodbury matrix
identity.
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Our new density twists the prior 𝑝(𝑥) in a direction determined by the new information 𝑦 − 𝐺 ̂𝑥.
In generating the figure, we set 𝐺 to the identity matrix and 𝑅 = 0.5Σ for Σ defined in (40.2).

40.2.2 The Forecast Step

What have we achieved so far?

We have obtained probabilities for the current location of the state (missile) given prior and current information.

This is called “filtering” rather than forecasting because we are filtering out noise rather than looking into the future.

• 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) is called the filtering distribution

But now let’s suppose that we are given another task: to predict the location of the missile after one unit of time (whatever
that may be) has elapsed.

To do this we need a model of how the state evolves.

Let’s suppose that we have one, and that it’s linear and Gaussian. In particular,

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝑤𝑡+1, where 𝑤𝑡 ∼ 𝑁(0, 𝑄) (40.5)

Our aim is to combine this law of motion and our current distribution 𝑝(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹 , Σ𝐹 ) to come up with a new
predictive distribution for the location in one unit of time.
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In view of (40.5), all we have to do is introduce a random vector 𝑥𝐹 ∼ 𝑁( ̂𝑥𝐹 , Σ𝐹 ) and work out the distribution of
𝐴𝑥𝐹 + 𝑤 where 𝑤 is independent of 𝑥𝐹 and has distribution 𝑁(0, 𝑄).
Since linear combinations of Gaussians are Gaussian, 𝐴𝑥𝐹 + 𝑤 is Gaussian.

Elementary calculations and the expressions in (40.4) tell us that

𝔼[𝐴𝑥𝐹 + 𝑤] = 𝐴𝔼𝑥𝐹 + 𝔼𝑤 = 𝐴 ̂𝑥𝐹 = 𝐴 ̂𝑥 + 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1(𝑦 − 𝐺 ̂𝑥)

and

Var[𝐴𝑥𝐹 + 𝑤] = 𝐴Var[𝑥𝐹 ]𝐴′ + 𝑄 = 𝐴Σ𝐹 𝐴′ + 𝑄 = 𝐴Σ𝐴′ − 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴′ + 𝑄

The matrix 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1 is often written as 𝐾Σ and called the Kalman gain.

• The subscript Σ has been added to remind us that 𝐾Σ depends on Σ, but not 𝑦 or ̂𝑥.
Using this notation, we can summarize our results as follows.

Our updated prediction is the density 𝑁( ̂𝑥𝑛𝑒𝑤, Σ𝑛𝑒𝑤) where

̂𝑥𝑛𝑒𝑤 ∶= 𝐴 ̂𝑥 + 𝐾Σ(𝑦 − 𝐺 ̂𝑥)
Σ𝑛𝑒𝑤 ∶= 𝐴Σ𝐴′ − 𝐾Σ𝐺Σ𝐴′ + 𝑄

• The density 𝑝𝑛𝑒𝑤(𝑥) = 𝑁( ̂𝑥𝑛𝑒𝑤, Σ𝑛𝑒𝑤) is called the predictive distribution
The predictive distribution is the new density shown in the following figure, where the update has used parameters.

𝐴 = ( 1.2 0.0
0.0 −0.2 ) , 𝑄 = 0.3 ∗ Σ

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

# Density 1
Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)

# Density 2
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
Z_F = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, Z_F, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)

# Density 3
new_x_hat = A * x_hat_F
new_Σ = A * Σ_F * A.T + Q
new_Z = gen_gaussian_plot_vals(new_x_hat, new_Σ)
cs3 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs3, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0].item()), float(y[1].item()), "$y$", fontsize=20, color="black")

plt.show()

780 Chapter 40. A First Look at the Kalman Filter



Intermediate Quantitative Economics with Python

40.2.3 The Recursive Procedure

Let’s look back at what we’ve done.

We started the current period with a prior 𝑝(𝑥) for the location 𝑥 of the missile.

We then used the current measurement 𝑦 to update to 𝑝(𝑥 | 𝑦).
Finally, we used the law of motion (40.5) for {𝑥𝑡} to update to 𝑝𝑛𝑒𝑤(𝑥).
If we now step into the next period, we are ready to go round again, taking 𝑝𝑛𝑒𝑤(𝑥) as the current prior.
Swapping notation 𝑝𝑡(𝑥) for 𝑝(𝑥) and 𝑝𝑡+1(𝑥) for 𝑝𝑛𝑒𝑤(𝑥), the full recursive procedure is:

1. Start the current period with prior 𝑝𝑡(𝑥) = 𝑁( ̂𝑥𝑡, Σ𝑡).
2. Observe current measurement 𝑦𝑡.

3. Compute the filtering distribution 𝑝𝑡(𝑥 | 𝑦) = 𝑁( ̂𝑥𝐹
𝑡 , Σ𝐹

𝑡 ) from 𝑝𝑡(𝑥) and 𝑦𝑡, applying Bayes rule and the condi-
tional distribution (40.3).

4. Compute the predictive distribution 𝑝𝑡+1(𝑥) = 𝑁( ̂𝑥𝑡+1, Σ𝑡+1) from the filtering distribution and (40.5).

5. Increment 𝑡 by one and go to step 1.
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Repeating (40.6), the dynamics for ̂𝑥𝑡 and Σ𝑡 are as follows

̂𝑥𝑡+1 = 𝐴 ̂𝑥𝑡 + 𝐾Σ𝑡
(𝑦𝑡 − 𝐺 ̂𝑥𝑡)

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ − 𝐾Σ𝑡
𝐺Σ𝑡𝐴′ + 𝑄

These are the standard dynamic equations for the Kalman filter (see, for example, [Ljungqvist and Sargent, 2018], page
58).

40.3 Convergence

The matrix Σ𝑡 is a measure of the uncertainty of our prediction ̂𝑥𝑡 of 𝑥𝑡.

Apart from special cases, this uncertainty will never be fully resolved, regardless of how much time elapses.

One reason is that our prediction ̂𝑥𝑡 is made based on information available at 𝑡 − 1, not 𝑡.
Even if we know the precise value of 𝑥𝑡−1 (which we don’t), the transition equation (40.5) implies that 𝑥𝑡 = 𝐴𝑥𝑡−1 +𝑤𝑡.

Since the shock𝑤𝑡 is not observable at 𝑡−1, any time 𝑡−1 prediction of 𝑥𝑡 will incur some error (unless𝑤𝑡 is degenerate).

However, it is certainly possible that Σ𝑡 converges to a constant matrix as 𝑡 → ∞.

To study this topic, let’s expand the second equation in (40.6):

Σ𝑡+1 = 𝐴Σ𝑡𝐴′ − 𝐴Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡𝐴′ + 𝑄 (40.6)

This is a nonlinear difference equation in Σ𝑡.

A fixed point of (40.6) is a constant matrix Σ such that

Σ = 𝐴Σ𝐴′ − 𝐴Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴′ + 𝑄 (40.7)

Equation (40.6) is known as a discrete-time Riccati difference equation.

Equation (40.7) is known as a discrete-time algebraic Riccati equation.

Conditions under which a fixed point exists and the sequence {Σ𝑡} converges to it are discussed in [Anderson et al., 1996]
and [Anderson and Moore, 2005], chapter 4.

A sufficient (but not necessary) condition is that all the eigenvalues 𝜆𝑖 of 𝐴 satisfy |𝜆𝑖| < 1 (cf. e.g., [Anderson and
Moore, 2005], p. 77).

(This strong condition assures that the unconditional distribution of 𝑥𝑡 converges as 𝑡 → +∞.)

In this case, for any initial choice of Σ0 that is both non-negative and symmetric, the sequence {Σ𝑡} in (40.6) converges
to a non-negative symmetric matrix Σ that solves (40.7).

40.4 Implementation

The class Kalman from the QuantEcon.py package implements the Kalman filter

• Instance data consists of:

– the moments ( ̂𝑥𝑡, Σ𝑡) of the current prior.
– An instance of the LinearStateSpace class from QuantEcon.py.
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The latter represents a linear state space model of the form

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑣𝑡

where the shocks 𝑤𝑡 and 𝑣𝑡 are IID standard normals.

To connect this with the notation of this lecture we set

𝑄 ∶= 𝐶𝐶′ and 𝑅 ∶= 𝐻𝐻′

• The class Kalman from the QuantEcon.py package has a number of methods, some that we will wait to use until
we study more advanced applications in subsequent lectures.

• Methods pertinent for this lecture are:

– prior_to_filtered, which updates ( ̂𝑥𝑡, Σ𝑡) to ( ̂𝑥𝐹
𝑡 , Σ𝐹

𝑡 )
– filtered_to_forecast, which updates the filtering distribution to the predictive distribution – which
becomes the new prior ( ̂𝑥𝑡+1, Σ𝑡+1)

– update, which combines the last two methods

– a stationary_values, which computes the solution to (40.7) and the corresponding (stationary)
Kalman gain

You can view the program on GitHub.

40.5 Exercises

Exercise 40.5.1

Consider the following simple application of the Kalman filter, loosely based on [Ljungqvist and Sargent, 2018],
section 2.9.2.

Suppose that

• all variables are scalars

• the hidden state {𝑥𝑡} is in fact constant, equal to some 𝜃 ∈ ℝ unknown to the modeler

State dynamics are therefore given by (40.5) with 𝐴 = 1, 𝑄 = 0 and 𝑥0 = 𝜃.
The measurement equation is 𝑦𝑡 = 𝜃 + 𝑣𝑡 where 𝑣𝑡 is 𝑁(0, 1) and IID.
The task of this exercise to simulate the model and, using the code from kalman.py, plot the first five predictive
densities 𝑝𝑡(𝑥) = 𝑁( ̂𝑥𝑡, Σ𝑡).
As shown in [Ljungqvist and Sargent, 2018], sections 2.9.1–2.9.2, these distributions asymptotically put all mass on
the unknown value 𝜃.
In the simulation, take 𝜃 = 10, ̂𝑥0 = 8 and Σ0 = 1.
Your figure should – modulo randomness – look something like this
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Solution to Exercise 40.5.1

# Parameters
θ = 10 # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=θ)

# Set prior, initialize kalman filter
x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)

# Draw observations of y from state space model
N = 5
x, y = ss.simulate(N)
y = y.flatten()

# Set up plot
fig, ax = plt.subplots(figsize=(10,8))
xgrid = np.linspace(θ - 5, θ + 2, 200)

for i in range(N):
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# Record the current predicted mean and variance
m, v = [float(z) for z in (kalman.x_hat.item(), kalman.Sigma.item())]
# Plot, update filter
ax.plot(xgrid, norm.pdf(xgrid, loc=m, scale=np.sqrt(v)), label=f'$t={i}$')
kalman.update(y[i])

ax.set_title(f'First {N} densities when $\\theta = {θ:.1f}$')
ax.legend(loc='upper left')
plt.show()

Exercise 40.5.2

The preceding figure gives some support to the idea that probability mass converges to 𝜃.
To get a better idea, choose a small 𝜖 > 0 and calculate

𝑧𝑡 ∶= 1 − ∫
𝜃+𝜖

𝜃−𝜖
𝑝𝑡(𝑥)𝑑𝑥

for 𝑡 = 0, 1, 2, … , 𝑇 .
Plot 𝑧𝑡 against 𝑇 , setting 𝜖 = 0.1 and 𝑇 = 600.
Your figure should show error erratically declining something like this
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Solution to Exercise 40.5.2

ϵ = 0.1
θ = 10 # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=θ)

x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)

T = 600
z = np.empty(T)
x, y = ss.simulate(T)
y = y.flatten()

for t in range(T):
# Record the current predicted mean and variance and plot their densities
m, v = [float(temp) for temp in (kalman.x_hat.item(), kalman.Sigma.item())]

f = lambda x: norm.pdf(x, loc=m, scale=np.sqrt(v))
integral, error = quad(f, θ - ϵ, θ + ϵ)
z[t] = 1 - integral
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kalman.update(y[t])

fig, ax = plt.subplots(figsize=(9, 7))
ax.set_ylim(0, 1)
ax.set_xlim(0, T)
ax.plot(range(T), z)
ax.fill_between(range(T), np.zeros(T), z, color="blue", alpha=0.2)
plt.show()

Exercise 40.5.3

As discussed above, if the shock sequence {𝑤𝑡} is not degenerate, then it is not in general possible to predict 𝑥𝑡
without error at time 𝑡 − 1 (and this would be the case even if we could observe 𝑥𝑡−1).

Let’s now compare the prediction ̂𝑥𝑡 made by the Kalman filter against a competitor who is allowed to observe 𝑥𝑡−1.

This competitor will use the conditional expectation 𝔼[𝑥𝑡 | 𝑥𝑡−1], which in this case is 𝐴𝑥𝑡−1.

The conditional expectation is known to be the optimal prediction method in terms of minimizing mean squared
error.

(More precisely, the minimizer of 𝔼 ‖𝑥𝑡 − 𝑔(𝑥𝑡−1)‖2 with respect to 𝑔 is 𝑔∗(𝑥𝑡−1) ∶= 𝔼[𝑥𝑡 | 𝑥𝑡−1])
Thus we are comparing the Kalman filter against a competitor who has more information (in the sense of being able
to observe the latent state) and behaves optimally in terms of minimizing squared error.
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Our horse race will be assessed in terms of squared error.

In particular, your task is to generate a graph plotting observations of both ‖𝑥𝑡 − 𝐴𝑥𝑡−1‖2 and ‖𝑥𝑡 − ̂𝑥𝑡‖2 against 𝑡
for 𝑡 = 1, … , 50.
For the parameters, set 𝐺 = 𝐼, 𝑅 = 0.5𝐼 and 𝑄 = 0.3𝐼 , where 𝐼 is the 2 × 2 identity.
Set

𝐴 = ( 0.5 0.4
0.6 0.3 )

To initialize the prior density, set

Σ0 = ( 0.9 0.3
0.3 0.9 )

and ̂𝑥0 = (8, 8).
Finally, set 𝑥0 = (0, 0).
You should end up with a figure similar to the following (modulo randomness)

Observe how, after an initial learning period, the Kalman filter performs quite well, even relative to the competitor
who predicts optimally with knowledge of the latent state.

Solution to Exercise 40.5.3

# Define A, C, G, H
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G = np.identity(2)
H = np.sqrt(0.5) * np.identity(2)

A = [[0.5, 0.4],
[0.6, 0.3]]

C = np.sqrt(0.3) * np.identity(2)

# Set up state space mode, initial value x_0 set to zero
ss = LinearStateSpace(A, C, G, H, mu_0 = np.zeros(2))

# Define the prior density
Σ = [[0.9, 0.3],

[0.3, 0.9]]
Σ = np.array(Σ)
x_hat = np.array([8, 8])

# Initialize the Kalman filter
kn = Kalman(ss, x_hat, Σ)

# Print eigenvalues of A
print("Eigenvalues of A:")
print(eigvals(A))

# Print stationary Σ
S, K = kn.stationary_values()
print("Stationary prediction error variance:")
print(S)

# Generate the plot
T = 50
x, y = ss.simulate(T)

e1 = np.empty(T-1)
e2 = np.empty(T-1)

for t in range(1, T):
kn.update(y[:,t])
diff1 = x[:, t] - kn.x_hat.flatten()
diff2 = x[:, t] - A @ x[:, t-1]
e1[t-1] = diff1 @ diff1
e2[t-1] = diff2 @ diff2

fig, ax = plt.subplots(figsize=(9,6))
ax.plot(range(1, T), e1, 'k-', lw=2, alpha=0.6,

label='Kalman filter error')
ax.plot(range(1, T), e2, 'g-', lw=2, alpha=0.6,

label='Conditional expectation error')
ax.legend()
plt.show()

Eigenvalues of A:
[ 0.9+0.j -0.1+0.j]
Stationary prediction error variance:
[[0.40329108 0.1050718 ]
[0.1050718 0.41061709]]
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Exercise 40.5.4

Try varying the coefficient 0.3 in 𝑄 = 0.3𝐼 up and down.

Observe how the diagonal values in the stationary solution Σ (see (40.7)) increase and decrease in line with this
coefficient.

The interpretation is that more randomness in the law of motion for 𝑥𝑡 causes more (permanent) uncertainty in
prediction.
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FORTYONE

ANOTHER LOOK AT THE KALMAN FILTER

Contents

• Another Look at the Kalman Filter

– A worker’s output

– A firm’s wage-setting policy

– A state-space representation

– An Innovations Representation

– Some Computational Experiments

– Future Extensions

In this quantecon lecture A First Look at the Kalman filter, we used a Kalman filter to estimate locations of a rocket.

In this lecture, we’ll use the Kalman filter to infer a worker’s human capital and the effort that the worker devotes to
accumulating human capital, neither of which the firm observes directly.

The firm learns about those things only by observing a history of the output that the worker generates for the firm, and
from understanding how that output depends on the worker’s human capital and how human capital evolves as a function
of the worker’s effort.

We’ll posit a rule that expresses how the much firm pays the worker each period as a function of the firm’s information
each period.

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

To conduct simulations, we bring in these imports, as in A First Look at the Kalman filter.

import matplotlib.pyplot as plt
import numpy as np
from quantecon import Kalman, LinearStateSpace
from collections import namedtuple
from scipy.stats import multivariate_normal
import matplotlib as mpl
mpl.rcParams['text.usetex'] = True
mpl.rcParams['text.latex.preamble'] = r'\usepackage{{amsmath}}'
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41.1 A worker’s output

A representative worker is permanently employed at a firm.

The workers’ output is described by the following dynamic process:

ℎ𝑡+1 = 𝛼ℎ𝑡 + 𝛽𝑢𝑡 + 𝑐𝑤𝑡+1, 𝑐𝑡+1 ∼ 𝒩(0, 1)
𝑢𝑡+1 = 𝑢𝑡

𝑦𝑡 = 𝑔ℎ𝑡 + 𝑣𝑡, 𝑣𝑡 ∼ 𝒩(0, 𝑅)
(41.1)

Here

• ℎ𝑡 is the logarithm of human capital at time 𝑡
• 𝑢𝑡 is the logarithm of the worker’s effort at accumulating human capital at 𝑡
• 𝑦𝑡 is the logarithm of the worker’s output at time 𝑡
• ℎ0 ∼ 𝒩(ℎ̂0, 𝜎ℎ,0)
• 𝑢0 ∼ 𝒩(𝑢̂0, 𝜎𝑢,0)

Parameters of the model are 𝛼, 𝛽, 𝑐, 𝑅, 𝑔, ℎ̂0, 𝑢̂0, 𝜎ℎ, 𝜎𝑢.

At time 0, a firm has hired the worker.

The worker is permanently attached to the firm and so works for the same firm at all dates 𝑡 = 0, 1, 2, ….

At the beginning of time 0, the firm observes neither the worker’s innate initial human capital ℎ0 nor its hard-wired
permanent effort level 𝑢0.

The firm believes that 𝑢0 for a particular worker is drawn from a Gaussian probability distribution, and so is described
by 𝑢0 ∼ 𝒩(𝑢̂0, 𝜎𝑢,0).
The ℎ𝑡 part of a worker’s “type” moves over time, but the effort component of the worker’s type is 𝑢𝑡 = 𝑢0.

This means that from the firm’s point of view, the worker’s effort is effectively an unknown fixed “parameter”.

At time 𝑡 ≥ 1, for a particular worker the firm observed 𝑦𝑡−1 = [𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦0].
The firm does not observe the worker’s “type” (ℎ0, 𝑢0).
But the firm does observe the worker’s output 𝑦𝑡 at time 𝑡 and remembers the worker’s past outputs 𝑦𝑡−1.

41.2 A firm’s wage-setting policy

Based on information about the worker that the firm has at time 𝑡 ≥ 1, the firm pays the worker log wage

𝑤𝑡 = 𝑔𝐸[ℎ𝑡|𝑦𝑡−1], 𝑡 ≥ 1

and at time 0 pays the worker a log wage equal to the unconditional mean of 𝑦0:

𝑤0 = 𝑔ℎ̂0

In using this payment rule, the firm is taking into account that the worker’s log output today is partly due to the random
component 𝑣𝑡 that comes entirely from luck, and that is assumed to be independent of ℎ𝑡 and 𝑢𝑡.
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41.3 A state-space representation

Write system (41.1.1) in the state-space form

[ℎ𝑡+1
𝑢𝑡+1

] = [𝛼 𝛽
0 1] [ℎ𝑡

𝑢𝑡
] + [𝑐

0] 𝑤𝑡+1

𝑦𝑡 = [𝑔 0] [ℎ𝑡
𝑢𝑡

] + 𝑣𝑡

which is equivalent with

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡
𝑥0 ∼ 𝒩( ̂𝑥0, Σ0)

(41.2)

where

𝑥𝑡 = [ℎ𝑡
𝑢𝑡

] , ̂𝑥0 = [ℎ̂0
𝑢̂0

] , Σ0 = [𝜎ℎ,0 0
0 𝜎𝑢,0

]

To compute the firm’s wage setting policy, we first we create a namedtuple to store the parameters of the model

WorkerModel = namedtuple("WorkerModel",
('A', 'C', 'G', 'R', 'xhat_0', 'Σ_0'))

def create_worker(α=.8, β=.2, c=.2,
R=.5, g=1.0, hhat_0=4, uhat_0=4,
σ_h=4, σ_u=4):

A = np.array([[α, β],
[0, 1]])

C = np.array([[c],
[0]])

G = np.array([g, 1])

# Define initial state and covariance matrix
xhat_0 = np.array([[hhat_0],

[uhat_0]])

Σ_0 = np.array([[σ_h, 0],
[0, σ_u]])

return WorkerModel(A=A, C=C, G=G, R=R, xhat_0=xhat_0, Σ_0=Σ_0)

Please note how the WorkerModel namedtuple creates all of the objects required to compute an associated state-space
representation (41.2).

This is handy, because in order to simulate a history {𝑦𝑡, ℎ𝑡} for a worker, we’ll want to form state space system for
him/her by using the LinearStateSpace class.

# Define A, C, G, R, xhat_0, Σ_0
worker = create_worker()
A, C, G, R = worker.A, worker.C, worker.G, worker.R
xhat_0, Σ_0 = worker.xhat_0, worker.Σ_0

# Create a LinearStateSpace object
ss = LinearStateSpace(A, C, G, np.sqrt(R),

(continues on next page)
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(continued from previous page)

mu_0=xhat_0, Sigma_0=np.zeros((2,2)))

T = 100
x, y = ss.simulate(T)
y = y.flatten()

h_0, u_0 = x[0, 0], x[1, 0]

Next, to compute the firm’s policy for setting the log wage based on the information it has about the worker, we use the
Kalman filter described in this quantecon lecture A First Look at the Kalman filter.

In particular, we want to compute all of the objects in an “innovation representation”.

41.4 An Innovations Representation

We have all the objects in hand required to form an innovations representation for the output process {𝑦𝑡}𝑇
𝑡=0 for a worker.

Let’s code that up now.

̂𝑥𝑡+1 = 𝐴 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡

where 𝐾𝑡 is the Kalman gain matrix at time 𝑡.
We accomplish this in the following code that uses the Kalman class.

kalman = Kalman(ss, xhat_0, Σ_0)
Σ_t = np.zeros((*Σ_0.shape, T-1))
y_hat_t = np.zeros(T-1)
x_hat_t = np.zeros((2, T-1))

for t in range(1, T):
kalman.update(y[t])
x_hat, Σ = kalman.x_hat, kalman.Sigma
Σ_t[:, :, t-1] = Σ
x_hat_t[:, t-1] = x_hat.reshape(-1)
[y_hat_t[t-1]] = worker.G @ x_hat

x_hat_t = np.concatenate((x[:, 1][:, np.newaxis],
x_hat_t), axis=1)

Σ_t = np.concatenate((worker.Σ_0[:, :, np.newaxis],
Σ_t), axis=2)

u_hat_t = x_hat_t[1, :]

For a draw of ℎ0, 𝑢0, we plot 𝐸𝑦𝑡 = 𝐺 ̂𝑥𝑡 where ̂𝑥𝑡 = 𝐸[𝑥𝑡|𝑦𝑡−1].
We also plot 𝐸[𝑢0|𝑦𝑡−1], which is the firm inference about a worker’s hard-wired “work ethic” 𝑢0, conditioned on infor-
mation 𝑦𝑡−1 that it has about him or her coming into period 𝑡.
We can watch as the firm’s inference 𝐸[𝑢0|𝑦𝑡−1] of the worker’s work ethic converges toward the hidden 𝑢0, which is not
directly observed by the firm.

fig, ax = plt.subplots(1, 2)

ax[0].plot(y_hat_t, label=r'$E[y_t| y^{t-1}]$')
ax[0].set_xlabel('Time')

(continues on next page)
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ax[0].set_ylabel(r'$E[y_t]$')
ax[0].set_title(r'$E[y_t]$ over time')
ax[0].legend()

ax[1].plot(u_hat_t, label=r'$E[u_t|y^{t-1}]$')
ax[1].axhline(y=u_0, color='grey',

linestyle='dashed', label=fr'$u_0={u_0:.2f}$')
ax[1].set_xlabel('Time')
ax[1].set_ylabel(r'$E[u_t|y^{t-1}]$')
ax[1].set_title('Inferred work ethic over time')
ax[1].legend()

fig.tight_layout()
plt.show()
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41.5 Some Computational Experiments

Let’s look at Σ0 and Σ𝑇 in order to see how much the firm learns about the hidden state during the horizon we have set.

print(Σ_t[:, :, 0])

[[4. 0.]
[0. 4.]]

print(Σ_t[:, :, -1])

[[0.08805027 0.00100377]
[0.00100377 0.00398351]]

Evidently, entries in the conditional covariance matrix become smaller over time.

It is enlightening to portray how conditional covariance matrices Σ𝑡 evolve by plotting confidence ellipsoides around
𝐸[𝑥𝑡|𝑦𝑡−1] at various 𝑡’s.
# Create a grid of points for contour plotting
h_range = np.linspace(x_hat_t[0, :].min()-0.5*Σ_t[0, 0, 1],

x_hat_t[0, :].max()+0.5*Σ_t[0, 0, 1], 100)
u_range = np.linspace(x_hat_t[1, :].min()-0.5*Σ_t[1, 1, 1],

x_hat_t[1, :].max()+0.5*Σ_t[1, 1, 1], 100)
h, u = np.meshgrid(h_range, u_range)

# Create a figure with subplots for each time step
fig, axs = plt.subplots(1, 3, figsize=(12, 7))

# Iterate through each time step
for i, t in enumerate(np.linspace(0, T-1, 3, dtype=int)):

# Create a multivariate normal distribution with x_hat and Σ at time step t
mu = x_hat_t[:, t]
cov = Σ_t[:, :, t]
mvn = multivariate_normal(mean=mu, cov=cov)

# Evaluate the multivariate normal PDF on the grid
pdf_values = mvn.pdf(np.dstack((h, u)))

# Create a contour plot for the PDF
con = axs[i].contour(h, u, pdf_values, cmap='viridis')
axs[i].clabel(con, inline=1, fontsize=10)
axs[i].set_title(f'Time Step {t+1}')
axs[i].set_xlabel(r'$h_{{{}}}$'.format(str(t+1)))
axs[i].set_ylabel(r'$u_{{{}}}$'.format(str(t+1)))

cov_latex = r'$\Sigma_{{{}}}= \begin{{bmatrix}} {:.2f} & {:.2f} \\ {:.2f} & {:.2f}
↪ \end{{bmatrix}}$'.format(

t+1, cov[0, 0], cov[0, 1], cov[1, 0], cov[1, 1]
)
axs[i].text(0.33, -0.15, cov_latex, transform=axs[i].transAxes)

plt.tight_layout()
plt.show()
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Note how the accumulation of evidence 𝑦𝑡 affects the shape of the confidence ellipsoid as sample size 𝑡 grows.
Now let’s use our code to set the hidden state 𝑥0 to a particular vector in order to watch how a firm learns starting from
some 𝑥0 we are interested in.

For example, let’s say ℎ0 = 0 and 𝑢0 = 4.
Here is one way to do this.

# For example, we might want h_0 = 0 and u_0 = 4
mu_0 = np.array([0.0, 4.0])

# Create a LinearStateSpace object with Sigma_0 as a matrix of zeros
ss_example = LinearStateSpace(A, C, G, np.sqrt(R), mu_0=mu_0,

# This line forces exact h_0=0 and u_0=4
Sigma_0=np.zeros((2, 2))

)

T = 100
x, y = ss_example.simulate(T)
y = y.flatten()

# Now h_0=0 and u_0=4
h_0, u_0 = x[0, 0], x[1, 0]
print('h_0 =', h_0)
print('u_0 =', u_0)

h_0 = 0.0
u_0 = 4.0

Another way to accomplish the same goal is to use the following code.

# If we want to set the initial
# h_0 = hhat_0 = 0 and u_0 = uhhat_0 = 4.0:

(continues on next page)
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(continued from previous page)

worker = create_worker(hhat_0=0.0, uhat_0=4.0)

ss_example = LinearStateSpace(A, C, G, np.sqrt(R),
# This line takes h_0=hhat_0 and u_0=uhhat_0
mu_0=worker.xhat_0,
# This line forces exact h_0=hhat_0 and u_0=uhhat_0
Sigma_0=np.zeros((2, 2))

)

T = 100
x, y = ss_example.simulate(T)
y = y.flatten()

# Now h_0 and u_0 will be exactly hhat_0
h_0, u_0 = x[0, 0], x[1, 0]
print('h_0 =', h_0)
print('u_0 =', u_0)

h_0 = 0.0
u_0 = 4.0

For this worker, let’s generate a plot like the one above.

# First we compute the Kalman filter with initial xhat_0 and Σ_0
kalman = Kalman(ss, xhat_0, Σ_0)
Σ_t = []
y_hat_t = np.zeros(T-1)
u_hat_t = np.zeros(T-1)

# Then we iteratively update the Kalman filter class using
# observation y based on the linear state model above:
for t in range(1, T):

kalman.update(y[t])
x_hat, Σ = kalman.x_hat, kalman.Sigma
Σ_t.append(Σ)
[y_hat_t[t-1]] = worker.G @ x_hat
[u_hat_t[t-1]] = x_hat[1]

# Generate plots for y_hat_t and u_hat_t
fig, ax = plt.subplots(1, 2)

ax[0].plot(y_hat_t, label=r'$E[y_t| y^{t-1}]$')
ax[0].set_xlabel('Time')
ax[0].set_ylabel(r'$E[y_t]$')
ax[0].set_title(r'$E[y_t]$ over time')
ax[0].legend()

ax[1].plot(u_hat_t, label=r'$E[u_t|y^{t-1}]$')
ax[1].axhline(y=u_0, color='grey',

linestyle='dashed', label=fr'$u_0={u_0:.2f}$')
ax[1].set_xlabel('Time')
ax[1].set_ylabel(r'$E[u_t|y^{t-1}]$')
ax[1].set_title('Inferred work ethic over time')
ax[1].legend()

(continues on next page)
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(continued from previous page)

fig.tight_layout()
plt.show()

More generally, we can change some or all of the parameters defining a worker in our create_worker namedtuple.

Here is an example.

# We can set these parameters when creating a worker -- just like classes!
hard_working_worker = create_worker(α=.4, β=.8,

hhat_0=7.0, uhat_0=100, σ_h=2.5, σ_u=3.2)

print(hard_working_worker)

WorkerModel(A=array([[0.4, 0.8],
[0. , 1. ]]), C=array([[0.2],
[0. ]]), G=array([1., 1.]), R=0.5, xhat_0=array([[ 7.],
[100.]]), Σ_0=array([[2.5, 0. ],
[0. , 3.2]]))

We can also simulate the system for 𝑇 = 50 periods for different workers.
The difference between the inferred work ethics and true work ethics converges to 0 over time.
This shows that the filter is gradually teaching the worker and firm about the worker’s effort.
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num_workers = 3
T = 50
fig, ax = plt.subplots(figsize=(7, 7))

for i in range(num_workers):
worker = create_worker(uhat_0=4+2*i)
simulate_workers(worker, T, ax)

ax.set_ylim(ymin=-2, ymax=2)
plt.show()

# We can also generate plots of u_t:

T = 50
fig, ax = plt.subplots(figsize=(7, 7))

uhat_0s = [2, -2, 1]
(continues on next page)
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(continued from previous page)

αs = [0.2, 0.3, 0.5]
βs = [0.1, 0.9, 0.3]

for i, (uhat_0, α, β) in enumerate(zip(uhat_0s, αs, βs)):
worker = create_worker(uhat_0=uhat_0, α=α, β=β)
simulate_workers(worker, T, ax,

# By setting diff=False, it will give u_t
diff=False, name=r'$u_{{{}, t}}$'.format(i))

ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()

# We can also use exact u_0=1 and h_0=2 for all workers

T = 50

(continues on next page)
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(continued from previous page)

fig, ax = plt.subplots(figsize=(7, 7))

# These two lines set u_0=1 and h_0=2 for all workers
mu_0 = np.array([[1],

[2]])
Sigma_0 = np.zeros((2,2))

uhat_0s = [2, -2, 1]
αs = [0.2, 0.3, 0.5]
βs = [0.1, 0.9, 0.3]

for i, (uhat_0, α, β) in enumerate(zip(uhat_0s, αs, βs)):
worker = create_worker(uhat_0=uhat_0, α=α, β=β)
simulate_workers(worker, T, ax, mu_0=mu_0, Sigma_0=Sigma_0,

diff=False, name=r'$u_{{{}, t}}$'.format(i))

# This controls the boundary of plots
ax.set_ylim(ymin=-3, ymax=3)
ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()
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# We can generate a plot for only one of the workers:

T = 50
fig, ax = plt.subplots(figsize=(7, 7))

mu_0_1 = np.array([[1],
[100]])

mu_0_2 = np.array([[1],
[30]])

Sigma_0 = np.zeros((2,2))

uhat_0s = 100
αs = 0.5
βs = 0.3

worker = create_worker(uhat_0=uhat_0, α=α, β=β)

(continues on next page)
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(continued from previous page)

simulate_workers(worker, T, ax, mu_0=mu_0_1, Sigma_0=Sigma_0,
diff=False, name=r'Hard-working worker')

simulate_workers(worker, T, ax, mu_0=mu_0_2, Sigma_0=Sigma_0,
diff=False,
title='A hard-working worker and a less hard-working worker',
name=r'Normal worker')

ax.axhline(y=u_0, xmin=0, xmax=0, color='grey',
linestyle='dashed', label=r'$u_{i, 0}$')

ax.legend(bbox_to_anchor=(1, 0.5))
plt.show()
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41.6 Future Extensions

We can do lots of enlightening experiments by creating new types of workers and letting the firm learn about their hidden
(to the firm) states by observing just their output histories.
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CHAPTER

FORTYTWO

JOB SEARCH I: THE MCCALL SEARCH MODEL

Contents

• Job Search I: The McCall Search Model

– Overview

– The McCall Model

– Computing the Optimal Policy: Take 1

– Computing an Optimal Policy: Take 2

– Exercises

“Questioning a McCall worker is like having a conversation with an out-of-work friend: ‘Maybe you are
setting your sights too high’, or ‘Why did you quit your old job before you had a new one lined up?’ This is
real social science: an attempt to model, to understand, human behavior by visualizing the situation people
find themselves in, the options they face and the pros and cons as they themselves see them.” – Robert E.
Lucas, Jr.

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

42.1 Overview

The McCall search model [McCall, 1970] helped transform economists’ way of thinking about labor markets.

To clarify notions such as “involuntary” unemployment, McCall modeled the decision problem of an unemployed worker
in terms of factors including

• current and likely future wages

• impatience

• unemployment compensation

To solve the decision problem McCall used dynamic programming.

Here we set up McCall’s model and use dynamic programming to analyze it.

As we’ll see, McCall’s model is not only interesting in its own right but also an excellent vehicle for learning dynamic
programming.
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Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from numba import jit, float64
from numba.experimental import jitclass
import quantecon as qe
from quantecon.distributions import BetaBinomial

42.2 The McCall Model

An unemployed agent receives in each period a job offer at wage 𝑤𝑡.

In this lecture, we adopt the following simple environment:

• The offer sequence {𝑤𝑡}𝑡≥0 is IID, with 𝑞(𝑤) being the probability of observing wage 𝑤 in finite set 𝕎.

• The agent observes 𝑤𝑡 at the start of 𝑡.
• The agent knows that {𝑤𝑡} is IID with common distribution 𝑞 and can use this when computing expectations.

(In later lectures, we will relax these assumptions.)

At time 𝑡, our agent has two choices:
1. Accept the offer and work permanently at constant wage 𝑤𝑡.

2. Reject the offer, receive unemployment compensation 𝑐, and reconsider next period.
The agent is infinitely lived and aims to maximize the expected discounted sum of earnings

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑦𝑡

The constant 𝛽 lies in (0, 1) and is called a discount factor.
The smaller is 𝛽, the more the agent discounts future utility relative to current utility.
The variable 𝑦𝑡 is income, equal to

• his/her wage 𝑤𝑡 when employed

• unemployment compensation 𝑐 when unemployed

42.2.1 A Trade-Off

The worker faces a trade-off:

• Waiting too long for a good offer is costly, since the future is discounted.

• Accepting too early is costly, since better offers might arrive in the future.

To decide optimally in the face of this trade-off, we use dynamic programming.

Dynamic programming can be thought of as a two-step procedure that

1. first assigns values to “states” and

2. then deduces optimal actions given those values

We’ll go through these steps in turn.
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42.2.2 The Value Function

In order to optimally trade-off current and future rewards, we need to think about two things:

1. the current payoffs we get from different choices

2. the different states that those choices will lead to in next period

To weigh these two aspects of the decision problem, we need to assign values to states.

To this end, let 𝑣∗(𝑤) be the total lifetime value accruing to an unemployed worker who enters the current period unem-
ployed when the wage is 𝑤 ∈ 𝕎.

In particular, the agent has wage offer 𝑤 in hand.

More precisely, 𝑣∗(𝑤) denotes the value of the objective function (43.1) when an agent in this situation makes optimal
decisions now and at all future points in time.

Of course 𝑣∗(𝑤) is not trivial to calculate because we don’t yet know what decisions are optimal and what aren’t!

But think of 𝑣∗ as a function that assigns to each possible wage 𝑠 the maximal lifetime value that can be obtained with
that offer in hand.

A crucial observation is that this function 𝑣∗ must satisfy the recursion

𝑣∗(𝑤) = max{ 𝑤
1 − 𝛽 , 𝑐 + 𝛽 ∑

𝑤′∈𝕎
𝑣∗(𝑤′)𝑞(𝑤′)} (42.1)

for every possible 𝑤 in 𝕎.

This important equation is a version of the Bellman equation, which is ubiquitous in economic dynamics and other fields
involving planning over time.

The intuition behind it is as follows:

• the first term inside the max operation is the lifetime payoff from accepting current offer, since
𝑤

1 − 𝛽 = 𝑤 + 𝛽𝑤 + 𝛽2𝑤 + ⋯

• the second term inside the max operation is the continuation value, which is the lifetime payoff from rejecting
the current offer and then behaving optimally in all subsequent periods

If we optimize and pick the best of these two options, we obtain maximal lifetime value from today, given current offer
𝑤.
But this is precisely 𝑣∗(𝑤), which is the left-hand side of (42.1).

42.2.3 The Optimal Policy

Suppose for now that we are able to solve (42.1) for the unknown function 𝑣∗.

Once we have this function in hand we can behave optimally (i.e., make the right choice between accept and reject).

All we have to do is select the maximal choice on the right-hand side of (42.1).

The optimal action is best thought of as a policy, which is, in general, a map from states to actions.

Given any 𝑤, we can read off the corresponding best choice (accept or reject) by picking the max on the right-hand side
of (42.1).

Thus, we have a map from 𝕎 to {0, 1}, with 1 meaning accept and 0 meaning reject.
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We can write the policy as follows

𝜎(𝑤) ∶= 1{ 𝑤
1 − 𝛽 ≥ 𝑐 + 𝛽 ∑

𝑤′∈𝕎
𝑣∗(𝑤′)𝑞(𝑤′)}

Here 1{𝑃} = 1 if statement 𝑃 is true and equals 0 otherwise.

We can also write this as

𝜎(𝑤) ∶= 1{𝑤 ≥ 𝑤̄}

where

𝑤̄ ∶= (1 − 𝛽) {𝑐 + 𝛽 ∑
𝑤′

𝑣∗(𝑤′)𝑞(𝑤′)} (42.2)

Here 𝑤̄ (called the reservation wage) is a constant depending on 𝛽, 𝑐 and the wage distribution.
The agent should accept if and only if the current wage offer exceeds the reservation wage.

In view of (42.2), we can compute this reservation wage if we can compute the value function.

42.3 Computing the Optimal Policy: Take 1

To put the above ideas into action, we need to compute the value function at each possible state 𝑤 ∈ 𝕎.

To simplify notation, let’s set

𝕎 ∶= {𝑤1, … , 𝑤𝑛} and 𝑣∗(𝑖) ∶= 𝑣∗(𝑤𝑖)

The value function is then represented by the vector 𝑣∗ = (𝑣∗(𝑖))𝑛
𝑖=1.

In view of (42.1), this vector satisfies the nonlinear system of equations

𝑣∗(𝑖) = max{ 𝑤(𝑖)
1 − 𝛽 , 𝑐 + 𝛽 ∑

1≤𝑗≤𝑛
𝑣∗(𝑗)𝑞(𝑗)} for 𝑖 = 1, … , 𝑛 (42.3)

42.3.1 The Algorithm

To compute this vector, we use successive approximations:

Step 1: pick an arbitrary initial guess 𝑣 ∈ ℝ𝑛.

Step 2: compute a new vector 𝑣′ ∈ ℝ𝑛 via

𝑣′(𝑖) = max{ 𝑤(𝑖)
1 − 𝛽 , 𝑐 + 𝛽 ∑

1≤𝑗≤𝑛
𝑣(𝑗)𝑞(𝑗)} for 𝑖 = 1, … , 𝑛 (42.4)

Step 3: calculate a measure of a discrepancy between 𝑣 and 𝑣′, such as max𝑖 |𝑣(𝑖) − 𝑣′(𝑖)|.
Step 4: if the deviation is larger than some fixed tolerance, set 𝑣 = 𝑣′ and go to step 2, else continue.

Step 5: return 𝑣.
For a small tolerance, the returned function 𝑣 is a close approximation to the value function 𝑣∗.

The theory below elaborates on this point.
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42.3.2 Fixed Point Theory

What’s the mathematics behind these ideas?

First, one defines a mapping 𝑇 from ℝ𝑛 to itself via

(𝑇 𝑣)(𝑖) = max{ 𝑤(𝑖)
1 − 𝛽 , 𝑐 + 𝛽 ∑

1≤𝑗≤𝑛
𝑣(𝑗)𝑞(𝑗)} for 𝑖 = 1, … , 𝑛 (42.5)

(A new vector 𝑇 𝑣 is obtained from given vector 𝑣 by evaluating the r.h.s. at each 𝑖.)
The element 𝑣𝑘 in the sequence {𝑣𝑘} of successive approximations corresponds to 𝑇 𝑘𝑣.

• This is 𝑇 applied 𝑘 times, starting at the initial guess 𝑣
One can show that the conditions of the Banach fixed point theorem are satisfied by 𝑇 on ℝ𝑛.

One implication is that 𝑇 has a unique fixed point in ℝ𝑛.

• That is, a unique vector ̄𝑣 such that 𝑇 ̄𝑣 = ̄𝑣.
Moreover, it’s immediate from the definition of 𝑇 that this fixed point is 𝑣∗.

A second implication of the Banach contraction mapping theorem is that {𝑇 𝑘𝑣} converges to the fixed point 𝑣∗ regardless
of 𝑣.

42.3.3 Implementation

Our default for 𝑞, the distribution of the state process, will be Beta-binomial.
n, a, b = 50, 200, 100 # default parameters
q_default = BetaBinomial(n, a, b).pdf() # default choice of q

Our default set of values for wages will be

w_min, w_max = 10, 60
w_default = np.linspace(w_min, w_max, n+1)

Here’s a plot of the probabilities of different wage outcomes:

fig, ax = plt.subplots()
ax.plot(w_default, q_default, '-o', label='$q(w(i))$')
ax.set_xlabel('wages')
ax.set_ylabel('probabilities')

plt.show()
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We are going to use Numba to accelerate our code.

• See, in particular, the discussion of @jitclass in our lecture on Numba.

The following helps Numba by providing some type specifications.

mccall_data = [
('c', float64), # unemployment compensation
('β', float64), # discount factor
('w', float64[::1]), # array of wage values, w[i] = wage at state i
('q', float64[::1]) # array of probabilities

]

Note

Note the use of [::1] in the array type declarations above.

This notation specifies that the arrays should be C-contiguous.

This is important for performance, especially when using the @ operator for matrix multiplication (e.g., v @ q).

Without this specification, Numba might need to handle non-contiguous arrays, which can significantly slow down
these operations.

Try to replace [::1] with [:] and see what happens.

Here’s a class that stores the data and computes the values of state-action pairs, i.e. the value in the maximum bracket on
the right hand side of the Bellman equation (42.4), given the current state and an arbitrary feasible action.

Default parameter values are embedded in the class.
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@jitclass(mccall_data)
class McCallModel:

def __init__(self, c=25, β=0.99, w=w_default, q=q_default):

self.c, self.β = c, β
self.w, self.q = w_default, q_default

def state_action_values(self, i, v):
"""
The values of state-action pairs.
"""
# Simplify names
c, β, w, q = self.c, self.β, self.w, self.q
# Evaluate value for each state-action pair
# Consider action = accept or reject the current offer
accept = w[i] / (1 - β)
reject = c + β * (v @ q)

return np.array([accept, reject])

Based on these defaults, let’s try plotting the first few approximate value functions in the sequence {𝑇 𝑘𝑣}.
We will start from guess 𝑣 given by 𝑣(𝑖) = 𝑤(𝑖)/(1 − 𝛽), which is the value of accepting at every given wage.
Here’s a function to implement this:

def plot_value_function_seq(mcm, ax, num_plots=6):
"""
Plot a sequence of value functions.

* mcm is an instance of McCallModel
* ax is an axes object that implements a plot method.

"""

n = len(mcm.w)
v = mcm.w / (1 - mcm.β)
v_next = np.empty_like(v)
for i in range(num_plots):

ax.plot(mcm.w, v, '-', alpha=0.4, label=f"iterate {i}")
# Update guess
for j in range(n):

v_next[j] = np.max(mcm.state_action_values(j, v))
v[:] = v_next # copy contents into v

ax.legend(loc='lower right')

Now let’s create an instance of McCallModel and watch iterations 𝑇 𝑘𝑣 converge from below:

mcm = McCallModel()

fig, ax = plt.subplots()
ax.set_xlabel('wage')
ax.set_ylabel('value')
plot_value_function_seq(mcm, ax)
plt.show()

42.3. Computing the Optimal Policy: Take 1 815



Intermediate Quantitative Economics with Python

You can see that convergence is occurring: successive iterates are getting closer together.

Here’s a more serious iteration effort to compute the limit, which continues until measured deviation between successive
iterates is below tol.

Once we obtain a good approximation to the limit, we will use it to calculate the reservation wage.

We’ll be using JIT compilation via Numba to turbocharge our loops.

@jit
def compute_reservation_wage(mcm,

max_iter=500,
tol=1e-6):

# Simplify names
c, β, w, q = mcm.c, mcm.β, mcm.w, mcm.q

# == First compute the value function == #

n = len(w)
v = w / (1 - β) # initial guess
v_next = np.empty_like(v)
j = 0
error = tol + 1
while j < max_iter and error > tol:

for j in range(n):
v_next[j] = np.max(mcm.state_action_values(j, v))

error = np.max(np.abs(v_next - v))

(continues on next page)
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(continued from previous page)

j += 1

v[:] = v_next # copy contents into v

# == Now compute the reservation wage == #

return (1 - β) * (c + β * (v @ q))

The next line computes the reservation wage at default parameters

compute_reservation_wage(mcm)

47.31649971002487

42.3.4 Comparative Statics

Now that we know how to compute the reservation wage, let’s see how it varies with parameters.

In particular, let’s look at what happens when we change 𝛽 and 𝑐.
grid_size = 25
R = np.empty((grid_size, grid_size))

c_vals = np.linspace(10.0, 30.0, grid_size)
β_vals = np.linspace(0.9, 0.99, grid_size)

for i, c in enumerate(c_vals):
for j, β in enumerate(β_vals):

mcm = McCallModel(c=c, β=β)
R[i, j] = compute_reservation_wage(mcm)

fig, ax = plt.subplots()

cs1 = ax.contourf(c_vals, β_vals, R.T, alpha=0.75)
ctr1 = ax.contour(c_vals, β_vals, R.T)

plt.clabel(ctr1, inline=1, fontsize=13)
plt.colorbar(cs1, ax=ax)

ax.set_title("reservation wage")
ax.set_xlabel("$c$", fontsize=16)
ax.set_ylabel("$β$", fontsize=16)

ax.ticklabel_format(useOffset=False)

plt.show()
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As expected, the reservation wage increases both with patience and with unemployment compensation.

42.4 Computing an Optimal Policy: Take 2

The approach to dynamic programming just described is standard and broadly applicable.

But for our McCall search model there’s also an easier way that circumvents the need to compute the value function.

Let ℎ denote the continuation value:

ℎ = 𝑐 + 𝛽 ∑
𝑠′

𝑣∗(𝑠′)𝑞(𝑠′) (42.6)

The Bellman equation can now be written as

𝑣∗(𝑠′) = max{𝑤(𝑠′)
1 − 𝛽 , ℎ}

Substituting this last equation into (42.6) gives

ℎ = 𝑐 + 𝛽 ∑
𝑠′∈𝕊

max{𝑤(𝑠′)
1 − 𝛽 , ℎ} 𝑞(𝑠′) (42.7)

This is a nonlinear equation that we can solve for ℎ.
As before, we will use successive approximations:

Step 1: pick an initial guess ℎ.
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Step 2: compute the update ℎ′ via

ℎ′ = 𝑐 + 𝛽 ∑
𝑠′∈𝕊

max{𝑤(𝑠′)
1 − 𝛽 , ℎ} 𝑞(𝑠′) (42.8)

Step 3: calculate the deviation |ℎ − ℎ′|.
Step 4: if the deviation is larger than some fixed tolerance, set ℎ = ℎ′ and go to step 2, else return ℎ.
One can again use the Banach contraction mapping theorem to show that this process always converges.

The big difference here, however, is that we’re iterating on a scalar ℎ, rather than an 𝑛-vector, 𝑣(𝑖), 𝑖 = 1, … , 𝑛.
Here’s an implementation:

@jit
def compute_reservation_wage_two(mcm,

max_iter=500,
tol=1e-5):

# Simplify names
c, β, w, q = mcm.c, mcm.β, mcm.w, mcm.q

# == First compute h == #

h = (w @ q) / (1 - β)
i = 0
error = tol + 1
while i < max_iter and error > tol:

s = np.maximum(w / (1 - β), h)
h_next = c + β * (s @ q)

error = np.abs(h_next - h)
i += 1

h = h_next

# == Now compute the reservation wage == #

return (1 - β) * h

You can use this code to solve the exercise below.

42.5 Exercises

Exercise 42.5.1

Compute the average duration of unemployment when 𝛽 = 0.99 and 𝑐 takes the following values
c_vals = np.linspace(10, 40, 25)

That is, start the agent off as unemployed, compute their reservation wage given the parameters, and then simulate to
see how long it takes to accept.

Repeat a large number of times and take the average.

Plot mean unemployment duration as a function of 𝑐 in c_vals.
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Solution to Exercise 42.5.1

Here’s one solution

cdf = np.cumsum(q_default)

@jit
def compute_stopping_time(w_bar, seed=1234):

np.random.seed(seed)
t = 1
while True:

# Generate a wage draw
w = w_default[qe.random.draw(cdf)]
# Stop when the draw is above the reservation wage
if w >= w_bar:

stopping_time = t
break

else:
t += 1

return stopping_time

@jit
def compute_mean_stopping_time(w_bar, num_reps=100000):

obs = np.empty(num_reps)
for i in range(num_reps):

obs[i] = compute_stopping_time(w_bar, seed=i)
return obs.mean()

c_vals = np.linspace(10, 40, 25)
stop_times = np.empty_like(c_vals)
for i, c in enumerate(c_vals):

mcm = McCallModel(c=c)
w_bar = compute_reservation_wage_two(mcm)
stop_times[i] = compute_mean_stopping_time(w_bar)

fig, ax = plt.subplots()

ax.plot(c_vals, stop_times, label="mean unemployment duration")
ax.set(xlabel="unemployment compensation", ylabel="months")
ax.legend()

plt.show()
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Exercise 42.5.2

The purpose of this exercise is to show how to replace the discrete wage offer distribution used above with a continuous
distribution.

This is a significant topic because many convenient distributions are continuous (i.e., have a density).

Fortunately, the theory changes little in our simple model.

Recall that ℎ in (42.6) denotes the value of not accepting a job in this period but then behaving optimally in all
subsequent periods:

To shift to a continuous offer distribution, we can replace (42.6) by

ℎ = 𝑐 + 𝛽 ∫ 𝑣∗(𝑠′)𝑞(𝑠′)𝑑𝑠′. (42.9)

Equation (42.7) becomes

ℎ = 𝑐 + 𝛽 ∫max{𝑤(𝑠′)
1 − 𝛽 , ℎ} 𝑞(𝑠′)𝑑𝑠′ (42.10)

The aim is to solve this nonlinear equation by iteration, and from it obtain the reservation wage.

Try to carry this out, setting

• the state sequence {𝑠𝑡} to be IID and standard normal and

• the wage function to be 𝑤(𝑠) = exp(𝜇 + 𝜎𝑠).
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You will need to implement a new version of the McCallModel class that assumes a lognormal wage distribution.

Calculate the integral by Monte Carlo, by averaging over a large number of wage draws.

For default parameters, use c=25, β=0.99, σ=0.5, μ=2.5.

Once your code is working, investigate how the reservation wage changes with 𝑐 and 𝛽.

Solution to Exercise 42.5.2

Here is one solution:

mccall_data_continuous = [
('c', float64), # unemployment compensation
('β', float64), # discount factor
('σ', float64), # scale parameter in lognormal distribution
('μ', float64), # location parameter in lognormal distribution
('w_draws', float64[:]) # draws of wages for Monte Carlo

]

@jitclass(mccall_data_continuous)
class McCallModelContinuous:

def __init__(self, c=25, β=0.99, σ=0.5, μ=2.5, mc_size=1000):

self.c, self.β, self.σ, self.μ = c, β, σ, μ

# Draw and store shocks
np.random.seed(1234)
s = np.random.randn(mc_size)
self.w_draws = np.exp(μ+ σ * s)

@jit
def compute_reservation_wage_continuous(mcmc, max_iter=500, tol=1e-5):

c, β, σ, μ, w_draws = mcmc.c, mcmc.β, mcmc.σ, mcmc.μ, mcmc.w_draws

h = np.mean(w_draws) / (1 - β) # initial guess
i = 0
error = tol + 1
while i < max_iter and error > tol:

integral = np.mean(np.maximum(w_draws / (1 - β), h))
h_next = c + β * integral

error = np.abs(h_next - h)
i += 1

h = h_next

# == Now compute the reservation wage == #

return (1 - β) * h

Now we investigate how the reservation wage changes with 𝑐 and 𝛽.
We will do this using a contour plot.
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grid_size = 25
R = np.empty((grid_size, grid_size))

c_vals = np.linspace(10.0, 30.0, grid_size)
β_vals = np.linspace(0.9, 0.99, grid_size)

for i, c in enumerate(c_vals):
for j, β in enumerate(β_vals):

mcmc = McCallModelContinuous(c=c, β=β)
R[i, j] = compute_reservation_wage_continuous(mcmc)

fig, ax = plt.subplots()

cs1 = ax.contourf(c_vals, β_vals, R.T, alpha=0.75)
ctr1 = ax.contour(c_vals, β_vals, R.T)

plt.clabel(ctr1, inline=1, fontsize=13)
plt.colorbar(cs1, ax=ax)

ax.set_title("reservation wage")
ax.set_xlabel("$c$", fontsize=16)
ax.set_ylabel("$β$", fontsize=16)

ax.ticklabel_format(useOffset=False)

plt.show()
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

43.1 Overview

Previously we looked at the McCall job search model [McCall, 1970] as a way of understanding unemployment and
worker decisions.

One unrealistic feature of the model is that every job is permanent.

In this lecture, we extend the McCall model by introducing job separation.

Once separation enters the picture, the agent comes to view

• the loss of a job as a capital loss, and

• a spell of unemployment as an investment in searching for an acceptable job

The other minor addition is that a utility function will be included to make worker preferences slightly more sophisticated.

We’ll need the following imports

import matplotlib.pyplot as plt
import numpy as np
import jax
import jax.numpy as jnp

(continues on next page)
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(continued from previous page)

from typing import NamedTuple
from quantecon.distributions import BetaBinomial

43.2 The Model

The model is similar to the baseline McCall job search model.

It concerns the life of an infinitely lived worker and

• the opportunities he or she (let’s say he to save one character) has to work at different wages

• exogenous events that destroy his current job

• his decision making process while unemployed

The worker can be in one of two states: employed or unemployed.

He wants to maximize

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑦𝑡) (43.1)

At this stage the only difference from the baseline model is that we’ve added some flexibility to preferences by introducing
a utility function 𝑢.
It satisfies 𝑢′ > 0 and 𝑢″ < 0.

43.2.1 The Wage Process

For now we will drop the separation of state process and wage process that we maintained for the baseline model.

In particular, we simply suppose that wage offers {𝑤𝑡} are IID with common distribution 𝑞.
The set of possible wage values is denoted by 𝕎.

(Later we will go back to having a separate state process {𝑠𝑡} driving random outcomes, since this formulation is usually
convenient in more sophisticated models.)

43.2.2 Timing and Decisions

At the start of each period, the agent can be either

• unemployed or

• employed at some existing wage level 𝑤𝑒.

At the start of a given period, the current wage offer 𝑤𝑡 is observed.

If currently employed, the worker

1. receives utility 𝑢(𝑤𝑒) and
2. is fired with some (small) probability 𝛼.

If currently unemployed, the worker either accepts or rejects the current offer 𝑤𝑡.

If he accepts, then he begins work immediately at wage 𝑤𝑡.

If he rejects, then he receives unemployment compensation 𝑐.
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The process then repeats.

Note

We do not allow for job search while employed—this topic is taken up in a later lecture.

43.3 Solving the Model

We drop time subscripts in what follows and primes denote next period values.

Let

• 𝑣(𝑤𝑒) be total lifetime value accruing to a worker who enters the current period employed with existing wage 𝑤𝑒

• ℎ(𝑤) be total lifetime value accruing to a worker who who enters the current period unemployed and receives wage
offer 𝑤.

Here valuemeans the value of the objective function (43.1) when the worker makes optimal decisions at all future points
in time.

Our first aim is to obtain these functions.

43.3.1 The Bellman Equations

Suppose for now that the worker can calculate the functions 𝑣 and ℎ and use them in his decision making.

Then 𝑣 and ℎ should satisfy

𝑣(𝑤𝑒) = 𝑢(𝑤𝑒) + 𝛽 [(1 − 𝛼)𝑣(𝑤𝑒) + 𝛼 ∑
𝑤′∈𝕎

ℎ(𝑤′)𝑞(𝑤′)] (43.2)

and

ℎ(𝑤) = max{𝑣(𝑤), 𝑢(𝑐) + 𝛽 ∑
𝑤′∈𝕎

ℎ(𝑤′)𝑞(𝑤′)} (43.3)

Equation (43.2) expresses the value of being employed at wage 𝑤𝑒 in terms of

• current reward 𝑢(𝑤𝑒) plus
• discounted expected reward tomorrow, given the 𝛼 probability of being fired

Equation (43.3) expresses the value of being unemployed with offer 𝑤 in hand as a maximum over the value of two
options: accept or reject the current offer.

Accepting transitions the worker to employment and hence yields reward 𝑣(𝑤).
Rejecting leads to unemployment compensation and unemployment tomorrow.

Equations (43.2) and (43.3) are the Bellman equations for this model.

They provide enough information to solve for both 𝑣 and ℎ.
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43.3.2 A Simplifying Transformation

Rather than jumping straight into solving these equations, let’s see if we can simplify them somewhat.

(This process will be analogous to our second pass at the plain vanilla McCall model, where we simplified the Bellman
equation.)

First, let

𝑑 ∶= ∑
𝑤′∈𝕎

ℎ(𝑤′)𝑞(𝑤′) (43.4)

be the expected value of unemployment tomorrow.

We can now write (43.3) as

ℎ(𝑤) = max {𝑣(𝑤), 𝑢(𝑐) + 𝛽𝑑}

or, shifting time forward one period

∑
𝑤′∈𝕎

ℎ(𝑤′)𝑞(𝑤′) = ∑
𝑤′∈𝕎

max {𝑣(𝑤′), 𝑢(𝑐) + 𝛽𝑑} 𝑞(𝑤′)

Using (43.4) again now gives

𝑑 = ∑
𝑤′∈𝕎

max {𝑣(𝑤′), 𝑢(𝑐) + 𝛽𝑑} 𝑞(𝑤′) (43.5)

Finally, (43.2) can now be rewritten as

𝑣(𝑤) = 𝑢(𝑤) + 𝛽 [(1 − 𝛼)𝑣(𝑤) + 𝛼𝑑] (43.6)

In the last expression, we wrote 𝑤𝑒 as 𝑤 to make the notation simpler.

43.3.3 The Reservation Wage

Suppose we can use (43.5) and (43.6) to solve for 𝑑 and 𝑣.
(We will do this soon.)

We can then determine optimal behavior for the worker.

From (43.3), we see that an unemployed agent accepts current offer 𝑤 if 𝑣(𝑤) ≥ 𝑢(𝑐) + 𝛽𝑑.
This means precisely that the value of accepting is higher than the expected value of rejecting.

It is clear that 𝑣 is (at least weakly) increasing in 𝑤, since the agent is never made worse off by a higher wage offer.

Hence, we can express the optimal choice as accepting wage offer 𝑤 if and only if

𝑤 ≥ 𝑤̄ where 𝑤̄ solves 𝑣(𝑤̄) = 𝑢(𝑐) + 𝛽𝑑

43.3.4 Solving the Bellman Equations

We’ll use the same iterative approach to solving the Bellman equations that we adopted in the first job search lecture.

Here this amounts to

1. make guesses for 𝑑 and 𝑣
2. plug these guesses into the right-hand sides of (43.5) and (43.6)
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3. update the left-hand sides from this rule and then repeat

In other words, we are iterating using the rules

𝑑𝑛+1 = ∑
𝑤′∈𝕎

max {𝑣𝑛(𝑤′), 𝑢(𝑐) + 𝛽𝑑𝑛} 𝑞(𝑤′) (43.7)

𝑣𝑛+1(𝑤) = 𝑢(𝑤) + 𝛽 [(1 − 𝛼)𝑣𝑛(𝑤) + 𝛼𝑑𝑛] (43.8)

starting from some initial conditions 𝑑0, 𝑣0.

As before, the system always converges to the true solutions—in this case, the 𝑣 and 𝑑 that solve (43.5) and (43.6).

(A proof can be obtained via the Banach contraction mapping theorem.)

43.4 Implementation

Let’s implement this iterative process.

In the code, you’ll see that we use a class to store the various parameters and other objects associated with a given model.

This helps to tidy up the code and provides an object that’s easy to pass to functions.

The default utility function is a CRRA utility function

@jax.jit
def u(c, σ=2.0):

return (c**(1 - σ) - 1) / (1 - σ)

Also, here’s a default wage distribution, based around the BetaBinomial distribution:

n = 60 # n possible outcomes for w
w_default = jnp.linspace(10, 20, n) # wages between 10 and 20
a, b = 600, 400 # shape parameters
dist = BetaBinomial(n-1, a, b) # distribution
q_default = jnp.array(dist.pdf()) # probabilities as a JAX array

Here’s our jitted class for the McCall model with separation.

class Model(NamedTuple):
α: float = 0.2 # job separation rate
β: float = 0.98 # discount factor
c: float = 6.0 # unemployment compensation
w: jnp.ndarray = w_default # wage outcome space
q: jnp.ndarray = q_default # probabilities over wage offers

Now we iterate until successive realizations are closer together than some small tolerance level.

We then return the current iterate as an approximate solution.

@jax.jit
def update(model, v, d):

" One update on the Bellman equations. "
α, β, c, w, q = model.α, model.β, model.c, model.w, model.q
v_new = u(w) + β * ((1 - α) * v + α * d)
d_new = jnp.maximum(v, u(c) + β * d) @ q
return v_new, d_new

@jax.jit

(continues on next page)
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(continued from previous page)

def solve_model(model, tol=1e-5, max_iter=2000):
" Iterates to convergence on the Bellman equations. "

def cond_fun(state):
v, d, i, error = state
return jnp.logical_and(error > tol, i < max_iter)

def body_fun(state):
v, d, i, error = state
v_new, d_new = update(model, v, d)
error_1 = jnp.max(jnp.abs(v_new - v))
error_2 = jnp.abs(d_new - d)
error_new = jnp.maximum(error_1, error_2)
return v_new, d_new, i + 1, error_new

# Initial state: (v, d, i, error)
v_init = jnp.ones_like(model.w)
d_init = 1.0
i_init = 0
error_init = tol + 1

init_state = (v_init, d_init, i_init, error_init)
final_state = jax.lax.while_loop(cond_fun, body_fun, init_state)
v_final, d_final, _, _ = final_state

return v_final, d_final

43.4.1 The Reservation Wage: First Pass

The optimal choice of the agent is summarized by the reservation wage.

As discussed above, the reservation wage is the 𝑤̄ that solves 𝑣(𝑤̄) = ℎ where ℎ ∶= 𝑢(𝑐) + 𝛽𝑑 is the continuation value.

Let’s compare 𝑣 and ℎ to see what they look like.

We’ll use the default parameterizations found in the code above.

model = Model()
v, d = solve_model(model)
h = u(model.c) + model.β * d

fig, ax = plt.subplots()
ax.plot(model.w, v, 'b-', lw=2, alpha=0.7, label='$v$')
ax.plot(model.w, [h] * len(model.w),

'g-', lw=2, alpha=0.7, label='$h$')
ax.set_xlim(min(model.w), max(model.w))
ax.legend()
plt.show()
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The value 𝑣 is increasing because higher 𝑤 generates a higher wage flow conditional on staying employed.

43.4.2 The Reservation Wage: Computation

Here’s a function compute_reservation_wage that takes an instance of Model and returns the associated reser-
vation wage.

@jax.jit
def compute_reservation_wage(model):

"""
Computes the reservation wage of an instance of the McCall model
by finding the smallest w such that v(w) >= h. If no such w exists, then
w_bar is set to np.inf.
"""

v, d = solve_model(model)
h = u(model.c) + model.β * d
i = jnp.searchsorted(v, h, side='left')
w_bar = jnp.where(i >= len(model.w), jnp.inf, model.w[i])
return w_bar

Next we will investigate how the reservation wage varies with parameters.
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43.5 Impact of Parameters

In each instance below, we’ll show you a figure and then ask you to reproduce it in the exercises.

43.5.1 The Reservation Wage and Unemployment Compensation

First, let’s look at how 𝑤̄ varies with unemployment compensation.

In the figure below, we use the default parameters in the Model class, apart from c (which takes the values given on the
horizontal axis)

As expected, higher unemployment compensation causes the worker to hold out for higher wages.

In effect, the cost of continuing job search is reduced.
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43.5.2 The Reservation Wage and Discounting

Next, let’s investigate how 𝑤̄ varies with the discount factor.

The next figure plots the reservation wage associated with different values of 𝛽

Again, the results are intuitive: More patient workers will hold out for higher wages.

43.5.3 The Reservation Wage and Job Destruction

Finally, let’s look at how 𝑤̄ varies with the job separation rate 𝛼.
Higher 𝛼 translates to a greater chance that a worker will face termination in each period once employed.

Once more, the results are in line with our intuition.

If the separation rate is high, then the benefit of holding out for a higher wage falls.

Hence the reservation wage is lower.
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43.6 Exercises

Exercise 43.6.1

Reproduce all the reservation wage figures shown above.

Regarding the values on the horizontal axis, use

grid_size = 25
c_vals = jnp.linspace(2, 12, grid_size) # unemployment compensation
β_vals = jnp.linspace(0.8, 0.99, grid_size) # discount factors
α_vals = jnp.linspace(0.05, 0.5, grid_size) # separation rate

Solution to Exercise 43.6.1

Here’s the first figure.

def compute_res_wage_given_c(c):
model = Model(c=c)
w_bar = compute_reservation_wage(model)
return w_bar

w_bar_vals = jax.vmap(compute_res_wage_given_c)(c_vals)

fig, ax = plt.subplots()
ax.set(xlabel='unemployment compensation', ylabel='reservation wage')
ax.plot(c_vals, w_bar_vals, label=r'$\bar w$ as a function of $c$')
ax.legend()
plt.show()
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Here’s the second one.

def compute_res_wage_given_beta(β):
model = Model(β=β)
w_bar = compute_reservation_wage(model)
return w_bar

w_bar_vals = jax.vmap(compute_res_wage_given_beta)(β_vals)

fig, ax = plt.subplots()
ax.set(xlabel='discount factor', ylabel='reservation wage')
ax.plot(β_vals, w_bar_vals, label=r'$\bar w$ as a function of $\beta$')
ax.legend()
plt.show()
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Here’s the third.

def compute_res_wage_given_alpha(α):
model = Model(α=α)
w_bar = compute_reservation_wage(model)
return w_bar

w_bar_vals = jax.vmap(compute_res_wage_given_alpha)(α_vals)

fig, ax = plt.subplots()
ax.set(xlabel='separation rate', ylabel='reservation wage')
ax.plot(α_vals, w_bar_vals, label=r'$\bar w$ as a function of $\alpha$')
ax.legend()
plt.show()
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44.1 Overview

In this lecture we again study theMcCall job search model with separation, but now with a continuous wage distribution.

While we already considered continuous wage distributions briefly in the exercises of the first job search lecture, the
change was relatively trivial in that case.

This is because we were able to reduce the problem to solving for a single scalar value (the continuation value).

Here, with separation, the change is less trivial, since a continuous wage distribution leads to an uncountably infinite state
space.

The infinite state space leads to additional challenges, particularly when it comes to applying value function iteration
(VFI).

These challenges will lead us to modify VFI by adding an interpolation step.

The combination of VFI and this interpolation step is called fitted value function iteration (fitted VFI).

Fitted VFI is very common in practice, so we will take some time to work through the details.

We will use the following imports:

import matplotlib.pyplot as plt
import jax
import jax.numpy as jnp
from typing import NamedTuple
import quantecon as qe

# Set JAX to use CPU
jax.config.update('jax_platform_name', 'cpu')
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44.2 The algorithm

The model is the same as the McCall model with job separation that we studied before, except that the wage offer distri-
bution is continuous.

We are going to start with the two Bellman equations we obtained for the model with job separation after a simplifying
transformation.

Modified to accommodate continuous wage draws, they take the following form:

𝑑 = ∫max {𝑣(𝑤′), 𝑢(𝑐) + 𝛽𝑑} 𝑞(𝑤′)𝑑𝑤′ (44.1)

and

𝑣(𝑤) = 𝑢(𝑤) + 𝛽 [(1 − 𝛼)𝑣(𝑤) + 𝛼𝑑] (44.2)

The unknowns here are the function 𝑣 and the scalar 𝑑.
The differences between these and the pair of Bellman equations we previously worked on are

1. In (44.1), what used to be a sum over a finite number of wage values is an integral over an infinite set.

2. The function 𝑣 in (44.2) is defined over all 𝑤 ∈ ℝ+.

The function 𝑞 in (44.1) is the density of the wage offer distribution.
Its support is taken as equal to ℝ+.

44.2.1 Value function iteration

In theory, we should now proceed as follows:

1. Begin with a guess 𝑣, 𝑑 for the solutions to (44.1)–(44.2).

2. Plug 𝑣, 𝑑 into the right hand side of (44.1)–(44.2) and compute the left hand side to obtain updates 𝑣′, 𝑑′

3. Unless some stopping condition is satisfied, set (𝑣, 𝑑) = (𝑣′, 𝑑′) and go to step 2.
However, there is a problem we must confront before we implement this procedure: The iterates of the value function
can neither be calculated exactly nor stored on a computer.

To see the issue, consider (44.2).

Even if 𝑣 is a known function, the only way to store its update 𝑣′ is to record its value 𝑣′(𝑤) for every 𝑤 ∈ ℝ+.

Clearly, this is impossible.

44.2.2 Fitted value function iteration

What we will do instead is use fitted value function iteration.

The procedure is as follows:

Let a current guess 𝑣 be given.
Now we record the value of the function 𝑣′ at only finitely many “grid” points 𝑤1 < 𝑤2 < ⋯ < 𝑤𝐼 and then reconstruct
𝑣′ from this information when required.

More precisely, the algorithm will be

1. Begin with an array v representing the values of an initial guess of the value function on some grid points {𝑤𝑖}.
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2. Build a function 𝑣 on the state space ℝ+ by interpolation or approximation, based on v and {𝑤𝑖}.
3. Obtain and record the samples of the updated function 𝑣′(𝑤𝑖) on each grid point 𝑤𝑖.

4. Unless some stopping condition is satisfied, take this as the new array and go to step 1.

How should we go about step 2?

This is a problem of function approximation, and there are many ways to approach it.

What’s important here is that the function approximation scheme must not only produce a good approximation to each 𝑣,
but also that it combines well with the broader iteration algorithm described above.

One good choice from both respects is continuous piecewise linear interpolation.

This method

1. combines well with value function iteration (see, e.g., [Gordon, 1995] or [Stachurski, 2008]) and

2. preserves useful shape properties such as monotonicity and concavity/convexity.

Linear interpolation will be implemented using JAX’s interpolation function jnp.interp.

The next figure illustrates piecewise linear interpolation of an arbitrary function on grid points 0, 0.2, 0.4, 0.6, 0.8, 1.
def f(x):

y1 = 2 * jnp.cos(6 * x) + jnp.sin(14 * x)
return y1 + 2.5

c_grid = jnp.linspace(0, 1, 6)
f_grid = jnp.linspace(0, 1, 150)

def Af(x):
return jnp.interp(x, c_grid, f(c_grid))

fig, ax = plt.subplots()

ax.plot(f_grid, f(f_grid), 'b-', label='true function')
ax.plot(f_grid, Af(f_grid), 'g-', label='linear approximation')
ax.vlines(c_grid, c_grid * 0, f(c_grid), linestyle='dashed', alpha=0.5)

ax.legend(loc="upper center")

ax.set(xlim=(0, 1), ylim=(0, 6))
plt.show()
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44.3 Implementation

The first step is to build a JAX-compatible structure for the McCall model with separation and a continuous wage offer
distribution.

We will take the utility function to be the log function for this application, with 𝑢(𝑐) = ln 𝑐.
We will adopt the lognormal distribution for wages, with 𝑤 = exp(𝜇 + 𝜎𝑧) when 𝑧 is standard normal and 𝜇, 𝜎 are
parameters.

def lognormal_draws(n=1000, μ=2.5, σ=0.5, seed=1234):
key = jax.random.PRNGKey(seed)
z = jax.random.normal(key, (n,))
w_draws = jnp.exp(μ + σ * z)
return w_draws

Here’s our model structure using a NamedTuple.

class McCallModelContinuous(NamedTuple):
c: float # unemployment compensation
α: float # job separation rate
β: float # discount factor
w_grid: jnp.ndarray # grid of points for fitted VFI
w_draws: jnp.ndarray # draws of wages for Monte Carlo

def create_mccall_model(c=1,
α=0.1,
β=0.96,

(continues on next page)
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(continued from previous page)

grid_min=1e-10,
grid_max=5,
grid_size=100,
μ=2.5,
σ=0.5,
mc_size=1000,
seed=1234,
w_draws=None):

"""Factory function to create a McCall model instance."""
if w_draws is None:

# Generate wage draws if not provided
w_draws = lognormal_draws(n=mc_size, μ=μ, σ=σ, seed=seed)

w_grid = jnp.linspace(grid_min, grid_max, grid_size)
return McCallModelContinuous(c=c, α=α, β=β, w_grid=w_grid, w_draws=w_draws)

@jax.jit
def update(model, v, d):

"""Update value function and continuation value."""

# Unpack model parameters
c, α, β, w_grid, w_draws = model
u = jnp.log

# Interpolate array represented value function
vf = lambda x: jnp.interp(x, w_grid, v)

# Update d using Monte Carlo to evaluate integral
d_new = jnp.mean(jnp.maximum(vf(w_draws), u(c) + β * d))

# Update v
v_new = u(w_grid) + β * ((1 - α) * v + α * d)

return v_new, d_new

We then return the current iterate as an approximate solution.

@jax.jit
def solve_model(model, tol=1e-5, max_iter=2000):

"""
Iterates to convergence on the Bellman equations

* model is an instance of McCallModelContinuous
"""

# Initial guesses
v = jnp.ones_like(model.w_grid)
d = 1.0

def body_fun(state):
v, d, i, error = state
v_new, d_new = update(model, v, d)
error_1 = jnp.max(jnp.abs(v_new - v))
error_2 = jnp.abs(d_new - d)
error = jnp.maximum(error_1, error_2)
return v_new, d_new, i + 1, error

(continues on next page)
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def cond_fun(state):
_, _, i, error = state
return (error > tol) & (i < max_iter)

initial_state = (v, d, 0, tol + 1)
v_final, d_final, _, _ = jax.lax.while_loop(cond_fun, body_fun, initial_state)

return v_final, d_final

Here’s a function compute_reservation_wage that takes an instance of McCallModelContinuous and re-
turns the associated reservation wage.

If 𝑣(𝑤) < ℎ for all 𝑤, then the function returns jnp.inf
@jax.jit
def compute_reservation_wage(model):

"""
Computes the reservation wage of an instance of the McCall model
by finding the smallest w such that v(w) >= h.

If no such w exists, then w_bar is set to inf.
"""
c, α, β, w_grid, w_draws = model
u = jnp.log

v, d = solve_model(model)
h = u(c) + β * d

# Find the first wage where v(w) >= h
indices = jnp.where(v >= h, size=1, fill_value=-1)
w_bar = jnp.where(indices[0] >= 0, w_grid[indices[0]], jnp.inf)

return w_bar

The exercises ask you to explore the solution and how it changes with parameters.

44.4 Exercises

Exercise 44.4.1

Use the code above to explore what happens to the reservation wage when the wage parameter 𝜇 changes.

Use the default parameters and 𝜇 in μ_vals = jnp.linspace(0.0, 2.0, 15).

Is the impact on the reservation wage as you expected?

Solution to Exercise 44.4.1

Here is one solution
def compute_res_wage_given_μ(μ):

model = create_mccall_model(μ=μ)
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w_bar = compute_reservation_wage(model)
return w_bar

μ_vals = jnp.linspace(0.0, 2.0, 15)
w_bar_vals = jax.vmap(compute_res_wage_given_μ)(μ_vals)

fig, ax = plt.subplots()
ax.set(xlabel='mean', ylabel='reservation wage')
ax.plot(μ_vals, w_bar_vals, label=r'$\bar w$ as a function of $\mu$')
ax.legend()
plt.show()

Not surprisingly, the agent is more inclined to wait when the distribution of offers shifts to the right.

Exercise 44.4.2

Let us now consider how the agent responds to an increase in volatility.

To try to understand this, compute the reservation wage when the wage offer distribution is uniform on (𝑚−𝑠, 𝑚+𝑠)
and 𝑠 varies.
The idea here is that we are holding the mean constant and spreading the support.

(This is a form of mean-preserving spread.)

Use s_vals = jnp.linspace(1.0, 2.0, 15) and m = 2.0.

State how you expect the reservation wage to vary with 𝑠.

44.4. Exercises 845



Intermediate Quantitative Economics with Python

Now compute it - is this as you expected?

Solution to Exercise 44.4.2

Here is one solution

def compute_res_wage_given_s(s, m=2.0, seed=1234):
a, b = m - s, m + s
key = jax.random.PRNGKey(seed)
uniform_draws = jax.random.uniform(key, shape=(10_000,), minval=a, maxval=b)

# Create model with default parameters but replace wage draws
model = create_mccall_model(w_draws=uniform_draws)
w_bar = compute_reservation_wage(model)
return w_bar

s_vals = jnp.linspace(1.0, 2.0, 15)

# Use vmap with different seeds for each s value
seeds = jnp.arange(len(s_vals))
compute_vectorized = jax.vmap(compute_res_wage_given_s, in_axes=(0, None, 0))
w_bar_vals = compute_vectorized(s_vals, 2.0, seeds)

fig, ax = plt.subplots()
ax.set(xlabel='volatility', ylabel='reservation wage')
ax.plot(s_vals, w_bar_vals, label=r'$\bar w$ as a function of wage volatility')
ax.legend()
plt.show()
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The reservation wage increases with volatility.

One might think that higher volatility would make the agent more inclined to take a given offer, since doing so
represents certainty and waiting represents risk.

But job search is like holding an option: the worker is only exposed to upside risk (since, in a free market, no one can
force them to take a bad offer).

More volatility means higher upside potential, which encourages the agent to wait.
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Contents

• Job Search IV: Correlated Wage Offers

– Overview

– The Model

– Implementation

– Unemployment Duration

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

45.1 Overview

In this lecture we solve a McCall style job search model with persistent and transitory components to wages.

In other words, we relax the unrealistic assumption that randomness in wages is independent over time.

At the same time, we will go back to assuming that jobs are permanent and no separation occurs.

This is to keep the model relatively simple as we study the impact of correlation.

We will use the following imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from numpy.random import randn
from numba import jit, prange, float64
from numba.experimental import jitclass
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45.2 The Model

Wages at each point in time are given by

𝑤𝑡 = exp(𝑧𝑡) + 𝑦𝑡

where

𝑦𝑡 ∼ exp(𝜇 + 𝑠𝜁𝑡) and 𝑧𝑡+1 = 𝑑 + 𝜌𝑧𝑡 + 𝜎𝜖𝑡+1

Here {𝜁𝑡} and {𝜖𝑡} are both IID and standard normal.

Here {𝑦𝑡} is a transitory component and {𝑧𝑡} is persistent.
As before, the worker can either

1. accept an offer and work permanently at that wage, or

2. take unemployment compensation 𝑐 and wait till next period.
The value function satisfies the Bellman equation

𝑣∗(𝑤, 𝑧) = max{ 𝑢(𝑤)
1 − 𝛽 , 𝑢(𝑐) + 𝛽 𝔼𝑧𝑣∗(𝑤′, 𝑧′)}

In this express, 𝑢 is a utility function and 𝔼𝑧 is expectation of next period variables given current 𝑧.
The variable 𝑧 enters as a state in the Bellman equation because its current value helps predict future wages.

45.2.1 A Simplification

There is a way that we can reduce dimensionality in this problem, which greatly accelerates computation.

To start, let 𝑓∗ be the continuation value function, defined by

𝑓∗(𝑧) ∶= 𝑢(𝑐) + 𝛽 𝔼𝑧𝑣∗(𝑤′, 𝑧′)

The Bellman equation can now be written

𝑣∗(𝑤, 𝑧) = max{ 𝑢(𝑤)
1 − 𝛽 , 𝑓∗(𝑧)}

Combining the last two expressions, we see that the continuation value function satisfies

𝑓∗(𝑧) = 𝑢(𝑐) + 𝛽 𝔼𝑧 max{𝑢(𝑤′)
1 − 𝛽 , 𝑓∗(𝑧′)}

We’ll solve this functional equation for 𝑓∗ by introducing the operator

𝑄𝑓(𝑧) = 𝑢(𝑐) + 𝛽 𝔼𝑧 max{𝑢(𝑤′)
1 − 𝛽 , 𝑓(𝑧′)}

By construction, 𝑓∗ is a fixed point of 𝑄, in the sense that 𝑄𝑓∗ = 𝑓∗.

Under mild assumptions, it can be shown that 𝑄 is a contraction mapping over a suitable space of continuous functions
on ℝ.
By Banach’s contraction mapping theorem, this means that 𝑓∗ is the unique fixed point and we can calculate it by iterating
with 𝑄 from any reasonable initial condition.
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Once we have 𝑓∗, we can solve the search problem by stopping when the reward for accepting exceeds the continuation
value, or

𝑢(𝑤)
1 − 𝛽 ≥ 𝑓∗(𝑧)

For utility we take 𝑢(𝑐) = ln(𝑐).
The reservation wage is the wage where equality holds in the last expression.

That is,

𝑤̄(𝑧) ∶= exp(𝑓∗(𝑧)(1 − 𝛽)) (45.1)

Our main aim is to solve for the reservation rule and study its properties and implications.

45.3 Implementation

Let 𝑓 be our initial guess of 𝑓∗.

When we iterate, we use the fitted value function iteration algorithm.

In particular, 𝑓 and all subsequent iterates are stored as a vector of values on a grid.

These points are interpolated into a function as required, using piecewise linear interpolation.

The integral in the definition of 𝑄𝑓 is calculated by Monte Carlo.

The following list helps Numba by providing some type information about the data we will work with.

job_search_data = [
('μ', float64), # transient shock log mean
('s', float64), # transient shock log variance
('d', float64), # shift coefficient of persistent state
('ρ', float64), # correlation coefficient of persistent state
('σ', float64), # state volatility
('β', float64), # discount factor
('c', float64), # unemployment compensation
('z_grid', float64[:]), # grid over the state space
('e_draws', float64[:,:]) # Monte Carlo draws for integration

]

Here’s a class that stores the data and the right hand side of the Bellman equation.

Default parameter values are embedded in the class.

@jitclass(job_search_data)
class JobSearch:

def __init__(self,
μ=0.0, # transient shock log mean
s=1.0, # transient shock log variance
d=0.0, # shift coefficient of persistent state
ρ=0.9, # correlation coefficient of persistent state
σ=0.1, # state volatility
β=0.98, # discount factor
c=5, # unemployment compensation
mc_size=1000,
grid_size=100):

(continues on next page)
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self.μ, self.s, self.d, = μ, s, d,
self.ρ, self.σ, self.β, self.c = ρ, σ, β, c

# Set up grid
z_mean = d / (1 - ρ)
z_sd = σ / np.sqrt(1 - ρ**2)
k = 3 # std devs from mean
a, b = z_mean - k * z_sd, z_mean + k * z_sd
self.z_grid = np.linspace(a, b, grid_size)

# Draw and store shocks
np.random.seed(1234)
self.e_draws = randn(2, mc_size)

def parameters(self):
"""
Return all parameters as a tuple.
"""
return self.μ, self.s, self.d, \

self.ρ, self.σ, self.β, self.c

Next we implement the 𝑄 operator.

@jit(parallel=True)
def Q(js, f_in, f_out):

"""
Apply the operator Q.

* js is an instance of JobSearch
* f_in and f_out are arrays that represent f and Qf respectively

"""

μ, s, d, ρ, σ, β, c = js.parameters()
M = js.e_draws.shape[1]

for i in prange(len(js.z_grid)):
z = js.z_grid[i]
expectation = 0.0
for m in range(M):

e1, e2 = js.e_draws[:, m]
z_next = d + ρ * z + σ * e1
go_val = np.interp(z_next, js.z_grid, f_in) # f(z')
y_next = np.exp(μ + s * e2) # y' draw
w_next = np.exp(z_next) + y_next # w' draw
stop_val = np.log(w_next) / (1 - β)
expectation += max(stop_val, go_val)

expectation = expectation / M
f_out[i] = np.log(c) + β * expectation

Here’s a function to compute an approximation to the fixed point of 𝑄.

def compute_fixed_point(js,
use_parallel=True,
tol=1e-4,
max_iter=1000,

(continues on next page)
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verbose=True,
print_skip=25):

f_init = np.full(len(js.z_grid), np.log(js.c))
f_out = np.empty_like(f_init)

# Set up loop
f_in = f_init
i = 0
error = tol + 1

while i < max_iter and error > tol:
Q(js, f_in, f_out)
error = np.max(np.abs(f_in - f_out))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
f_in[:] = f_out

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return f_out

Let’s try generating an instance and solving the model.

js = JobSearch()

qe.tic()
f_star = compute_fixed_point(js, verbose=True)
qe.toc()

Error at iteration 25 is 0.5762477839587632.

Error at iteration 50 is 0.11808817939665062.

Error at iteration 75 is 0.02857744138523799.

Error at iteration 100 is 0.00715833638517438.

Error at iteration 125 is 0.0018027870994501427.

Error at iteration 150 is 0.0004548908741099922.

Error at iteration 175 is 0.00011479050299101345.

Converged in 178 iterations.
TOC: Elapsed: 0:00:5.47

5.473377227783203

Next we will compute and plot the reservation wage function defined in (45.1).
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res_wage_function = np.exp(f_star * (1 - js.β))

fig, ax = plt.subplots()
ax.plot(js.z_grid, res_wage_function, label="reservation wage given $z$")
ax.set(xlabel="$z$", ylabel="wage")
ax.legend()
plt.show()

Notice that the reservation wage is increasing in the current state 𝑧.
This is because a higher state leads the agent to predict higher future wages, increasing the option value of waiting.

Let’s try changing unemployment compensation and look at its impact on the reservation wage:

c_vals = 1, 2, 3

fig, ax = plt.subplots()

for c in c_vals:
js = JobSearch(c=c)
f_star = compute_fixed_point(js, verbose=False)
res_wage_function = np.exp(f_star * (1 - js.β))
ax.plot(js.z_grid, res_wage_function, label=rf"$\bar w$ at $c = {c}$")

ax.set(xlabel="$z$", ylabel="wage")
ax.legend()
plt.show()
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As expected, higher unemployment compensation shifts the reservation wage up at all state values.

45.4 Unemployment Duration

Next we study how mean unemployment duration varies with unemployment compensation.

For simplicity we’ll fix the initial state at 𝑧𝑡 = 0.
def compute_unemployment_duration(js, seed=1234):

f_star = compute_fixed_point(js, verbose=False)
μ, s, d, ρ, σ, β, c = js.parameters()
z_grid = js.z_grid
np.random.seed(seed)

@jit
def f_star_function(z):

return np.interp(z, z_grid, f_star)

@jit
def draw_tau(t_max=10_000):

z = 0
t = 0

unemployed = True
while unemployed and t < t_max:

# draw current wage

(continues on next page)
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y = np.exp(μ + s * np.random.randn())
w = np.exp(z) + y
res_wage = np.exp(f_star_function(z) * (1 - β))
# if optimal to stop, record t
if w >= res_wage:

unemployed = False
τ = t

# else increment data and state
else:

z = ρ * z + d + σ * np.random.randn()
t += 1

return τ

@jit(parallel=True)
def compute_expected_tau(num_reps=100_000):

sum_value = 0
for i in prange(num_reps):

sum_value += draw_tau()
return sum_value / num_reps

return compute_expected_tau()

Let’s test this out with some possible values for unemployment compensation.

c_vals = np.linspace(1.0, 10.0, 8)
durations = np.empty_like(c_vals)
for i, c in enumerate(c_vals):

js = JobSearch(c=c)
τ = compute_unemployment_duration(js)
durations[i] = τ

Here is a plot of the results.

fig, ax = plt.subplots()
ax.plot(c_vals, durations)
ax.set_xlabel("unemployment compensation")
ax.set_ylabel("mean unemployment duration")
plt.show()
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Not surprisingly, unemployment duration increases when unemployment compensation is higher.

This is because the value of waiting increases with unemployment compensation.

45.5 Exercises

Exercise 45.5.1

Investigate how mean unemployment duration varies with the discount factor 𝛽.
• What is your prior expectation?

• Do your results match up?

Solution to Exercise 45.5.1

Here is one solution

beta_vals = np.linspace(0.94, 0.99, 8)
durations = np.empty_like(beta_vals)
for i, β in enumerate(beta_vals):

js = JobSearch(β=β)
τ = compute_unemployment_duration(js)
durations[i] = τ
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fig, ax = plt.subplots()
ax.plot(beta_vals, durations)
ax.set_xlabel(r"$\beta$")
ax.set_ylabel("mean unemployment duration")
plt.show()

The figure shows that more patient individuals tend to wait longer before accepting an offer.
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

46.1 Overview

Next, we study a computational problem concerning career and job choices.

The model is originally due to Derek Neal [Neal, 1999].

This exposition draws on the presentation in [Ljungqvist and Sargent, 2018], section 6.5.

We begin with some imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from numba import jit, prange
from quantecon.distributions import BetaBinomial
from scipy.special import binom, beta
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib import cm
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46.1.1 Model Features

• Career and job within career both chosen to maximize expected discounted wage flow.

• Infinite horizon dynamic programming with two state variables.

46.2 Model

In what follows we distinguish between a career and a job, where

• a career is understood to be a general field encompassing many possible jobs, and

• a job is understood to be a position with a particular firm

For workers, wages can be decomposed into the contribution of job and career

• 𝑤𝑡 = 𝜃𝑡 + 𝜖𝑡, where

– 𝜃𝑡 is the contribution of career at time 𝑡
– 𝜖𝑡 is the contribution of the job at time 𝑡

At the start of time 𝑡, a worker has the following options
• retain a current (career, job) pair (𝜃𝑡, 𝜖𝑡) — referred to hereafter as “stay put”

• retain a current career 𝜃𝑡 but redraw a job 𝜖𝑡 — referred to hereafter as “new job”

• redraw both a career 𝜃𝑡 and a job 𝜖𝑡 — referred to hereafter as “new life”

Draws of 𝜃 and 𝜖 are independent of each other and past values, with
• 𝜃𝑡 ∼ 𝐹
• 𝜖𝑡 ∼ 𝐺

Notice that the worker does not have the option to retain a job but redraw a career— starting a new career always requires
starting a new job.

A young worker aims to maximize the expected sum of discounted wages

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑤𝑡 (46.1)

subject to the choice restrictions specified above.

Let 𝑣(𝜃, 𝜖) denote the value function, which is the maximum of (46.1) overall feasible (career, job) policies, given the
initial state (𝜃, 𝜖).
The value function obeys

𝑣(𝜃, 𝜖) = max{𝐼, 𝐼𝐼, 𝐼𝐼𝐼}

where

𝐼 = 𝜃 + 𝜖 + 𝛽𝑣(𝜃, 𝜖)

𝐼𝐼 = 𝜃 + ∫ 𝜖′𝐺(𝑑𝜖′) + 𝛽 ∫ 𝑣(𝜃, 𝜖′)𝐺(𝑑𝜖′)

𝐼𝐼𝐼 = ∫ 𝜃′𝐹(𝑑𝜃′) + ∫ 𝜖′𝐺(𝑑𝜖′) + 𝛽 ∫ ∫ 𝑣(𝜃′, 𝜖′)𝐺(𝑑𝜖′)𝐹(𝑑𝜃′)

Evidently 𝐼 , 𝐼𝐼 and 𝐼𝐼𝐼 correspond to “stay put”, “new job” and “new life”, respectively.
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46.2.1 Parameterization

As in [Ljungqvist and Sargent, 2018], section 6.5, we will focus on a discrete version of the model, parameterized as
follows:

• both 𝜃 and 𝜖 take values in the set np.linspace(0, B, grid_size)— an even grid of points between 0
and 𝐵 inclusive

• grid_size = 50

• B = 5

• β = 0.95

The distributions 𝐹 and 𝐺 are discrete distributions generating draws from the grid points np.linspace(0, B,
grid_size).

A very useful family of discrete distributions is the Beta-binomial family, with probability mass function

𝑝(𝑘 | 𝑛, 𝑎, 𝑏) = (𝑛
𝑘)𝐵(𝑘 + 𝑎, 𝑛 − 𝑘 + 𝑏)

𝐵(𝑎, 𝑏) , 𝑘 = 0, … , 𝑛

Interpretation:

• draw 𝑞 from a Beta distribution with shape parameters (𝑎, 𝑏)
• run 𝑛 independent binary trials, each with success probability 𝑞
• 𝑝(𝑘 | 𝑛, 𝑎, 𝑏) is the probability of 𝑘 successes in these 𝑛 trials

Nice properties:

• very flexible class of distributions, including uniform, symmetric unimodal, etc.

• only three parameters

Here’s a figure showing the effect on the pmf of different shape parameters when 𝑛 = 50.
def gen_probs(n, a, b):

probs = np.zeros(n+1)
for k in range(n+1):

probs[k] = binom(n, k) * beta(k + a, n - k + b) / beta(a, b)
return probs

n = 50
a_vals = [0.5, 1, 100]
b_vals = [0.5, 1, 100]
fig, ax = plt.subplots(figsize=(10, 6))
for a, b in zip(a_vals, b_vals):

ab_label = f'$a = {a:.1f}$, $b = {b:.1f}$'
ax.plot(list(range(0, n+1)), gen_probs(n, a, b), '-o', label=ab_label)

ax.legend()
plt.show()
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46.3 Implementation

We will first create a class CareerWorkerProblem which will hold the default parameterizations of the model and
an initial guess for the value function.

class CareerWorkerProblem:

def __init__(self,
B=5.0, # Upper bound
β=0.95, # Discount factor
grid_size=50, # Grid size
F_a=1,
F_b=1,
G_a=1,
G_b=1):

self.β, self.grid_size, self.B = β, grid_size, B

self.θ = np.linspace(0, B, grid_size) # Set of θ values
self.ϵ = np.linspace(0, B, grid_size) # Set of ϵ values

self.F_probs = BetaBinomial(grid_size - 1, F_a, F_b).pdf()
self.G_probs = BetaBinomial(grid_size - 1, G_a, G_b).pdf()
self.F_mean = self.θ @ self.F_probs
self.G_mean = self.ϵ @ self.G_probs

# Store these parameters for str and repr methods
self._F_a, self._F_b = F_a, F_b
self._G_a, self._G_b = G_a, G_b

The following function takes an instance of CareerWorkerProblem and returns the corresponding Bellman operator
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𝑇 and the greedy policy function.

In this model, 𝑇 is defined by 𝑇 𝑣(𝜃, 𝜖) = max{𝐼, 𝐼𝐼, 𝐼𝐼𝐼}, where 𝐼 , 𝐼𝐼 and 𝐼𝐼𝐼 are as given in (46.2).

def operator_factory(cw, parallel_flag=True):

"""
Returns jitted versions of the Bellman operator and the
greedy policy function

cw is an instance of ``CareerWorkerProblem``
"""

θ, ϵ, β = cw.θ, cw.ϵ, cw.β
F_probs, G_probs = cw.F_probs, cw.G_probs
F_mean, G_mean = cw.F_mean, cw.G_mean

@jit(parallel=parallel_flag)
def T(v):

"The Bellman operator"

v_new = np.empty_like(v)

for i in prange(len(v)):
for j in prange(len(v)):

v1 = θ[i] + ϵ[j] + β * v[i, j] # Stay put
v2 = θ[i] + G_mean + β * v[i, :] @ G_probs # New job
v3 = G_mean + F_mean + β * F_probs @ v @ G_probs # New life
v_new[i, j] = max(v1, v2, v3)

return v_new

@jit
def get_greedy(v):

"Computes the v-greedy policy"

σ = np.empty(v.shape)

for i in range(len(v)):
for j in range(len(v)):

v1 = θ[i] + ϵ[j] + β * v[i, j]
v2 = θ[i] + G_mean + β * v[i, :] @ G_probs
v3 = G_mean + F_mean + β * F_probs @ v @ G_probs
if v1 > max(v2, v3):

action = 1
elif v2 > max(v1, v3):

action = 2
else:

action = 3
σ[i, j] = action

return σ

return T, get_greedy

Lastly, solve_model will take an instance of CareerWorkerProblem and iterate using the Bellman operator to
find the fixed point of the Bellman equation.
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def solve_model(cw,
use_parallel=True,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

T, _ = operator_factory(cw, parallel_flag=use_parallel)

# Set up loop
v = np.full((cw.grid_size, cw.grid_size), 100.) # Initial guess
i = 0
error = tol + 1

while i < max_iter and error > tol:
v_new = T(v)
error = np.max(np.abs(v - v_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_new

Here’s the solution to the model – an approximate value function

cw = CareerWorkerProblem()
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
tg, eg = np.meshgrid(cw.θ, cw.ϵ)
ax.plot_surface(tg,

eg,
v_star.T,
cmap=cm.jet,
alpha=0.5,
linewidth=0.25)

ax.set(xlabel='θ', ylabel='ϵ', zlim=(150, 200))
ax.view_init(ax.elev, 225)
plt.show()
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And here is the optimal policy

fig, ax = plt.subplots(figsize=(6, 6))
tg, eg = np.meshgrid(cw.θ, cw.ϵ)
lvls = (0.5, 1.5, 2.5, 3.5)
ax.contourf(tg, eg, greedy_star.T, levels=lvls, cmap=cm.winter, alpha=0.5)
ax.contour(tg, eg, greedy_star.T, colors='k', levels=lvls, linewidths=2)
ax.set(xlabel='θ', ylabel='ϵ')
ax.text(1.8, 2.5, 'new life', fontsize=14)
ax.text(4.5, 2.5, 'new job', fontsize=14, rotation='vertical')
ax.text(4.0, 4.5, 'stay put', fontsize=14)
plt.show()
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Interpretation:

• If both job and career are poor or mediocre, the worker will experiment with a new job and new career.

• If career is sufficiently good, the worker will hold it and experiment with new jobs until a sufficiently good one is
found.

• If both job and career are good, the worker will stay put.

Notice that the worker will always hold on to a sufficiently good career, but not necessarily hold on to even the best paying
job.

The reason is that high lifetime wages require both variables to be large, and the worker cannot change careers without
changing jobs.

• Sometimes a good job must be sacrificed in order to change to a better career.
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46.4 Exercises

Exercise 46.4.1

Using the default parameterization in the class CareerWorkerProblem, generate and plot typical sample paths
for 𝜃 and 𝜖 when the worker follows the optimal policy.
In particular, modulo randomness, reproduce the following figure (where the horizontal axis represents time)

Hint

To generate the draws from the distributions 𝐹 and 𝐺, use quantecon.random.draw().

Solution to Exercise 46.4.1

Simulate job/career paths.

In reading the code, recall that optimal_policy[i, j] = policy at (𝜃𝑖, 𝜖𝑗) = either 1, 2 or 3; meaning ‘stay
put’, ‘new job’ and ‘new life’.
F = np.cumsum(cw.F_probs)
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G = np.cumsum(cw.G_probs)
v_star = solve_model(cw, verbose=False)
T, get_greedy = operator_factory(cw)
greedy_star = get_greedy(v_star)

def gen_path(optimal_policy, F, G, t=20):
i = j = 0
θ_index = []
ϵ_index = []
for t in range(t):

if optimal_policy[i, j] == 1: # Stay put
pass

elif greedy_star[i, j] == 2: # New job
j = qe.random.draw(G)

else: # New life
i, j = qe.random.draw(F), qe.random.draw(G)

θ_index.append(i)
ϵ_index.append(j)

return cw.θ[θ_index], cw.ϵ[ϵ_index]

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
for ax in axes:

θ_path, ϵ_path = gen_path(greedy_star, F, G)
ax.plot(ϵ_path, label='ϵ')
ax.plot(θ_path, label='θ')
ax.set_ylim(0, 6)

plt.legend()
plt.show()
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Exercise 46.4.2

Let’s now consider how long it takes for the worker to settle down to a permanent job, given a starting point of
(𝜃, 𝜖) = (0, 0).
In other words, we want to study the distribution of the random variable

𝑇 ∗ ∶= the first point in time from which the worker's job no longer changes

Evidently, the worker’s job becomes permanent if and only if (𝜃𝑡, 𝜖𝑡) enters the “stay put” region of (𝜃, 𝜖) space.
Letting 𝑆 denote this region, 𝑇 ∗ can be expressed as the first passage time to 𝑆 under the optimal policy:

𝑇 ∗ ∶= inf{𝑡 ≥ 0 | (𝜃𝑡, 𝜖𝑡) ∈ 𝑆}

Collect 25,000 draws of this random variable and compute the median (which should be about 7).

Repeat the exercise with 𝛽 = 0.99 and interpret the change.

46.4. Exercises 869



Intermediate Quantitative Economics with Python

Solution to Exercise 46.4.2

The median for the original parameterization can be computed as follows

cw = CareerWorkerProblem()
F = np.cumsum(cw.F_probs)
G = np.cumsum(cw.G_probs)
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

@jit
def passage_time(optimal_policy, F, G):

t = 0
i = j = 0
while True:

if optimal_policy[i, j] == 1: # Stay put
return t

elif optimal_policy[i, j] == 2: # New job
j = qe.random.draw(G)

else: # New life
i, j = qe.random.draw(F), qe.random.draw(G)

t += 1

@jit(parallel=True)
def median_time(optimal_policy, F, G, M=25000):

samples = np.empty(M)
for i in prange(M):

samples[i] = passage_time(optimal_policy, F, G)
return np.median(samples)

median_time(greedy_star, F, G)

7.0

To compute the median with 𝛽 = 0.99 instead of the default value 𝛽 = 0.95, replace cw = CareerWorker-
Problem() with cw = CareerWorkerProblem(β=0.99).

The medians are subject to randomness but should be about 7 and 14 respectively.

Not surprisingly, more patient workers will wait longer to settle down to their final job.

Exercise 46.4.3

Set the parameterization to G_a = G_b = 100 and generate a new optimal policy figure – interpret.

Solution to Exercise 46.4.3

Here is one solution
cw = CareerWorkerProblem(G_a=100, G_b=100)
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

fig, ax = plt.subplots(figsize=(6, 6))
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tg, eg = np.meshgrid(cw.θ, cw.ϵ)
lvls = (0.5, 1.5, 2.5, 3.5)
ax.contourf(tg, eg, greedy_star.T, levels=lvls, cmap=cm.winter, alpha=0.5)
ax.contour(tg, eg, greedy_star.T, colors='k', levels=lvls, linewidths=2)
ax.set(xlabel='θ', ylabel='ϵ')
ax.text(1.8, 2.5, 'new life', fontsize=14)
ax.text(4.5, 1.5, 'new job', fontsize=14, rotation='vertical')
ax.text(4.0, 4.5, 'stay put', fontsize=14)
plt.show()

In the new figure, you see that the region for which the worker stays put has grown because the distribution for 𝜖 has
become more concentrated around the mean, making high-paying jobs less realistic.
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FORTYSEVEN

JOB SEARCH VI: ON-THE-JOB SEARCH

Contents

• Job Search VI: On-the-Job Search

– Overview

– Model

– Implementation

– Solving for Policies

– Exercises

47.1 Overview

In this section, we solve a simple on-the-job search model

• based on [Ljungqvist and Sargent, 2018], exercise 6.18, and [Jovanovic, 1979]

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from numba import jit, prange

47.1.1 Model Features

• job-specific human capital accumulation combined with on-the-job search

• infinite-horizon dynamic programming with one state variable and two controls
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47.2 Model

Let 𝑥𝑡 denote the time-𝑡 job-specific human capital of a worker employed at a given firm and let𝑤𝑡 denote current wages.

Let 𝑤𝑡 = 𝑥𝑡(1 − 𝑠𝑡 − 𝜙𝑡), where
• 𝜙𝑡 is investment in job-specific human capital for the current role and

• 𝑠𝑡 is search effort, devoted to obtaining new offers from other firms.

For as long as the worker remains in the current job, evolution of {𝑥𝑡} is given by 𝑥𝑡+1 = 𝑔(𝑥𝑡, 𝜙𝑡).
When search effort at 𝑡 is 𝑠𝑡, the worker receives a new job offer with probability 𝜋(𝑠𝑡) ∈ [0, 1].
The value of the offer, measured in job-specific human capital, is 𝑢𝑡+1, where {𝑢𝑡} is IID with common distribution 𝑓 .
The worker can reject the current offer and continue with existing job.

Hence 𝑥𝑡+1 = 𝑢𝑡+1 if he/she accepts and 𝑥𝑡+1 = 𝑔(𝑥𝑡, 𝜙𝑡) otherwise.
Let 𝑏𝑡+1 ∈ {0, 1} be a binary random variable, where 𝑏𝑡+1 = 1 indicates that the worker receives an offer at the end of
time 𝑡.
We can write

𝑥𝑡+1 = (1 − 𝑏𝑡+1)𝑔(𝑥𝑡, 𝜙𝑡) + 𝑏𝑡+1 max{𝑔(𝑥𝑡, 𝜙𝑡), 𝑢𝑡+1} (47.1)

Agent’s objective: maximize expected discounted sum of wages via controls {𝑠𝑡} and {𝜙𝑡}.
Taking the expectation of 𝑣(𝑥𝑡+1) and using (47.1), the Bellman equation for this problem can be written as

𝑣(𝑥) = max
𝑠+𝜙≤1

{𝑥(1 − 𝑠 − 𝜙) + 𝛽(1 − 𝜋(𝑠))𝑣[𝑔(𝑥, 𝜙)] + 𝛽𝜋(𝑠) ∫ 𝑣[𝑔(𝑥, 𝜙) ∨ 𝑢]𝑓(𝑑𝑢)} (47.2)

Here nonnegativity of 𝑠 and 𝜙 is understood, while 𝑎 ∨ 𝑏 ∶= max{𝑎, 𝑏}.

47.2.1 Parameterization

In the implementation below, we will focus on the parameterization

𝑔(𝑥, 𝜙) = 𝐴(𝑥𝜙)𝛼, 𝜋(𝑠) = √𝑠 and 𝑓 = Beta(2, 2)

with default parameter values

• 𝐴 = 1.4
• 𝛼 = 0.6
• 𝛽 = 0.96

The Beta(2, 2) distribution is supported on (0, 1) - it has a unimodal, symmetric density peaked at 0.5.

47.2.2 Back-of-the-Envelope Calculations

Before we solve the model, let’s make some quick calculations that provide intuition on what the solution should look like.

To begin, observe that the worker has two instruments to build capital and hence wages:

1. invest in capital specific to the current job via 𝜙
2. search for a new job with better job-specific capital match via 𝑠
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Since wages are 𝑥(1 − 𝑠 − 𝜙), marginal cost of investment via either 𝜙 or 𝑠 is identical.
Our risk-neutral worker should focus on whatever instrument has the highest expected return.

The relative expected return will depend on 𝑥.
For example, suppose first that 𝑥 = 0.05

• If 𝑠 = 1 and 𝜙 = 0, then since 𝑔(𝑥, 𝜙) = 0, taking expectations of (47.1) gives expected next period capital equal
to 𝜋(𝑠)𝔼𝑢 = 𝔼𝑢 = 0.5.

• If 𝑠 = 0 and 𝜙 = 1, then next period capital is 𝑔(𝑥, 𝜙) = 𝑔(0.05, 1) ≈ 0.23.
Both rates of return are good, but the return from search is better.

Next, suppose that 𝑥 = 0.4
• If 𝑠 = 1 and 𝜙 = 0, then expected next period capital is again 0.5
• If 𝑠 = 0 and 𝜙 = 1, then 𝑔(𝑥, 𝜙) = 𝑔(0.4, 1) ≈ 0.8

Return from investment via 𝜙 dominates expected return from search.

Combining these observations gives us two informal predictions:

1. At any given state 𝑥, the two controls𝜙 and 𝑠will function primarily as substitutes—worker will focus onwhichever
instrument has the higher expected return.

2. For sufficiently small 𝑥, search will be preferable to investment in job-specific human capital. For larger 𝑥, the
reverse will be true.

Now let’s turn to implementation, and see if we can match our predictions.

47.3 Implementation

We will set up a class JVWorker that holds the parameters of the model described above

class JVWorker:
r"""
A Jovanovic-type model of employment with on-the-job search.

"""

def __init__(self,
A=1.4,
α=0.6,
β=0.96, # Discount factor
π=np.sqrt, # Search effort function
a=2, # Parameter of f
b=2, # Parameter of f
grid_size=50,
mc_size=100,
ɛ=1e-4):

self.A, self.α, self.β, self.π = A, α, β, π
self.mc_size, self.ɛ = mc_size, ɛ

self.g = jit(lambda x, ϕ: A * (x * ϕ)**α) # Transition function
self.f_rvs = np.random.beta(a, b, mc_size)

# Max of grid is the max of a large quantile value for f and the
(continues on next page)
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(continued from previous page)

# fixed point y = g(y, 1)
ɛ = 1e-4
grid_max = max(A**(1 / (1 - α)), stats.beta(a, b).ppf(1 - ɛ))

# Human capital
self.x_grid = np.linspace(ɛ, grid_max, grid_size)

The function operator_factory takes an instance of this class and returns a jitted version of the Bellman operator
T, i.e.

𝑇 𝑣(𝑥) = max
𝑠+𝜙≤1

𝑤(𝑠, 𝜙)

where

𝑤(𝑠, 𝜙) ∶= 𝑥(1 − 𝑠 − 𝜙) + 𝛽(1 − 𝜋(𝑠))𝑣[𝑔(𝑥, 𝜙)] + 𝛽𝜋(𝑠) ∫ 𝑣[𝑔(𝑥, 𝜙) ∨ 𝑢]𝑓(𝑑𝑢) (47.3)

When we represent 𝑣, it will be with a NumPy array v giving values on grid x_grid.
But to evaluate the right-hand side of (47.3), we need a function, so we replace the arrays v and x_grid with a function
v_func that gives linear interpolation of v on x_grid.

Inside the for loop, for each x in the grid over the state space, we set up the function 𝑤(𝑧) = 𝑤(𝑠, 𝜙) defined in (47.3).
The function is maximized over all feasible (𝑠, 𝜙) pairs.
Another function, get_greedy returns the optimal choice of 𝑠 and 𝜙 at each 𝑥, given a value function.
def operator_factory(jv, parallel_flag=True):

"""
Returns a jitted version of the Bellman operator T

jv is an instance of JVWorker

"""

π, β = jv.π, jv.β
x_grid, ɛ, mc_size = jv.x_grid, jv.ɛ, jv.mc_size
f_rvs, g = jv.f_rvs, jv.g

@jit
def state_action_values(z, x, v):

s, ϕ = z
v_func = lambda x: np.interp(x, x_grid, v)

integral = 0
for m in range(mc_size):

u = f_rvs[m]
integral += v_func(max(g(x, ϕ), u))

integral = integral / mc_size

q = π(s) * integral + (1 - π(s)) * v_func(g(x, ϕ))
return x * (1 - ϕ - s) + β * q

@jit(parallel=parallel_flag)
def T(v):

"""

(continues on next page)
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(continued from previous page)

The Bellman operator
"""

v_new = np.empty_like(v)
for i in prange(len(x_grid)):

x = x_grid[i]

# Search on a grid
search_grid = np.linspace(ɛ, 1, 15)
max_val = -1
for s in search_grid:

for ϕ in search_grid:
current_val = state_action_values((s, ϕ), x, v) if s + ϕ <= 1␣

↪else -1
if current_val > max_val:

max_val = current_val
v_new[i] = max_val

return v_new

@jit
def get_greedy(v):

"""
Computes the v-greedy policy of a given function v
"""
s_policy, ϕ_policy = np.empty_like(v), np.empty_like(v)

for i in range(len(x_grid)):
x = x_grid[i]
# Search on a grid
search_grid = np.linspace(ɛ, 1, 15)
max_val = -1
for s in search_grid:

for ϕ in search_grid:
current_val = state_action_values((s, ϕ), x, v) if s + ϕ <= 1␣

↪else -1
if current_val > max_val:

max_val = current_val
max_s, max_ϕ = s, ϕ
s_policy[i], ϕ_policy[i] = max_s, max_ϕ

return s_policy, ϕ_policy

return T, get_greedy

To solve the model, we will write a function that uses the Bellman operator and iterates to find a fixed point.

def solve_model(jv,
use_parallel=True,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

"""
Solves the model by value function iteration

* jv is an instance of JVWorker
(continues on next page)
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"""

T, _ = operator_factory(jv, parallel_flag=use_parallel)

# Set up loop
v = jv.x_grid * 0.5 # Initial condition
i = 0
error = tol + 1

while i < max_iter and error > tol:
v_new = T(v)
error = np.max(np.abs(v - v_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_new

47.4 Solving for Policies

Let’s generate the optimal policies and see what they look like.

jv = JVWorker()
T, get_greedy = operator_factory(jv)
v_star = solve_model(jv)
s_star, ϕ_star = get_greedy(v_star)

Error at iteration 25 is 0.15111104576556755.

Error at iteration 50 is 0.05445992474921013.

Error at iteration 75 is 0.019627178079954177.

Error at iteration 100 is 0.007073570541209051.

Error at iteration 125 is 0.002549291599518.

Error at iteration 150 is 0.000918756322782599.

Error at iteration 175 is 0.0003311167623269995.

Error at iteration 200 is 0.00011933339403924492.

Converged in 205 iterations.
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Here are the plots:

plots = [s_star, ϕ_star, v_star]
titles = ["s policy", "ϕ policy", "value function"]

fig, axes = plt.subplots(3, 1, figsize=(12, 12))

for ax, plot, title in zip(axes, plots, titles):
ax.plot(jv.x_grid, plot)
ax.set(title=title)
ax.grid()

axes[-1].set_xlabel("x")
plt.show()

The horizontal axis is the state 𝑥, while the vertical axis gives 𝑠(𝑥) and 𝜙(𝑥).
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Overall, the policies match well with our predictions from above

• Worker switches from one investment strategy to the other depending on relative return.

• For low values of 𝑥, the best option is to search for a new job.

• Once 𝑥 is larger, worker does better by investing in human capital specific to the current position.

47.5 Exercises

Exercise 47.5.1

Let’s look at the dynamics for the state process {𝑥𝑡} associated with these policies.
The dynamics are given by (47.1) when 𝜙𝑡 and 𝑠𝑡 are chosen according to the optimal policies, and ℙ{𝑏𝑡+1 = 1} =
𝜋(𝑠𝑡).
Since the dynamics are random, analysis is a bit subtle.

One way to do it is to plot, for each 𝑥 in a relatively fine grid called plot_grid, a large number 𝐾 of realizations
of 𝑥𝑡+1 given 𝑥𝑡 = 𝑥.
Plot this with one dot for each realization, in the form of a 45 degree diagram, setting

jv = JVWorker(grid_size=25, mc_size=50)
plot_grid_max, plot_grid_size = 1.2, 100
plot_grid = np.linspace(0, plot_grid_max, plot_grid_size)
fig, ax = plt.subplots()
ax.set_xlim(0, plot_grid_max)
ax.set_ylim(0, plot_grid_max)

By examining the plot, argue that under the optimal policies, the state 𝑥𝑡 will converge to a constant value ̄𝑥 close to
unity.

Argue that at the steady state, 𝑠𝑡 ≈ 0 and 𝜙𝑡 ≈ 0.6.

Solution to Exercise 47.5.1

Here’s code to produce the 45 degree diagram
jv = JVWorker(grid_size=25, mc_size=50)
π, g, f_rvs, x_grid = jv.π, jv.g, jv.f_rvs, jv.x_grid
T, get_greedy = operator_factory(jv)
v_star = solve_model(jv, verbose=False)
s_policy, ϕ_policy = get_greedy(v_star)

# Turn the policy function arrays into actual functions
s = lambda y: np.interp(y, x_grid, s_policy)
ϕ = lambda y: np.interp(y, x_grid, ϕ_policy)

def h(x, b, u):
return (1 - b) * g(x, ϕ(x)) + b * max(g(x, ϕ(x)), u)

plot_grid_max, plot_grid_size = 1.2, 100
plot_grid = np.linspace(0, plot_grid_max, plot_grid_size)
fig, ax = plt.subplots(figsize=(8, 8))
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ticks = (0.25, 0.5, 0.75, 1.0)
ax.set(xticks=ticks, yticks=ticks,

xlim=(0, plot_grid_max),
ylim=(0, plot_grid_max),
xlabel='$x_t$', ylabel='$x_{t+1}$')

ax.plot(plot_grid, plot_grid, 'k--', alpha=0.6) # 45 degree line
for x in plot_grid:

for i in range(jv.mc_size):
b = 1 if np.random.uniform(0, 1) < π(s(x)) else 0
u = f_rvs[i]
y = h(x, b, u)
ax.plot(x, y, 'go', alpha=0.25)

plt.show()

Looking at the dynamics, we can see that

• If 𝑥𝑡 is below about 0.2 the dynamics are random, but 𝑥𝑡+1 > 𝑥𝑡 is very likely.
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• As 𝑥𝑡 increases the dynamics become deterministic, and 𝑥𝑡 converges to a steady state value close to 1.

Referring back to the figure here we see that 𝑥𝑡 ≈ 1 means that 𝑠𝑡 = 𝑠(𝑥𝑡) ≈ 0 and 𝜙𝑡 = 𝜙(𝑥𝑡) ≈ 0.6.

Exercise 47.5.2

In Exercise 47.5.1, we found that 𝑠𝑡 converges to zero and 𝜙𝑡 converges to about 0.6.

Since these results were calculated at a value of 𝛽 close to one, let’s compare them to the best choice for an infinitely
patient worker.

Intuitively, an infinitely patient worker would like to maximize steady state wages, which are a function of steady state
capital.

You can take it as given—it’s certainly true—that the infinitely patient worker does not search in the long run (i.e.,
𝑠𝑡 = 0 for large 𝑡).
Thus, given 𝜙, steady state capital is the positive fixed point 𝑥∗(𝜙) of the map 𝑥 ↦ 𝑔(𝑥, 𝜙).
Steady state wages can be written as 𝑤∗(𝜙) = 𝑥∗(𝜙)(1 − 𝜙).
Graph 𝑤∗(𝜙) with respect to 𝜙, and examine the best choice of 𝜙.
Can you give a rough interpretation for the value that you see?

Solution to Exercise 47.5.2

The figure can be produced as follows

jv = JVWorker()

def xbar(ϕ):
A, α = jv.A, jv.α
return (A * ϕ**α)**(1 / (1 - α))

ϕ_grid = np.linspace(0, 1, 100)
fig, ax = plt.subplots(figsize=(9, 7))
ax.set(xlabel=r'$\phi$')
ax.plot(ϕ_grid, [xbar(ϕ) * (1 - ϕ) for ϕ in ϕ_grid], label=r'$w^*(\phi)$')
ax.legend()

plt.show()
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Observe that the maximizer is around 0.6.

This is similar to the long-run value for 𝜙 obtained in Exercise 47.5.1.

Hence the behavior of the infinitely patent worker is similar to that of the worker with 𝛽 = 0.96.
This seems reasonable and helps us confirm that our dynamic programming solutions are probably correct.
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CHAPTER

FORTYEIGHT

JOB SEARCH VII: A MCCALL WORKER Q-LEARNS

48.1 Overview

This lecture illustrates a powerful machine learning technique called Q-learning.

[Sutton and Barto, 2018] presents Q-learning and a variety of other statistical learning procedures.

The Q-learning algorithm combines ideas from

• dynamic programming

• a recursive version of least squares known as temporal difference learning.

This lecture applies a Q-learning algorithm to the situation faced by a McCall worker.

This lecture also considers the case where a McCall worker is given an option to quit the current job.

Relative to the dynamic programming formulation of the McCall worker model that we studied in quantecon lecture, a
Q-learning algorithm gives the worker less knowledge about

• the random process that generates a sequence of wages

• the reward function that tells consequences of accepting or rejecting a job

The Q-learning algorithm invokes a statistical learning model to learn about these things.

Statistical learning often comes down to some version of least squares, and it will be here too.

Any time we say statistical learning, we have to say what object is being learned.

For Q-learning, the object that is learned is not the value function that is a focus of dynamic programming.

But it is something that is closely affiliated with it.

In the finite-action, finite state context studied in this lecture, the object to be learned statistically is aQ-table, an instance
of a Q-function for finite sets.

Sometimes a Q-function or Q-table is called a quality-function or quality-table.

The rows and columns of a Q-table correspond to possible states that an agent might encounter, and possible actions that
he can take in each state.

An equation that resembles a Bellman equation plays an important role in the algorithm.

It differs from the Bellman equation for the McCall model that we have seen in this quantecon lecture

In this lecture, we’ll learn a little about

• the Q-function or quality function that is affiliated with any Markov decision problem whose optimal value
function satisfies a Bellman equation

• temporal difference learning, a key component of a Q-learning algorithm
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As usual, let’s import some Python modules.

!pip install quantecon

import numpy as np

from numba import jit, float64, int64
from numba.experimental import jitclass
from quantecon.distributions import BetaBinomial

import matplotlib.pyplot as plt

np.random.seed(123)

48.2 Review of McCall Model

We begin by reviewing the McCall model described in this quantecon lecture.

We’ll compute an optimal value function and a policy that attains it.

We’ll eventually compare that optimal policy to what the Q-learning McCall worker learns.

The McCall model is characterized by parameters 𝛽, 𝑐 and a known distribution of wage offers 𝐹 .

A McCall worker wants to maximize an expected discounted sum of lifetime incomes

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑦𝑡

The worker’s income 𝑦𝑡 equals his wage 𝑤 if he is employed, and unemployment compensation 𝑐 if he is unemployed.
An optimal value 𝑉 (𝑤) for a McCall worker who has just received a wage offer 𝑤 and is deciding whether to accept or
reject it satisfies the Bellman equation

𝑉 (𝑤) = max
accept, reject

{ 𝑤
1 − 𝛽 , 𝑐 + 𝛽 ∫ 𝑉 (𝑤′) 𝑑𝐹 (𝑤′)} (48.1)

To form a benchmark to compare with results from Q-learning, we first approximate the optimal value function.

With possible states residing in a finite discrete state space indexed by {1, 2, ..., 𝑛}, we make an initial guess for the value
function of 𝑣 ∈ ℝ𝑛 and then iterate on the Bellman equation:

𝑣′(𝑖) = max{ 𝑤(𝑖)
1 − 𝛽 , 𝑐 + 𝛽 ∑

1≤𝑗≤𝑛
𝑣(𝑗)𝑞(𝑗)} for 𝑖 = 1, … , 𝑛

Let’s use Python code from this quantecon lecture.

We use a Python method called VFI to compute the optimal value function using value function iterations.

We construct an assumed distribution of wages and plot it with the following Python code

n, a, b = 10, 200, 100 # default parameters
q_default = BetaBinomial(n, a, b).pdf() # default choice of q

w_min, w_max = 10, 60
w_default = np.linspace(w_min, w_max, n+1)

(continues on next page)
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(continued from previous page)

# plot distribution of wage offer
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(w_default, q_default, '-o', label='$q(w(i))$')
ax.set_xlabel('wages')
ax.set_ylabel('probabilities')

plt.show()

Next we’ll compute the worker’s optimal value function by iterating to convergence on the Bellman equation.

Then we’ll plot various iterates on the Bellman operator.

mccall_data = [
('c', float64), # unemployment compensation
('β', float64), # discount factor
('w', float64[::1]), # array of wage values, w[i] = wage at state i
('q', float64[::1]) # array of probabilities

]

@jitclass(mccall_data)
class McCallModel:

def __init__(self, c=25, β=0.99, w=w_default, q=q_default):

self.c, self.β = c, β
self.w, self.q = w, q

def state_action_values(self, i, v):
"""
The values of state-action pairs.

(continues on next page)
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(continued from previous page)

"""
# Simplify names
c, β, w, q = self.c, self.β, self.w, self.q
# Evaluate value for each state-action pair
# Consider action = accept or reject the current offer
accept = w[i] / (1 - β)
reject = c + β * (v @ q)

return np.array([accept, reject])

def VFI(self, eps=1e-5, max_iter=500):
"""
Find the optimal value function.
"""

n = len(self.w)
v = self.w / (1 - self.β)
v_next = np.empty_like(v)
flag=0

for i in range(max_iter):
for j in range(n):

v_next[j] = np.max(self.state_action_values(j, v))

if np.max(np.abs(v_next - v))<=eps:
flag=1
break

v[:] = v_next

return v, flag

def plot_value_function_seq(mcm, ax, num_plots=8):
"""
Plot a sequence of value functions.

* mcm is an instance of McCallModel
* ax is an axes object that implements a plot method.

"""

n = len(mcm.w)
v = mcm.w / (1 - mcm.β)
v_next = np.empty_like(v)
for i in range(num_plots):

ax.plot(mcm.w, v, '-', alpha=0.4, label=f"iterate {i}")
# Update guess
for i in range(n):

v_next[i] = np.max(mcm.state_action_values(i, v))
v[:] = v_next # copy contents into v

ax.legend(loc='lower right')

mcm = McCallModel()
valfunc_VFI, flag = mcm.VFI()

fig, ax = plt.subplots(figsize=(10,6))

(continues on next page)
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(continued from previous page)

ax.set_xlabel('wage')
ax.set_ylabel('value')
plot_value_function_seq(mcm, ax)
plt.show()

Next we’ll print out the limit of the sequence of iterates.

This is the approximation to the McCall worker’s value function that is produced by value function iteration.

We’ll use this value function as a benchmark later after we have done some Q-learning.

print(valfunc_VFI)

[5322.27935875 5322.27935875 5322.27935875 5322.27935875 5322.27935875
5322.27935875 5322.27935875 5322.27935875 5322.27935875 5500.
6000. ]

48.3 Implied Quality Function 𝑄

A quality function 𝑄 map state-action pairs into optimal values.

They are tightly linked to optimal value functions.

But value functions are functions just of states, and not actions.

For each given state, the quality function gives a list of optimal values that can be attained starting from that state, with
each component of the list indicating one of the possible actions that is taken.

For our McCall worker with a finite set of possible wages

• the state space 𝒲 = {𝑤1, 𝑤2, ..., 𝑤𝑛} is indexed by integers 1, 2, ..., 𝑛

48.3. Implied Quality Function 𝑄 889



Intermediate Quantitative Economics with Python

• the action space is 𝒜 = {accept, reject}
Let 𝑎 ∈ 𝒜 be one of the two possible actions, i.e., accept or reject.

For our McCall worker, an optimal Q-function 𝑄(𝑤, 𝑎) equals the maximum value of that a previously unemployed
worker who has offer 𝑤 in hand can attain if he takes action 𝑎.
This definition of 𝑄(𝑤, 𝑎) presumes that in subsequent periods the worker takes optimal actions.
An optimal Q-function for our McCall worker satisfies

𝑄 (𝑤, accept) = 𝑤
1 − 𝛽

𝑄 (𝑤, reject) = 𝑐 + 𝛽 ∫ max
accept, reject

{ 𝑤′

1 − 𝛽 , 𝑄 (𝑤′, reject)} 𝑑𝐹 (𝑤′)
(48.2)

Note that the first equation of system (48.2) presumes that after the agent has accepted an offer, he will not have the
objection to reject that same offer in the future.

These equations are aligned with the Bellman equation for the worker’s optimal value function that we studied in this
quantecon lecture.

Evidently, the optimal value function 𝑉 (𝑤) described in that lecture is related to our Q-function by

𝑉 (𝑤) = max
accept,reject

{𝑄(𝑤, accept) , 𝑄 (𝑤, reject)}

If we stare at the second equation of system (48.2), we notice that since the wage process is identically and independently
distributed over time, 𝑄 (𝑤, reject), the right side of the equation is independent of the current state 𝑤.
So we can denote it as a scalar

𝑄𝑟 ∶= 𝑄 (𝑤, reject) ∀ 𝑤 ∈ 𝒲.

This fact provides us with an an alternative, and as it turns out in this case, a faster way to compute an optimal value
function and associated optimal policy for the McCall worker.

Instead of using the value function iterations that we deployed above, we can instead iterate to convergence on a version
of the second equation in system (48.2) that maps an estimate of 𝑄𝑟 into an improved estimate 𝑄′

𝑟:

𝑄′
𝑟 = 𝑐 + 𝛽 ∫max{ 𝑤′

1 − 𝛽 , 𝑄𝑟} 𝑑𝐹 (𝑤′)

After a 𝑄𝑟 sequence has converged, we can recover the optimal value function 𝑉 (𝑤) for the McCall worker from

𝑉 (𝑤) = max{ 𝑤
1 − 𝛽 , 𝑄𝑟}

48.4 From Probabilities to Samples

We noted above that the optimal Q function for our McCall worker satisfies the Bellman equations

𝑤 + 𝛽 max
accept, reject

{𝑄(𝑤, accept), 𝑄(𝑤, reject)} − 𝑄(𝑤, accept) = 0

𝑐 + 𝛽 ∫ max
accept, reject

{𝑄(𝑤′, accept), 𝑄 (𝑤′, reject)} 𝑑𝐹 (𝑤′) − 𝑄 (𝑤, reject) = 0
(48.3)

Notice the integral over 𝐹(𝑤′) on the second line.
Erasing the integral sign sets the stage for an illegitmate argument that can get us started thinking about Q-learning.
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Thus, construct a difference equation system that keeps the first equation of (48.3) but replaces the second by removing
integration over 𝐹(𝑤′):

𝑤 + 𝛽 max
accept, reject

{𝑄(𝑤, accept), 𝑄(𝑤, reject)} − 𝑄(𝑤, accept) = 0

𝑐 + 𝛽 max
accept, reject

{𝑄(𝑤′, accept), 𝑄 (𝑤′, reject)} − 𝑄 (𝑤, reject) ≈ 0 (48.4)

The second equation can’t hold for all 𝑤, 𝑤′ pairs in the appropriate Cartesian product of our state space.

But maybe an appeal to a Law of Large numbers could let us hope that it would hold on average for a long time series
sequence of draws of 𝑤𝑡, 𝑤𝑡+1 pairs, where we are thinking of 𝑤𝑡 as 𝑤 and 𝑤𝑡+1 as 𝑤′.

The basic idea of Q-learning is to draw a long sample of wage offers from 𝐹 (we know 𝐹 though we assume that the
worker doesn’t) and iterate on a recursion that maps an estimate 𝑄̂𝑡 of a Q-function at date 𝑡 into an improved estimate
𝑄̂𝑡+1 at date 𝑡 + 1.
To set up such an algorithm, we first define some errors or “differences”

𝑤 + 𝛽 max
accept, reject

{𝑄̂𝑡(𝑤𝑡, accept), 𝑄̂𝑡(𝑤𝑡, reject)} − 𝑄̂𝑡(𝑤𝑡, accept) = diffaccept,𝑡

𝑐 + 𝛽 max
accept, reject

{𝑄̂𝑡(𝑤𝑡+1, accept), 𝑄̂𝑡 (𝑤𝑡+1, reject)} − 𝑄̂𝑡 (𝑤𝑡, reject) = diffreject,𝑡
(48.5)

The adaptive learning scheme would then be some version of

𝑄̂𝑡+1 = 𝑄̂𝑡 + 𝛼 diff𝑡 (48.6)

where 𝛼 ∈ (0, 1) is a small gain parameter that governs the rate of learning and 𝑄̂𝑡 and diff𝑡 are 2 × 1 vectors corre-
sponding to objects in equation system (48.5).

This informal argument takes us to the threshold of Q-learning.

48.5 Q-Learning

Let’s first describe a 𝑄-learning algorithm precisely.

Then we’ll implement it.

The algorithm works by using a Monte Carlo method to update estimates of a Q-function.

We begin with an initial guess for a Q-function.

In the example studied in this lecture, we have a finite action space and also a finite state space.

That means that we can represent a Q-function as a matrix or Q-table, 𝑄(𝑤, 𝑎).
Q-learning proceeds by updating the Q-function as the decision maker acquires experience along a path of wage draws
generated by simulation.

During the learning process, our McCall worker takes actions and experiences rewards that are consequences of those
actions.

He learns simultaneously about the environment, in this case the distribution of wages, and the reward function, in this
case the unemployment compensation 𝑐 and the present value of wages.
The updating algorithm is based on a slight modification (to be described soon) of a recursion like

𝑄𝑛𝑒𝑤 (𝑤, 𝑎) = 𝑄𝑜𝑙𝑑 (𝑤, 𝑎) + 𝛼𝑇 𝐷 (𝑤, 𝑎) (48.7)
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where

𝑇 𝐷 (𝑤, accept) = [𝑤 + 𝛽 max
𝑎′∈𝒜

𝑄𝑜𝑙𝑑 (𝑤, 𝑎′)] − 𝑄𝑜𝑙𝑑 (𝑤, accept)

𝑇 𝐷 (𝑤, reject) = [𝑐 + 𝛽 max
𝑎′∈𝒜

𝑄𝑜𝑙𝑑 (𝑤′, 𝑎′)] − 𝑄𝑜𝑙𝑑 (𝑤, reject) , 𝑤′ ∼ 𝐹
(48.8)

The terms 𝑇 𝐷(𝑤, 𝑎) for 𝑎 = {accept,reject} are the temporal difference errors that drive the updates.
This system is thus a version of the adaptive system that we sketched informally in equation (48.6).

An aspect of the algorithm not yet captured by equation system (48.8) is random experimentation that we add by
occasionally randomly replacing

argmax𝑎′∈𝒜𝑄𝑜𝑙𝑑 (𝑤, 𝑎′)

with

argmin𝑎′∈𝒜𝑄𝑜𝑙𝑑 (𝑤, 𝑎′)

and occasionally replacing

argmax𝑎′∈𝒜𝑄𝑜𝑙𝑑 (𝑤′, 𝑎′)

with

argmin𝑎′∈𝒜𝑄𝑜𝑙𝑑 (𝑤′, 𝑎′)

We activate such experimentation with probability 𝜖 in step 3 of the following pseudo-code for our McCall worker to do
Q-learning:

1. Set an arbitrary initial Q-table.

2. Draw an initial wage offer 𝑤 from 𝐹 .

3. From the appropriate row in the Q-table, choose an action using the following 𝜖-greedy algorithm:
• with probability 1 − 𝜖, choose the action that maximizes the value, and
• with probability 𝜖, choose the alternative action.

4. Update the state associated with the chosen action and compute 𝑇 𝐷 according to (48.8) and update 𝑄 according
to (48.7).

5. Either draw a new state𝑤′ if required or else take existing wage if and update the Q-table again according to (48.7).

6. Stop when the old and new Q-tables are close enough, i.e., ‖𝑄̃𝑛𝑒𝑤 −𝑄̃𝑜𝑙𝑑‖∞ ≤ 𝛿 for given 𝛿 or if the worker keeps
accepting for 𝑇 periods for a prescribed 𝑇 .

7. Return to step 2 with the updated Q-table.

Repeat this procedure for 𝑁 episodes or until the updated Q-table has converged.

We call one pass through steps 2 to 7 an “episode” or “epoch” of temporal difference learning.

In our context, each episode starts with an agent drawing an initial wage offer, i.e., a new state.

The agent then takes actions based on the preset Q-table, receives rewards, and then enters a new state implied by this
period’s actions.

The Q-table is updated via temporal difference learning.

We iterate this until convergence of the Q-table or the maximum length of an episode is reached.
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Multiple episodes allow the agent to start afresh and visit states that she was less likely to visit from the terminal state of
a previos episode.

For example, an agent who has accepted a wage offer based on her Q-table will be less likely to draw a new offer from
other parts of the wage distribution.

By using the 𝜖-greedy method and also by increasing the number of episodes, the Q-learning algorithm balances gains
from exploration and from exploitation.

Remark: Notice that 𝑇 𝐷 associated with an optimal Q-table defined in (48.7) automatically above satisfies 𝑇 𝐷 = 0 for
all state action pairs. Whether a limit of our Q-learning algorithm converges to an optimal Q-table depends on whether
the algorithm visits all state-action pairs often enough.

We implement this pseudo code in a Python class.

For simplicity and convenience, we let s represent the state index between 0 and 𝑛 = 50 and 𝑤𝑠 = 𝑤[𝑠].
The first column of the Q-table represents the value associated with rejecting the wage and the second represents accepting
the wage.

We use numba compilation to accelerate computations.

params=[
('c', float64), # unemployment compensation
('β', float64), # discount factor
('w', float64[:]), # array of wage values, w[i] = wage at state i
('q', float64[:]), # array of probabilities
('eps', float64), # for epsilon greedy algorithm
('δ', float64), # Q-table threshold
('lr', float64), # the learning rate α
('T', int64), # maximum periods of accepting
('quit_allowed', int64) # whether quit is allowed after accepting the wage␣

↪offer
]

@jitclass(params)
class Qlearning_McCall:

def __init__(self, c=25, β=0.99, w=w_default, q=q_default, eps=0.1,
δ=1e-5, lr=0.5, T=10000, quit_allowed=0):

self.c, self.β = c, β
self.w, self.q = w, q
self.eps, self.δ, self.lr, self.T = eps, δ, lr, T
self.quit_allowed = quit_allowed

def draw_offer_index(self):
"""
Draw a state index from the wage distribution.
"""

q = self.q
return np.searchsorted(np.cumsum(q), np.random.random(), side="right")

def temp_diff(self, qtable, state, accept):
"""
Compute the TD associated with state and action.
"""

c, β, w = self.c, self.β, self.w

(continues on next page)
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(continued from previous page)

if accept==0:
state_next = self.draw_offer_index()
TD = c + β*np.max(qtable[state_next, :]) - qtable[state, accept]

else:
state_next = state
if self.quit_allowed == 0:

TD = w[state_next] + β*np.max(qtable[state_next, :]) - qtable[state,␣
↪accept]

else:
TD = w[state_next] + β*qtable[state_next, 1] - qtable[state, accept]

return TD, state_next

def run_one_epoch(self, qtable, max_times=20000):
"""
Run an "epoch".
"""

c, β, w = self.c, self.β, self.w
eps, δ, lr, T = self.eps, self.δ, self.lr, self.T

s0 = self.draw_offer_index()
s = s0
accept_count = 0

for t in range(max_times):

# choose action
accept = np.argmax(qtable[s, :])
if np.random.random()<=eps:

accept = 1 - accept

if accept == 1:
accept_count += 1

else:
accept_count = 0

TD, s_next = self.temp_diff(qtable, s, accept)

# update qtable
qtable_new = qtable.copy()
qtable_new[s, accept] = qtable[s, accept] + lr*TD

if np.max(np.abs(qtable_new-qtable))<=δ:
break

if accept_count == T:
break

s, qtable = s_next, qtable_new

return qtable_new

@jit
def run_epochs(N, qlmc, qtable):

"""
(continues on next page)
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(continued from previous page)

Run epochs N times with qtable from the last iteration each time.
"""

for n in range(N):
if n%(N/10)==0:

print(f"Progress: EPOCHs = {n}")
new_qtable = qlmc.run_one_epoch(qtable)
qtable = new_qtable

return qtable

def valfunc_from_qtable(qtable):
return np.max(qtable, axis=1)

def compute_error(valfunc, valfunc_VFI):
return np.mean(np.abs(valfunc-valfunc_VFI))

# create an instance of Qlearning_McCall
qlmc = Qlearning_McCall()

# run
qtable0 = np.zeros((len(w_default), 2))
qtable = run_epochs(20000, qlmc, qtable0)

Progress: EPOCHs = 0
Progress: EPOCHs = 2000
Progress: EPOCHs = 4000
Progress: EPOCHs = 6000
Progress: EPOCHs = 8000
Progress: EPOCHs = 10000
Progress: EPOCHs = 12000
Progress: EPOCHs = 14000
Progress: EPOCHs = 16000
Progress: EPOCHs = 18000

print(qtable)

[[5275.0768482 0. ]
[5356.77892468 5343.13633131]
[5253.23939667 5250.74402894]
[5297.89065255 5259.56298157]
[5280.82565986 5213.09408671]
[5273.26469315 5252.44872 ]
[5267.29158365 5272.41995207]
[5369.58984305 5266.37468028]
[5259.59421975 5265.78062037]
[5326.37690207 5500.00000615]
[5320.05205321 6000. ]]

# inspect value function
valfunc_qlr = valfunc_from_qtable(qtable)

print(valfunc_qlr)
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[5275.0768482 5356.77892468 5253.23939667 5297.89065255 5280.82565986
5273.26469315 5272.41995207 5369.58984305 5265.78062037 5500.00000615
6000. ]

# plot
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(w_default, valfunc_VFI, '-o', label='VFI')
ax.plot(w_default, valfunc_qlr, '-o', label='QL')
ax.set_xlabel('wages')
ax.set_ylabel('optimal value')
ax.legend()

plt.show()

Now, let us compute the case with a larger state space: 𝑛 = 30 instead of 𝑛 = 10.
n, a, b = 30, 200, 100 # default parameters
q_new = BetaBinomial(n, a, b).pdf() # default choice of q

w_min, w_max = 10, 60
w_new = np.linspace(w_min, w_max, n+1)

# plot distribution of wage offer
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(w_new, q_new, '-o', label='$q(w(i))$')
ax.set_xlabel('wages')
ax.set_ylabel('probabilities')

plt.show()

(continues on next page)
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(continued from previous page)

# VFI
mcm = McCallModel(w=w_new, q=q_new)
valfunc_VFI, flag = mcm.VFI()

mcm = McCallModel(w=w_new, q=q_new)
valfunc_VFI, flag = mcm.VFI()
valfunc_VFI

array([4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
4859.77015703, 4859.77015703, 4859.77015703, 4859.77015703,
5000. , 5166.66666667, 5333.33333333, 5500. ,
5666.66666667, 5833.33333333, 6000. ])

def plot_epochs(epochs_to_plot, quit_allowed=1):
"Plot value function implied by outcomes of an increasing number of epochs."
qlmc_new = Qlearning_McCall(w=w_new, q=q_new, quit_allowed=quit_allowed)
qtable = np.zeros((len(w_new),2))
epochs_to_plot = np.asarray(epochs_to_plot)
# plot
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(w_new, valfunc_VFI, '-o', label='VFI')

max_epochs = np.max(epochs_to_plot)
# iterate on epoch numbers
for n in range(max_epochs + 1):

if n%(max_epochs/10)==0:

(continues on next page)
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(continued from previous page)

print(f"Progress: EPOCHs = {n}")
if n in epochs_to_plot:

valfunc_qlr = valfunc_from_qtable(qtable)
error = compute_error(valfunc_qlr, valfunc_VFI)

ax.plot(w_new, valfunc_qlr, '-o', label=f'QL:epochs={n}, mean error=
↪{error}')

new_qtable = qlmc_new.run_one_epoch(qtable)
qtable = new_qtable

ax.set_xlabel('wages')
ax.set_ylabel('optimal value')
ax.legend(loc='lower right')
plt.show()

plot_epochs(epochs_to_plot=[100, 1000, 10000, 100000, 200000])

Progress: EPOCHs = 0

Progress: EPOCHs = 20000
Progress: EPOCHs = 40000

Progress: EPOCHs = 60000
Progress: EPOCHs = 80000

Progress: EPOCHs = 100000
Progress: EPOCHs = 120000

Progress: EPOCHs = 140000
Progress: EPOCHs = 160000

Progress: EPOCHs = 180000
Progress: EPOCHs = 200000
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The above graphs indicates that

• the Q-learning algorithm has trouble learning the Q-table well for wages that are rarely drawn

• the quality of approximation to the “true” value function computed by value function iteration improves for longer
epochs

48.6 Employed Worker Can’t Quit

The preceding version of temporal difference Q-learning described in equation system (48.8) lets an employed worker
quit, i.e., reject her wage as an incumbent and instead receive unemployment compensation this period and draw a new
offer next period.

This is an option that the McCall worker described in this quantecon lecture would not take.

See [Ljungqvist and Sargent, 2018], chapter 6 on search, for a proof.

But in the context of Q-learning, giving the worker the option to quit and get unemployment compensation while un-
employed turns out to accelerate the learning process by promoting experimentation vis a vis premature exploitation
only.

To illustrate this, we’ll amend our formulas for temporal differences to forbid an employed worker from quitting a job she
had accepted earlier.

With this understanding about available choices, we obtain the following temporal difference values:

𝑇 𝐷 (𝑤, accept) = [𝑤 + 𝛽𝑄𝑜𝑙𝑑 (𝑤, accept)] − 𝑄𝑜𝑙𝑑 (𝑤, accept)

𝑇 𝐷 (𝑤, reject) = [𝑐 + 𝛽 max
𝑎′∈𝒜

𝑄𝑜𝑙𝑑 (𝑤′, 𝑎′)] − 𝑄𝑜𝑙𝑑 (𝑤, reject) , 𝑤′ ∼ 𝐹
(48.9)

It turns out that formulas (48.9) combined with our Q-learning recursion (48.7) can lead our agent to eventually learn the
optimal value function as well as in the case where an option to redraw can be exercised.
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But learning is slower because an agent who ends up accepting a wage offer prematurally loses the option to explore new
states in the same episode and to adjust the value associated with that state.

This can lead to inferior outcomes when the number of epochs/episodes is low.

But if we increase the number of epochs/episodes, we can observe that the error decreases and the outcomes get better.

We illustrate these possibilities with the following code and graph.

plot_epochs(epochs_to_plot=[100, 1000, 10000, 100000, 200000], quit_allowed=0)

Progress: EPOCHs = 0

Progress: EPOCHs = 20000

Progress: EPOCHs = 40000

Progress: EPOCHs = 60000

Progress: EPOCHs = 80000

Progress: EPOCHs = 100000

Progress: EPOCHs = 120000

Progress: EPOCHs = 140000

Progress: EPOCHs = 160000

Progress: EPOCHs = 180000

Progress: EPOCHs = 200000
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48.7 Possible Extensions

To extend the algorthm to handle problems with continuous state spaces, a typical approach is to restrict Q-functions and
policy functions to take particular functional forms.

This is the approach in deep Q-learning where the idea is to use a multilayer neural network as a good function approx-
imator.

We will take up this topic in a subsequent quantecon lecture.
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– Solutions
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In addition to what’s in Anaconda, this lecture deploys the libraries:

!pip install interpolation

49.1 Overview

In this lecture, we consider an extension of the previously studied job search model of McCall [McCall, 1970].

We’ll build on a model of Bayesian learning discussed in this lecture on the topic of exchangeability and its relationship
to the concept of IID (identically and independently distributed) random variables and to Bayesian updating.

In the McCall model, an unemployed worker decides when to accept a permanent job at a specific fixed wage, given

• his or her discount factor

• the level of unemployment compensation
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• the distribution from which wage offers are drawn

In the version considered below, the wage distribution is unknown and must be learned.

• The following is based on the presentation in [Ljungqvist and Sargent, 2018], section 6.6.

Let’s start with some imports

import matplotlib.pyplot as plt
from numba import jit, prange, vectorize
from interpolation import mlinterp
from math import gamma
import numpy as np
from matplotlib import cm
import scipy.optimize as op
from scipy.stats import cumfreq, beta

49.1.1 Model Features

• Infinite horizon dynamic programming with two states and one binary control.

• Bayesian updating to learn the unknown distribution.

49.2 Model

Let’s first review the basic McCall model [McCall, 1970] and then add the variation we want to consider.

49.2.1 The Basic McCall Model

Recall that, in the baseline model, an unemployed worker is presented in each period with a permanent job offer at wage
𝑊𝑡.

At time 𝑡, our worker either
1. accepts the offer and works permanently at constant wage 𝑊𝑡

2. rejects the offer, receives unemployment compensation 𝑐 and reconsiders next period
The wage sequence 𝑊𝑡 is IID and generated from known density 𝑞.
The worker aims to maximize the expected discounted sum of earnings 𝔼 ∑∞

𝑡=0 𝛽𝑡𝑦𝑡.

Let 𝑣(𝑤) be the optimal value of the problem for a previously unemployed worker who has just received offer 𝑤 and is
yet to decide whether to accept or reject the offer.

The value function 𝑣 satisfies the recursion

𝑣(𝑤) = max{ 𝑤
1 − 𝛽 , 𝑐 + 𝛽 ∫ 𝑣(𝑤′)𝑞(𝑤′)𝑑𝑤′} (49.1)

The optimal policy has the form 1{𝑤 ≥ 𝑤̄}, where 𝑤̄ is a constant called the reservation wage.
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49.2.2 Offer Distribution Unknown

Now let’s extend the model by considering the variation presented in [Ljungqvist and Sargent, 2018], section 6.6.

The model is as above, apart from the fact that

• the density 𝑞 is unknown
• the worker learns about 𝑞 by starting with a prior and updating based on wage offers that he/she observes

The worker knows there are two possible distributions 𝐹 and 𝐺.

These two distributions have densities 𝑓 and 𝑔, repectively.
Just before time starts, “nature” selects 𝑞 to be either 𝑓 or 𝑔.
This is then the wage distribution from which the entire sequence 𝑊𝑡 will be drawn.

The worker does not know which distribution nature has drawn, but the worker does know the two possible distributions
𝑓 and 𝑔.
The worker puts a (subjective) prior probability 𝜋0 on 𝑓 having been chosen.

The worker’s time 0 subjective distribution for the distribution of 𝑊0 is

𝜋0𝑓 + (1 − 𝜋0)𝑔

The worker’s time 𝑡 subjective belief about the the distribution of 𝑊𝑡 is

𝜋𝑡𝑓 + (1 − 𝜋𝑡)𝑔,

where 𝜋𝑡 updates via

𝜋𝑡+1 = 𝜋𝑡𝑓(𝑤𝑡+1)
𝜋𝑡𝑓(𝑤𝑡+1) + (1 − 𝜋𝑡)𝑔(𝑤𝑡+1) (49.2)

This last expression follows from Bayes’ rule, which tells us that

ℙ{𝑞 = 𝑓 | 𝑊 = 𝑤} = ℙ{𝑊 = 𝑤 | 𝑞 = 𝑓}ℙ{𝑞 = 𝑓}
ℙ{𝑊 = 𝑤}

and

ℙ{𝑊 = 𝑤} = ∑
𝜔∈{𝑓,𝑔}

ℙ{𝑊 = 𝑤 | 𝑞 = 𝜔}ℙ{𝑞 = 𝜔}

The fact that (49.2) is recursive allows us to progress to a recursive solution method.

Letting

𝑞𝜋(𝑤) ∶= 𝜋𝑓(𝑤) + (1 − 𝜋)𝑔(𝑤)

and

𝜅(𝑤, 𝜋) ∶= 𝜋𝑓(𝑤)
𝜋𝑓(𝑤) + (1 − 𝜋)𝑔(𝑤)

we can express the value function for the unemployed worker recursively as follows

𝑣(𝑤, 𝜋) = max{ 𝑤
1 − 𝛽 , 𝑐 + 𝛽 ∫ 𝑣(𝑤′, 𝜋′) 𝑞𝜋(𝑤′) 𝑑𝑤′} where 𝜋′ = 𝜅(𝑤′, 𝜋) (49.3)

Notice that the current guess 𝜋 is a state variable, since it affects the worker’s perception of probabilities for future rewards.
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49.2.3 Parameterization

Following section 6.6 of [Ljungqvist and Sargent, 2018], our baseline parameterization will be

• 𝑓 is Beta(1, 1)
• 𝑔 is Beta(3, 1.2)
• 𝛽 = 0.95 and 𝑐 = 0.3

The densities 𝑓 and 𝑔 have the following shape
@vectorize
def p(x, a, b):

r = gamma(a + b) / (gamma(a) * gamma(b))
return r * x**(a-1) * (1 - x)**(b-1)

x_grid = np.linspace(0, 1, 100)
f = lambda x: p(x, 1, 1)
g = lambda x: p(x, 3, 1.2)

fig, ax = plt.subplots(figsize=(10, 8))
ax.plot(x_grid, f(x_grid), label='$f$', lw=2)
ax.plot(x_grid, g(x_grid), label='$g$', lw=2)

ax.legend()
plt.show()
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49.2.4 Looking Forward

What kind of optimal policy might result from (49.3) and the parameterization specified above?

Intuitively, if we accept at 𝑤𝑎 and 𝑤𝑎 ≤ 𝑤𝑏, then — all other things being given — we should also accept at 𝑤𝑏.

This suggests a policy of accepting whenever 𝑤 exceeds some threshold value 𝑤̄.
But 𝑤̄ should depend on 𝜋 — in fact, it should be decreasing in 𝜋 because

• 𝑓 is a less attractive offer distribution than 𝑔
• larger 𝜋 means more weight on 𝑓 and less on 𝑔

Thus, larger 𝜋 depresses the worker’s assessment of her future prospects, so relatively low current offers become more
attractive.

Summary: We conjecture that the optimal policy is of the form 𝟙𝑤 ≥ 𝑤̄(𝜋) for some decreasing function 𝑤̄.
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49.3 Take 1: Solution by VFI

Let’s set about solving the model and see how our results match with our intuition.

We begin by solving via value function iteration (VFI), which is natural but ultimately turns out to be second best.

The class SearchProblem is used to store parameters and methods needed to compute optimal actions.

class SearchProblem:
"""
A class to store a given parameterization of the "offer distribution
unknown" model.

"""

def __init__(self,
β=0.95, # Discount factor
c=0.3, # Unemployment compensation
F_a=1,
F_b=1,
G_a=3,
G_b=1.2,
w_max=1, # Maximum wage possible
w_grid_size=100,
π_grid_size=100,
mc_size=500):

self.β, self.c, self.w_max = β, c, w_max

self.f = jit(lambda x: p(x, F_a, F_b))
self.g = jit(lambda x: p(x, G_a, G_b))

self.π_min, self.π_max = 1e-3, 1-1e-3 # Avoids instability
self.w_grid = np.linspace(0, w_max, w_grid_size)
self.π_grid = np.linspace(self.π_min, self.π_max, π_grid_size)

self.mc_size = mc_size

self.w_f = np.random.beta(F_a, F_b, mc_size)
self.w_g = np.random.beta(G_a, G_b, mc_size)

The following function takes an instance of this class and returns jitted versions of the Bellman operator T, and a
get_greedy() function to compute the approximate optimal policy from a guess v of the value function

def operator_factory(sp, parallel_flag=True):

f, g = sp.f, sp.g
w_f, w_g = sp.w_f, sp.w_g
β, c = sp.β, sp.c
mc_size = sp.mc_size
w_grid, π_grid = sp.w_grid, sp.π_grid

@jit
def v_func(x, y, v):

return mlinterp((w_grid, π_grid), v, (x, y))

@jit
def κ(w, π):

(continues on next page)
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"""
Updates π using Bayes' rule and the current wage observation w.
"""
pf, pg = π * f(w), (1 - π) * g(w)
π_new = pf / (pf + pg)

return π_new

@jit(parallel=parallel_flag)
def T(v):

"""
The Bellman operator.

"""
v_new = np.empty_like(v)

for i in prange(len(w_grid)):
for j in prange(len(π_grid)):

w = w_grid[i]
π = π_grid[j]

v_1 = w / (1 - β)

integral_f, integral_g = 0, 0
for m in prange(mc_size):

integral_f += v_func(w_f[m], κ(w_f[m], π), v)
integral_g += v_func(w_g[m], κ(w_g[m], π), v)

integral = (π * integral_f + (1 - π) * integral_g) / mc_size

v_2 = c + β * integral
v_new[i, j] = max(v_1, v_2)

return v_new

@jit(parallel=parallel_flag)
def get_greedy(v):

""""
Compute optimal actions taking v as the value function.

"""
σ = np.empty_like(v)

for i in prange(len(w_grid)):
for j in prange(len(π_grid)):

w = w_grid[i]
π = π_grid[j]

v_1 = w / (1 - β)

integral_f, integral_g = 0, 0
for m in prange(mc_size):

integral_f += v_func(w_f[m], κ(w_f[m], π), v)
integral_g += v_func(w_g[m], κ(w_g[m], π), v)

integral = (π * integral_f + (1 - π) * integral_g) / mc_size

v_2 = c + β * integral

(continues on next page)
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σ[i, j] = v_1 > v_2 # Evaluates to 1 or 0

return σ

return T, get_greedy

We will omit a detailed discussion of the code because there is a more efficient solution method that we will use later.

To solve the model we will use the following function that iterates using T to find a fixed point

def solve_model(sp,
use_parallel=True,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=5):

"""
Solves for the value function

* sp is an instance of SearchProblem
"""

T, _ = operator_factory(sp, use_parallel)

# Set up loop
i = 0
error = tol + 1
m, n = len(sp.w_grid), len(sp.π_grid)

# Initialize v
v = np.zeros((m, n)) + sp.c / (1 - sp.β)

while i < max_iter and error > tol:
v_new = T(v)
error = np.max(np.abs(v - v_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_new

Let’s look at solutions computed from value function iteration

sp = SearchProblem()
v_star = solve_model(sp)
fig, ax = plt.subplots(figsize=(6, 6))
ax.contourf(sp.π_grid, sp.w_grid, v_star, 12, alpha=0.6, cmap=cm.jet)
cs = ax.contour(sp.π_grid, sp.w_grid, v_star, 12, colors="black")
ax.clabel(cs, inline=1, fontsize=10)

(continues on next page)
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ax.set(xlabel=r'$\pi$', ylabel='$w$')

plt.show()

Error at iteration 5 is 0.6530781413330118.

Error at iteration 10 is 0.11163127066490652.

Error at iteration 15 is 0.02399405139564159.

Error at iteration 20 is 0.005331909975453186.

Error at iteration 25 is 0.0012341531186379484.

Error at iteration 30 is 0.0002859074177283816.

Converged in 34 iterations.

We will also plot the optimal policy
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T, get_greedy = operator_factory(sp)
σ_star = get_greedy(v_star)

fig, ax = plt.subplots(figsize=(6, 6))
ax.contourf(sp.π_grid, sp.w_grid, σ_star, 1, alpha=0.6, cmap=cm.jet)
ax.contour(sp.π_grid, sp.w_grid, σ_star, 1, colors="black")
ax.set(xlabel=r'$\pi$', ylabel='$w$')

ax.text(0.5, 0.6, 'reject')
ax.text(0.7, 0.9, 'accept')

plt.show()

The results fit well with our intuition from section looking forward.

• The black line in the figure above corresponds to the function 𝑤̄(𝜋) introduced there.
• It is decreasing as expected.
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49.4 Take 2: A More Efficient Method

Let’s consider another method to solve for the optimal policy.

We will use iteration with an operator that has the same contraction rate as the Bellman operator, but

• one dimensional rather than two dimensional

• no maximization step

As a consequence, the algorithm is orders of magnitude faster than VFI.

This section illustrates the point that when it comes to programming, a bit of mathematical analysis goes a long way.

49.5 Another Functional Equation

To begin, note that when 𝑤 = 𝑤̄(𝜋), the worker is indifferent between accepting and rejecting.
Hence the two choices on the right-hand side of (49.3) have equal value:

𝑤̄(𝜋)
1 − 𝛽 = 𝑐 + 𝛽 ∫ 𝑣(𝑤′, 𝜋′) 𝑞𝜋(𝑤′) 𝑑𝑤′ (49.4)

Together, (49.3) and (49.4) give

𝑣(𝑤, 𝜋) = max{ 𝑤
1 − 𝛽 , 𝑤̄(𝜋)

1 − 𝛽 } (49.5)

Combining (49.4) and (49.5), we obtain

𝑤̄(𝜋)
1 − 𝛽 = 𝑐 + 𝛽 ∫max{ 𝑤′

1 − 𝛽 , 𝑤̄(𝜋′)
1 − 𝛽 } 𝑞𝜋(𝑤′) 𝑑𝑤′

Multiplying by 1 − 𝛽, substituting in 𝜋′ = 𝜅(𝑤′, 𝜋) and using ∘ for composition of functions yields

𝑤̄(𝜋) = (1 − 𝛽)𝑐 + 𝛽 ∫max {𝑤′, 𝑤̄ ∘ 𝜅(𝑤′, 𝜋)} 𝑞𝜋(𝑤′) 𝑑𝑤′ (49.6)

Equation (49.6) can be understood as a functional equation, where 𝑤̄ is the unknown function.

• Let’s call it the reservation wage functional equation (RWFE).

• The solution 𝑤̄ to the RWFE is the object that we wish to compute.

49.6 Solving the RWFE

To solve the RWFE, we will first show that its solution is the fixed point of a contraction mapping.

To this end, let

• 𝑏[0, 1] be the bounded real-valued functions on [0, 1]
• ‖𝜔‖ ∶= sup𝑥∈[0,1] |𝜔(𝑥)|

Consider the operator 𝑄 mapping 𝜔 ∈ 𝑏[0, 1] into 𝑄𝜔 ∈ 𝑏[0, 1] via

(𝑄𝜔)(𝜋) = (1 − 𝛽)𝑐 + 𝛽 ∫max {𝑤′, 𝜔 ∘ 𝜅(𝑤′, 𝜋)} 𝑞𝜋(𝑤′) 𝑑𝑤′ (49.7)

Comparing (49.6) and (49.7), we see that the set of fixed points of 𝑄 exactly coincides with the set of solutions to the
RWFE.
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• If 𝑄𝑤̄ = 𝑤̄ then 𝑤̄ solves (49.6) and vice versa.

Moreover, for any 𝜔, 𝜔′ ∈ 𝑏[0, 1], basic algebra and the triangle inequality for integrals tells us that

|(𝑄𝜔)(𝜋) − (𝑄𝜔′)(𝜋)| ≤ 𝛽 ∫ |max {𝑤′, 𝜔 ∘ 𝜅(𝑤′, 𝜋)} − max {𝑤′, 𝜔′ ∘ 𝜅(𝑤′, 𝜋)}| 𝑞𝜋(𝑤′) 𝑑𝑤′ (49.8)

Working case by case, it is easy to check that for real numbers 𝑎, 𝑏, 𝑐 we always have

|max{𝑎, 𝑏} − max{𝑎, 𝑐}| ≤ |𝑏 − 𝑐| (49.9)

Combining (49.8) and (49.9) yields

|(𝑄𝜔)(𝜋) − (𝑄𝜔′)(𝜋)| ≤ 𝛽 ∫ |𝜔 ∘ 𝜅(𝑤′, 𝜋) − 𝜔′ ∘ 𝜅(𝑤′, 𝜋)| 𝑞𝜋(𝑤′) 𝑑𝑤′ ≤ 𝛽‖𝜔 − 𝜔′‖ (49.10)

Taking the supremum over 𝜋 now gives us

‖𝑄𝜔 − 𝑄𝜔′‖ ≤ 𝛽‖𝜔 − 𝜔′‖ (49.11)

In other words, 𝑄 is a contraction of modulus 𝛽 on the complete metric space (𝑏[0, 1], ‖ ⋅ ‖).
Hence

• A unique solution 𝑤̄ to the RWFE exists in 𝑏[0, 1].
• 𝑄𝑘𝜔 → 𝑤̄ uniformly as 𝑘 → ∞, for any 𝜔 ∈ 𝑏[0, 1].

49.7 Implementation

The following function takes an instance of SearchProblem and returns the operator Q

def Q_factory(sp, parallel_flag=True):

f, g = sp.f, sp.g
w_f, w_g = sp.w_f, sp.w_g
β, c = sp.β, sp.c
mc_size = sp.mc_size
w_grid, π_grid = sp.w_grid, sp.π_grid

@jit
def ω_func(p, ω):

return np.interp(p, π_grid, ω)

@jit
def κ(w, π):

"""
Updates π using Bayes' rule and the current wage observation w.
"""
pf, pg = π * f(w), (1 - π) * g(w)
π_new = pf / (pf + pg)

return π_new

@jit(parallel=parallel_flag)
def Q(ω):

"""

(continues on next page)
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(continued from previous page)

Updates the reservation wage function guess ω via the operator
Q.

"""
ω_new = np.empty_like(ω)

for i in prange(len(π_grid)):
π = π_grid[i]
integral_f, integral_g = 0, 0

for m in prange(mc_size):
integral_f += max(w_f[m], ω_func(κ(w_f[m], π), ω))
integral_g += max(w_g[m], ω_func(κ(w_g[m], π), ω))

integral = (π * integral_f + (1 - π) * integral_g) / mc_size

ω_new[i] = (1 - β) * c + β * integral

return ω_new

return Q

In the next exercise, you are asked to compute an approximation to 𝑤̄.

49.8 Exercises

Exercise 49.8.1

Use the default parameters and Q_factory to compute an optimal policy.

Your result should coincide closely with the figure for the optimal policy shown above.

Try experimenting with different parameters, and confirm that the change in the optimal policy coincides with your
intuition.

49.9 Solutions

Solution to Exercise 49.8.1

This code solves the “Offer Distribution Unknown” model by iterating on a guess of the reservation wage function.

You should find that the run time is shorter than that of the value function approach.

Similar to above, we set up a function to iterate with Q to find the fixed point
def solve_wbar(sp,

use_parallel=True,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=5):

Q = Q_factory(sp, use_parallel)

49.8. Exercises 915



Intermediate Quantitative Economics with Python

# Set up loop
i = 0
error = tol + 1
m, n = len(sp.w_grid), len(sp.π_grid)

# Initialize w
w = np.ones_like(sp.π_grid)

while i < max_iter and error > tol:
w_new = Q(w)
error = np.max(np.abs(w - w_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
w = w_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return w_new

The solution can be plotted as follows

sp = SearchProblem()
w_bar = solve_wbar(sp)

fig, ax = plt.subplots(figsize=(9, 7))

ax.plot(sp.π_grid, w_bar, color='k')
ax.fill_between(sp.π_grid, 0, w_bar, color='blue', alpha=0.15)
ax.fill_between(sp.π_grid, w_bar, sp.w_max, color='green', alpha=0.15)
ax.text(0.5, 0.6, 'reject')
ax.text(0.7, 0.9, 'accept')
ax.set(xlabel=r'$\pi$', ylabel='$w$')
ax.grid()
plt.show()

Error at iteration 5 is 0.021397267018627986.
Error at iteration 10 is 0.006247625544925639.
Error at iteration 15 is 0.0014483878394732086.
Error at iteration 20 is 0.00030390670145219456.

Converged in 24 iterations.
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49.10 Appendix A

The next piece of code generates a fun simulation to see what the effect of a change in the underlying distribution on the
unemployment rate is.

At a point in the simulation, the distribution becomes significantly worse.

It takes a while for agents to learn this, and in the meantime, they are too optimistic and turn down too many jobs.

As a result, the unemployment rate spikes

F_a, F_b, G_a, G_b = 1, 1, 3, 1.2

sp = SearchProblem(F_a=F_a, F_b=F_b, G_a=G_a, G_b=G_b)
f, g = sp.f, sp.g

# Solve for reservation wage
w_bar = solve_wbar(sp, verbose=False)

# Interpolate reservation wage function
π_grid = sp.π_grid
w_func = jit(lambda x: np.interp(x, π_grid, w_bar))

(continues on next page)
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@jit
def update(a, b, e, π):

"Update e and π by drawing wage offer from beta distribution with parameters a␣
↪and b"

if e == False:
w = np.random.beta(a, b) # Draw random wage
if w >= w_func(π):

e = True # Take new job
else:

π = 1 / (1 + ((1 - π) * g(w)) / (π * f(w)))

return e, π

@jit
def simulate_path(F_a=F_a,

F_b=F_b,
G_a=G_a,
G_b=G_b,
N=5000, # Number of agents
T=600, # Simulation length
d=200, # Change date
s=0.025): # Separation rate

"""Simulates path of employment for N number of works over T periods"""

e = np.ones((N, T+1))
π = np.full((N, T+1), 1e-3)

a, b = G_a, G_b # Initial distribution parameters

for t in range(T+1):

if t == d:
a, b = F_a, F_b # Change distribution parameters

# Update each agent
for n in range(N):

if e[n, t] == 1: # If agent is currently employment
p = np.random.uniform(0, 1)
if p <= s: # Randomly separate with probability s

e[n, t] = 0

new_e, new_π = update(a, b, e[n, t], π[n, t])
e[n, t+1] = new_e
π[n, t+1] = new_π

return e[:, 1:]

d = 200 # Change distribution at time d
unemployment_rate = 1 - simulate_path(d=d).mean(axis=0)

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(unemployment_rate)
ax.axvline(d, color='r', alpha=0.6, label='Change date')
ax.set_xlabel('Time')
ax.set_title('Unemployment rate')

(continues on next page)

918 Chapter 49. Job Search VII: Search with Learning



Intermediate Quantitative Economics with Python
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ax.legend()
plt.show()

49.11 Appendix B

In this appendix we provide more details about how Bayes’ Law contributes to the workings of the model.

We present some graphs that bring out additional insights about how learning works.

We build on graphs proposed in this lecture.

In particular, we’ll add actions of our searching worker to a key graph presented in that lecture.

To begin, we first define two functions for computing the empirical distributions of unemployment duration and π at the
time of employment.

@jit
def empirical_dist(F_a, F_b, G_a, G_b, w_bar, π_grid,

N=10000, T=600):
"""
Simulates population for computing empirical cumulative
distribution of unemployment duration and π at time when
the worker accepts the wage offer. For each job searching
problem, we simulate for two cases that either f or g is
the true offer distribution.

Parameters
----------

(continues on next page)
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(continued from previous page)

F_a, F_b, G_a, G_b : parameters of beta distributions F and G.
w_bar : the reservation wage
π_grid : grid points of π, for interpolation
N : number of workers for simulation, optional
T : maximum of time periods for simulation, optional

Returns
-------
accpet_t : 2 by N ndarray. the empirical distribution of

unemployment duration when f or g generates offers.
accept_π : 2 by N ndarray. the empirical distribution of

π at the time of employment when f or g generates offers.
"""

accept_t = np.empty((2, N))
accept_π = np.empty((2, N))

# f or g generates offers
for i, (a, b) in enumerate([(F_a, F_b), (G_a, G_b)]):

# update each agent
for n in range(N):

# initial priori
π = 0.5

for t in range(T+1):

# Draw random wage
w = np.random.beta(a, b)
lw = p(w, F_a, F_b) / p(w, G_a, G_b)
π = π * lw / (π * lw + 1 - π)

# move to next agent if accepts
if w >= np.interp(π, π_grid, w_bar):

break

# record the unemployment duration
# and π at the time of acceptance
accept_t[i, n] = t
accept_π[i, n] = π

return accept_t, accept_π

def cumfreq_x(res):
"""
A helper function for calculating the x grids of
the cumulative frequency histogram.
"""

cumcount = res.cumcount
lowerlimit, binsize = res.lowerlimit, res.binsize

x = lowerlimit + np.linspace(0, binsize*cumcount.size, cumcount.size)

return x
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Now we define a wrapper function for analyzing job search models with learning under different parameterizations.

The wrapper takes parameters of beta distributions and unemployment compensation as inputs and then displays various
things we want to know to interpret the solution of our search model.

In addition, it computes empirical cumulative distributions of two key objects.

def job_search_example(F_a=1, F_b=1, G_a=3, G_b=1.2, c=0.3):
"""
Given the parameters that specify F and G distributions,
calculate and display the rejection and acceptance area,
the evolution of belief π, and the probability of accepting
an offer at different π level, and simulate and calculate
the empirical cumulative distribution of the duration of
unemployment and π at the time the worker accepts the offer.
"""

# construct a search problem
sp = SearchProblem(F_a=F_a, F_b=F_b, G_a=G_a, G_b=G_b, c=c)
f, g = sp.f, sp.g
π_grid = sp.π_grid

# Solve for reservation wage
w_bar = solve_wbar(sp, verbose=False)

# l(w) = f(w) / g(w)
l = lambda w: f(w) / g(w)
# objective function for solving l(w) = 1
obj = lambda w: l(w) - 1.

# the mode of beta distribution
# use this to divide w into two intervals for root finding
G_mode = (G_a - 1) / (G_a + G_b - 2)
roots = np.empty(2)
roots[0] = op.root_scalar(obj, bracket=[1e-10, G_mode]).root
roots[1] = op.root_scalar(obj, bracket=[G_mode, 1-1e-10]).root

fig, axs = plt.subplots(2, 2, figsize=(12, 9))

# part 1: display the details of the model settings and some results
w_grid = np.linspace(1e-12, 1-1e-12, 100)

axs[0, 0].plot(l(w_grid), w_grid, label='$l$', lw=2)
axs[0, 0].vlines(1., 0., 1., linestyle="--")
axs[0, 0].hlines(roots, 0., 2., linestyle="--")
axs[0, 0].set_xlim([0., 2.])
axs[0, 0].legend(loc=4)
axs[0, 0].set(xlabel='$l(w)=f(w)/g(w)$', ylabel='$w$')

axs[0, 1].plot(sp.π_grid, w_bar, color='k')
axs[0, 1].fill_between(sp.π_grid, 0, w_bar, color='blue', alpha=0.15)
axs[0, 1].fill_between(sp.π_grid, w_bar, sp.w_max, color='green', alpha=0.15)
axs[0, 1].text(0.5, 0.6, 'reject')
axs[0, 1].text(0.7, 0.9, 'accept')

W = np.arange(0.01, 0.99, 0.08)
Π = np.arange(0.01, 0.99, 0.08)

ΔW = np.zeros((len(W), len(Π)))
(continues on next page)
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ΔΠ = np.empty((len(W), len(Π)))
for i, w in enumerate(W):

for j, π in enumerate(Π):
lw = l(w)
ΔΠ[i, j] = π * (lw / (π * lw + 1 - π) - 1)

q = axs[0, 1].quiver(Π, W, ΔΠ, ΔW, scale=2, color='r', alpha=0.8)

axs[0, 1].hlines(roots, 0., 1., linestyle="--")
axs[0, 1].set(xlabel=r'$\pi$', ylabel='$w$')
axs[0, 1].grid()

axs[1, 0].plot(f(x_grid), x_grid, label='$f$', lw=2)
axs[1, 0].plot(g(x_grid), x_grid, label='$g$', lw=2)
axs[1, 0].vlines(1., 0., 1., linestyle="--")
axs[1, 0].hlines(roots, 0., 2., linestyle="--")
axs[1, 0].legend(loc=4)
axs[1, 0].set(xlabel='$f(w), g(w)$', ylabel='$w$')

axs[1, 1].plot(sp.π_grid, 1 - beta.cdf(w_bar, F_a, F_b), label='$f$')
axs[1, 1].plot(sp.π_grid, 1 - beta.cdf(w_bar, G_a, G_b), label='$g$')
axs[1, 1].set_ylim([0., 1.])
axs[1, 1].grid()
axs[1, 1].legend(loc=4)
axs[1, 1].set(xlabel=r'$\pi$', ylabel=r'$\mathbb{P}\{w > \overline{w} (\pi)\}$')

plt.show()

# part 2: simulate empirical cumulative distribution
accept_t, accept_π = empirical_dist(F_a, F_b, G_a, G_b, w_bar, π_grid)
N = accept_t.shape[1]

cfq_t_F = cumfreq(accept_t[0, :], numbins=100)
cfq_π_F = cumfreq(accept_π[0, :], numbins=100)

cfq_t_G = cumfreq(accept_t[1, :], numbins=100)
cfq_π_G = cumfreq(accept_π[1, :], numbins=100)

fig, axs = plt.subplots(2, 1, figsize=(12, 9))

axs[0].plot(cumfreq_x(cfq_t_F), cfq_t_F.cumcount/N, label="f generates")
axs[0].plot(cumfreq_x(cfq_t_G), cfq_t_G.cumcount/N, label="g generates")
axs[0].grid(linestyle='--')
axs[0].legend(loc=4)
axs[0].title.set_text('CDF of duration of unemployment')
axs[0].set(xlabel='time', ylabel='Prob(time)')

axs[1].plot(cumfreq_x(cfq_π_F), cfq_π_F.cumcount/N, label="f generates")
axs[1].plot(cumfreq_x(cfq_π_G), cfq_π_G.cumcount/N, label="g generates")
axs[1].grid(linestyle='--')
axs[1].legend(loc=4)
axs[1].title.set_text('CDF of π at time worker accepts wage and leaves␣

↪unemployment')
axs[1].set(xlabel='π', ylabel='Prob(π)')

plt.show()
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We now provide some examples that provide insights about how the model works.

49.12 Examples

49.12.1 Example 1 (Baseline)

𝐹 ~ Beta(1, 1), 𝐺 ~ Beta(3, 1.2), 𝑐=0.3.
In the graphs below, the red arrows in the upper right figure show how 𝜋𝑡 is updated in response to the new information
𝑤𝑡.

Recall the following formula from this lecture

𝜋𝑡+1
𝜋𝑡

= 𝑙 (𝑤𝑡+1)
𝜋𝑡𝑙 (𝑤𝑡+1) + (1 − 𝜋𝑡)

{> 1 if 𝑙 (𝑤𝑡+1) > 1
≤ 1 if 𝑙 (𝑤𝑡+1) ≤ 1

The formula implies that the direction of motion of 𝜋𝑡 is determined by the relationship between 𝑙(𝑤𝑡) and 1.
The magnitude is small if

• 𝑙(𝑤) is close to 1, which means the new 𝑤 is not very informative for distinguishing two distributions,

• 𝜋𝑡−1 is close to either 0 or 1, which means the priori is strong.
Will an unemployed worker accept an offer earlier or not, when the actual ruling distribution is 𝑔 instead of 𝑓?
Two countervailing effects are at work.

• if 𝑓 generates successive wage offers, then 𝑤 is more likely to be low, but 𝜋 is moving up toward to 1, which lowers
the reservation wage, i.e., the worker becomes less selective the longer he or she remains unemployed.

• if 𝑔 generates wage offers, then 𝑤 is more likely to be high, but 𝜋 is moving downward toward 0, increasing the
reservation wage, i.e., the worker becomes more selective the longer he or she remains unemployed.

Quantitatively, the lower right figure sheds light on which effect dominates in this example.

It shows the probability that a previously unemployed worker accepts an offer at different values of 𝜋 when 𝑓 or 𝑔 generates
wage offers.

That graph shows that for the particular 𝑓 and 𝑔 in this example, the worker is always more likely to accept an offer when
𝑓 generates the data even when 𝜋 is close to zero so that the worker believes the true distribution is 𝑔 and therefore is
relatively more selective.

The empirical cumulative distribution of the duration of unemployment verifies our conjecture.

job_search_example()
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49.12.2 Example 2

𝐹 ~ Beta(1, 1), 𝐺 ~ Beta(1.2, 1.2), 𝑐=0.3.
Now 𝐺 has the same mean as 𝐹 with a smaller variance.

Since the unemployment compensation 𝑐 serves as a lower bound for bad wage offers, 𝐺 is now an “inferior” distribution
to 𝐹 .

Consequently, we observe that the optimal policy 𝑤(𝜋) is increasing in 𝜋.
job_search_example(1, 1, 1.2, 1.2, 0.3)
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49.12.3 Example 3

𝐹 ~ Beta(1, 1), 𝐺 ~ Beta(2, 2), 𝑐=0.3.
If the variance of 𝐺 is smaller, we observe in the result that 𝐺 is even more “inferior” and the slope of 𝑤(𝜋) is larger.
job_search_example(1, 1, 2, 2, 0.3)
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49.12.4 Example 4

𝐹 ~ Beta(1, 1), 𝐺 ~ Beta(3, 1.2), and 𝑐=0.8.
In this example, we keep the parameters of beta distributions to be the same with the baseline case but increase the
unemployment compensation 𝑐.
Comparing outcomes to the baseline case (example 1) in which unemployment compensation if low (𝑐=0.3), now the
worker can afford a longer learning period.

As a result, the worker tends to accept wage offers much later.

Furthermore, at the time of accepting employment, the belief 𝜋 is closer to either 0 or 1.
That means that the worker has a better idea about what the true distribution is when he eventually chooses to accept a
wage offer.
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job_search_example(1, 1, 3, 1.2, c=0.8)
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49.12.5 Example 5

𝐹 ~ Beta(1, 1), 𝐺 ~ Beta(3, 1.2), and 𝑐=0.1.
As expected, a smaller 𝑐 makes an unemployed worker accept wage offers earlier after having acquired less information
about the wage distribution.

job_search_example(1, 1, 3, 1.2, c=0.1)
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Consumption, Savings and Capital
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CHAPTER

FIFTY

CASS-KOOPMANS MODEL

50.1 Overview

This lecture and Cass-Koopmans Competitive Equilibrium describe a model that Tjalling Koopmans [Koopmans, 1965]
and David Cass [Cass, 1965] used to analyze optimal growth.

The model extends the model of Robert Solow described in an earlier lecture.

It does so by making saving rate be a decision, instead of a hard-wired constant.

(Solow assumed a constant saving rate determined outside the model.)

We describe two versions of the model, a planning problem in this lecture, and a competitive equilibrium in this lecture
Cass-Koopmans Competitive Equilibrium.

Together, the two lectures illustrate what is, in fact, a more general connection between a planned economy and a
decentralized economy organized as a competitive equilibrium.

This lecture is devoted to the planned economy version.

In the planned economy, there are

• no prices

• no budget constraints

Instead there is a dictator that tells people

• what to produce

• what to invest in physical capital

• who is to consume what and when

The lecture uses important ideas including

• A min-max problem for solving a planning problem.

• A shooting algorithm for solving difference equations subject to initial and terminal conditions.

• A turnpike property of optimal paths for long but finite-horizon economies.

• A stable manifold and a phase plane

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

Let’s start with some standard imports:
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import matplotlib.pyplot as plt
from numba import jit, float64
from numba.experimental import jitclass
import numpy as np
from quantecon.optimize import brentq

50.2 The Model

Time is discrete and takes values 𝑡 = 0, 1, … , 𝑇 where 𝑇 is finite.

(We’ll eventually study a limiting case in which 𝑇 = +∞)

A single good can either be consumed or invested in physical capital.

The consumption good is not durable and depreciates completely if not consumed immediately.

The capital good is durable but depreciates.

We let 𝐶𝑡 be the total consumption of a nondurable consumption good at time 𝑡.
Let 𝐾𝑡 be the stock of physical capital at time 𝑡.
Let ⃗𝐶 = {𝐶0, … , 𝐶𝑇 } and 𝐾⃗ = {𝐾0, … , 𝐾𝑇 +1}.

50.2.1 Digression: Aggregation Theory

We use a concept of a representative consumer to be thought of as follows.

There is a unit mass of identical consumers indexed by 𝜔 ∈ [0, 1].
Consumption of consumer 𝜔 is 𝑐(𝜔).
Aggregate consumption is

𝐶 = ∫
1

0
𝑐(𝜔)𝑑𝜔

Consider a welfare problem that chooses an allocation {𝑐(𝜔)} across consumers to maximize

∫
1

0
𝑢(𝑐(𝜔))𝑑𝜔

where 𝑢(⋅) is a concave utility function with 𝑢′ > 0, 𝑢″ < 0 and maximization is subject to

𝐶 = ∫
1

0
𝑐(𝜔)𝑑𝜔. (50.1)

Form a Lagrangian 𝐿 = ∫1
0 𝑢(𝑐(𝜔))𝑑𝜔 + 𝜆[𝐶 − ∫1

0 𝑐(𝜔)𝑑𝜔].
Differentiate under the integral signs with respect to each 𝜔 to obtain the first-order necessary conditions

𝑢′(𝑐(𝜔)) = 𝜆.

These conditions imply that 𝑐(𝜔) equals a constant 𝑐 that is independent of 𝜔.
To find 𝑐, use feasibility constraint (50.1) to conclude that

𝑐(𝜔) = 𝑐 = 𝐶.
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This line of argument indicates the special aggregation theory that lies beneath outcomes in which a representative con-
sumer consumes amount 𝐶.

It appears often in aggregate economics.

We shall use this aggregation theory here and also in this lecture Cass-Koopmans Competitive Equilibrium.

An Economy

A representative household is endowed with one unit of labor at each 𝑡 and likes the consumption good at each 𝑡.
The representative household inelastically supplies a single unit of labor 𝑁𝑡 at each 𝑡, so that 𝑁𝑡 = 1 for all 𝑡 ∈
{0, 1, … , 𝑇 }.
The representative household has preferences over consumption bundles ordered by the utility functional:

𝑈( ⃗𝐶) =
𝑇

∑
𝑡=0

𝛽𝑡 𝐶1−𝛾
𝑡

1 − 𝛾 (50.2)

where 𝛽 ∈ (0, 1) is a discount factor and 𝛾 > 0 governs the curvature of the one-period utility function.
Larger 𝛾’s imply more curvature.
Note that

𝑢(𝐶𝑡) = 𝐶1−𝛾
𝑡

1 − 𝛾 (50.3)

satisfies 𝑢′ > 0, 𝑢″ < 0.
𝑢′ > 0 asserts that the consumer prefers more to less.
𝑢″ < 0 asserts that marginal utility declines with increases in 𝐶𝑡.

We assume that 𝐾0 > 0 is an exogenous initial capital stock.
There is an economy-wide production function

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡 (50.4)

with 0 < 𝛼 < 1, 𝐴 > 0.
A feasible allocation ⃗𝐶, 𝐾⃗ satisfies

𝐶𝑡 + 𝐾𝑡+1 ≤ 𝐹(𝐾𝑡, 𝑁𝑡) + (1 − 𝛿)𝐾𝑡 for all 𝑡 ∈ {0, 1, … , 𝑇 } (50.5)

where 𝛿 ∈ (0, 1) is a depreciation rate of capital.

50.3 Planning Problem

A planner chooses an allocation { ⃗𝐶, 𝐾⃗} to maximize (50.2) subject to (50.5).
Let ⃗𝜇 = {𝜇0, … , 𝜇𝑇 } be a sequence of nonnegative Lagrange multipliers.
To find an optimal allocation, form a Lagrangian

ℒ( ⃗𝐶, 𝐾⃗, ⃗𝜇) =
𝑇

∑
𝑡=0

𝛽𝑡 {𝑢(𝐶𝑡) + 𝜇𝑡 (𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡 − 𝐾𝑡+1)} (50.6)
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and pose the following min-max problem:

min
𝜇⃗

max
⃗𝐶,𝐾⃗

ℒ( ⃗𝐶, 𝐾⃗, ⃗𝜇) (50.7)

• Extremization means maximization with respect to ⃗𝐶, 𝐾⃗ and minimization with respect to ⃗𝜇.
• Our problem satisfies conditions that assure that second-order conditions are satisfied at an allocation that satisfies
the first-order necessary conditions that we are about to compute.

Before computing first-order conditions, we present some handy formulas.

50.3.1 Useful Properties of Linearly Homogeneous Production Function

The following technicalities will help us.

Notice that

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡 = 𝑁𝑡𝐴 (𝐾𝑡
𝑁𝑡

)
𝛼

Define the output per-capita production function

𝐹(𝐾𝑡, 𝑁𝑡)
𝑁𝑡

≡ 𝑓 (𝐾𝑡
𝑁𝑡

) = 𝐴 (𝐾𝑡
𝑁𝑡

)
𝛼

whose argument is capital per-capita.

It is useful to recall the following calculations for the marginal product of capital

𝜕𝐹(𝐾𝑡, 𝑁𝑡)
𝜕𝐾𝑡

=
𝜕𝑁𝑡𝑓 ( 𝐾𝑡

𝑁𝑡
)

𝜕𝐾𝑡

= 𝑁𝑡𝑓 ′ (𝐾𝑡
𝑁𝑡

) 1
𝑁𝑡

(Chain rule)

= 𝑓 ′ (𝐾𝑡
𝑁𝑡

)∣
𝑁𝑡=1

= 𝑓 ′(𝐾𝑡)

(50.8)

and the marginal product of labor

𝜕𝐹(𝐾𝑡, 𝑁𝑡)
𝜕𝑁𝑡

=
𝜕𝑁𝑡𝑓 ( 𝐾𝑡

𝑁𝑡
)

𝜕𝑁𝑡
(Product rule)

= 𝑓 (𝐾𝑡
𝑁𝑡

) +𝑁𝑡𝑓 ′ (𝐾𝑡
𝑁𝑡

) −𝐾𝑡
𝑁2

𝑡
(Chain rule)

= 𝑓 (𝐾𝑡
𝑁𝑡

) −𝐾𝑡
𝑁𝑡

𝑓 ′ (𝐾𝑡
𝑁𝑡

)∣
𝑁𝑡=1

= 𝑓(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡

(Here we are using that 𝑁𝑡 = 1 for all 𝑡, so that 𝐾𝑡 = 𝐾𝑡
𝑁𝑡
.)
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50.3.2 First-order necessary conditions

We now compute first-order necessary conditions for extremization of Lagrangian (50.6):

𝐶𝑡 ∶ 𝑢′(𝐶𝑡) − 𝜇𝑡 = 0 for all 𝑡 = 0, 1, … , 𝑇 (50.9)

𝐾𝑡 ∶ 𝛽𝜇𝑡 [(1 − 𝛿) + 𝑓 ′(𝐾𝑡)] − 𝜇𝑡−1 = 0 for all 𝑡 = 1, 2, … , 𝑇 (50.10)

𝜇𝑡 ∶ 𝐹 (𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡 − 𝐾𝑡+1 = 0 for all 𝑡 = 0, 1, … , 𝑇 (50.11)

𝐾𝑇 +1 ∶ −𝜇𝑇 ≤ 0, ≤ 0 if 𝐾𝑇 +1 = 0; = 0 if 𝐾𝑇 +1 > 0 (50.12)

In computing (50.10) we recognize that 𝐾𝑡 appears in both the time 𝑡 and time 𝑡 − 1 feasibility constraints (50.5).
Restrictions (50.12) come from differentiating with respect to 𝐾𝑇 +1 and applying the following Karush-Kuhn-Tucker
condition (KKT) (see Karush-Kuhn-Tucker conditions):

𝜇𝑇 𝐾𝑇 +1 = 0 (50.13)

Combining (50.9) and (50.10) gives

𝛽𝑢′ (𝐶𝑡) [(1 − 𝛿) + 𝑓 ′ (𝐾𝑡)] − 𝑢′ (𝐶𝑡−1) = 0 for all 𝑡 = 1, 2, … , 𝑇 + 1

which can be rearranged to become

𝛽𝑢′ (𝐶𝑡+1) [(1 − 𝛿) + 𝑓 ′ (𝐾𝑡+1)] = 𝑢′ (𝐶𝑡) for all 𝑡 = 0, 1, … , 𝑇 (50.14)

Applying the inverse marginal utility of consumption function on both sides of the above equation gives

𝐶𝑡+1 = 𝑢′−1 (( 𝛽
𝑢′(𝐶𝑡)

[𝑓 ′(𝐾𝑡+1) + (1 − 𝛿)])
−1

)

which for our utility function (50.3) becomes the consumption Euler equation

𝐶𝑡+1 = (𝛽𝐶𝛾
𝑡 [𝑓 ′(𝐾𝑡+1) + (1 − 𝛿)])1/𝛾 (50.15)

which we can combine with the feasibility constraint (50.5) to get

𝐶𝑡+1 = 𝐶𝑡 (𝛽[𝑓 ′(𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡) + (1 − 𝛿)])1/𝛾

𝐾𝑡+1 = 𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡.
(50.16)

This is a pair of non-linear first-order difference equations that map𝐶𝑡, 𝐾𝑡 into𝐶𝑡+1, 𝐾𝑡+1 and that an optimal sequence
⃗𝐶, 𝐾⃗ must satisfy.

It must also satisfy the initial condition that 𝐾0 is given and 𝐾𝑇 +1 = 0.
Below we define a jitclass that stores parameters and functions that define our economy.

planning_data = [
('γ', float64), # Coefficient of relative risk aversion
('β', float64), # Discount factor
('δ', float64), # Depreciation rate on capital
('α', float64), # Return to capital per capita
('A', float64) # Technology

]
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@jitclass(planning_data)
class PlanningProblem():

def __init__(self, γ=2, β=0.95, δ=0.02, α=0.33, A=1):

self.γ, self.β = γ, β
self.δ, self.α, self.A = δ, α, A

def u(self, c):
'''
Utility function
ASIDE: If you have a utility function that is hard to solve by hand
you can use automatic or symbolic differentiation
See https://github.com/HIPS/autograd
'''
γ = self.γ

return c ** (1 - γ) / (1 - γ) if γ!= 1 else np.log(c)

def u_prime(self, c):
'Derivative of utility'
γ = self.γ

return c ** (-γ)

def u_prime_inv(self, c):
'Inverse of derivative of utility'
γ = self.γ

return c ** (-1 / γ)

def f(self, k):
'Production function'
α, A = self.α, self.A

return A * k ** α

def f_prime(self, k):
'Derivative of production function'
α, A = self.α, self.A

return α * A * k ** (α - 1)

def f_prime_inv(self, k):
'Inverse of derivative of production function'
α, A = self.α, self.A

return (k / (A * α)) ** (1 / (α - 1))

def next_k_c(self, k, c):
''''
Given the current capital Kt and an arbitrary feasible
consumption choice Ct, computes Kt+1 by state transition law
and optimal Ct+1 by Euler equation.
'''
β, δ = self.β, self.δ
u_prime, u_prime_inv = self.u_prime, self.u_prime_inv

(continues on next page)
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(continued from previous page)

f, f_prime = self.f, self.f_prime

k_next = f(k) + (1 - δ) * k - c
c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))

return k_next, c_next

We can construct an economy with the Python code:

pp = PlanningProblem()

50.4 Shooting Algorithm

We use shooting to compute an optimal allocation ⃗𝐶, 𝐾⃗ and an associated Lagrange multiplier sequence ⃗𝜇.
First-order necessary conditions (50.9), (50.10), and (50.11) for the planning problem form a system of difference equa-
tions with two boundary conditions:

• 𝐾0 is a given initial condition for capital

• 𝐾𝑇 +1 = 0 is a terminal condition for capital that we deduced from the first-order necessary condition for 𝐾𝑇 +1
the KKT condition (50.13)

We have no initial condition for the Lagrange multiplier 𝜇0.

If we did, our job would be easy:

• Given 𝜇0 and 𝑘0, we could compute 𝑐0 from equation (50.9) and then 𝑘1 from equation (50.11) and 𝜇1 from
equation (50.10).

• We could continue in this way to compute the remaining elements of ⃗𝐶, 𝐾⃗, ⃗𝜇.
However, we woujld not be assured that the Kuhn-Tucker condition (50.13) would be satisfied.

Furthermore, we don’t have an initial condition for 𝜇0.

So this won’t work.

Indeed, part of our task is to compute the optimal value of 𝜇0.

To compute 𝜇0 and the other objects we want, a simple modification of the above procedure will work.

It is called the shooting algorithm.

It is an instance of a guess and verify algorithm that consists of the following steps:

• Guess an initial Lagrange multiplier 𝜇0.

• Apply the simple algorithm described above.

• Compute 𝐾𝑇 +1 and check whether it equals zero.

• If 𝐾𝑇 +1 = 0, we have solved the problem.
• If 𝐾𝑇 +1 > 0, lower 𝜇0 and try again.

• If 𝐾𝑇 +1 < 0, raise 𝜇0 and try again.

The following Python code implements the shooting algorithm for the planning problem.

(Actually, we modified the preceding algorithm slightly by starting with a guess for 𝑐0 instead of 𝜇0 in the following code.)
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@jit
def shooting(pp, c0, k0, T=10):

'''
Given the initial condition of capital k0 and an initial guess
of consumption c0, computes the whole paths of c and k
using the state transition law and Euler equation for T periods.
'''
if c0 > pp.f(k0) + (1 - pp.δ) * k0:

print("initial consumption is not feasible")

return None

# initialize vectors of c and k
c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.δ) * k_vec[T] - c_vec[T]

return c_vec, k_vec

We’ll start with an incorrect guess.

paths = shooting(pp, 0.2, 0.3, T=10)

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

colors = ['blue', 'red']
titles = ['Consumption', 'Capital']
ylabels = ['$c_t$', '$k_t$']

T = paths[0].size - 1
for i in range(2):

axs[i].plot(paths[i], c=colors[i])
axs[i].set(xlabel='t', ylabel=ylabels[i], title=titles[i])

axs[1].scatter(T+1, 0, s=80)
axs[1].axvline(T+1, color='k', ls='--', lw=1)

plt.show()
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Evidently, our initial guess for 𝜇0 is too high, so initial consumption too low.

We know this because we miss our 𝐾𝑇 +1 = 0 target on the high side.
Now we automate things with a search-for-a-good 𝜇0 algorithm that stops when we hit the target 𝐾𝑡+1 = 0.
We use a bisection method.

We make an initial guess for 𝐶0 (we can eliminate 𝜇0 because 𝐶0 is an exact function of 𝜇0).

We know that the lowest 𝐶0 can ever be is 0 and that the largest it can be is initial output 𝑓(𝐾0).
Guess 𝐶0 and shoot forward to 𝑇 + 1.
If 𝐾𝑇 +1 > 0, we take it to be our new lower bound on 𝐶0.

If 𝐾𝑇 +1 < 0, we take it to be our new upper bound.

Make a new guess for 𝐶0 that is halfway between our new upper and lower bounds.

Shoot forward again, iterating on these steps until we converge.

When 𝐾𝑇 +1 gets close enough to 0 (i.e., within an error tolerance bounds), we stop.
@jit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):

# initial boundaries for guess c0
c0_upper = pp.f(k0) + (1 - pp.δ) * k0
c0_lower = 0

i = 0
while True:

c_vec, k_vec = shooting(pp, c0, k0, T)
error = k_vec[-1] - k_ter

# check if the terminal condition is satisfied
if np.abs(error) < tol:

if verbose:
print('Converged successfully on iteration ', i+1)

return c_vec, k_vec

i += 1
if i == max_iter:

if verbose:

(continues on next page)
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(continued from previous page)

print('Convergence failed.')
return c_vec, k_vec

# if iteration continues, updates boundaries and guess of c0
if error > 0:

c0_lower = c0
else:

c0_upper = c0

c0 = (c0_lower + c0_upper) / 2

def plot_paths(pp, c0, k0, T_arr, k_ter=0, k_ss=None, axs=None):

if axs is None:
fix, axs = plt.subplots(1, 3, figsize=(16, 4))

ylabels = ['$c_t$', '$k_t$', r'$\mu_t$']
titles = ['Consumption', 'Capital', 'Lagrange Multiplier']

c_paths = []
k_paths = []
for T in T_arr:

c_vec, k_vec = bisection(pp, c0, k0, T, k_ter=k_ter, verbose=False)
c_paths.append(c_vec)
k_paths.append(k_vec)

μ_vec = pp.u_prime(c_vec)
paths = [c_vec, k_vec, μ_vec]

for i in range(3):
axs[i].plot(paths[i])
axs[i].set(xlabel='t', ylabel=ylabels[i], title=titles[i])

# Plot steady state value of capital
if k_ss is not None:

axs[1].axhline(k_ss, c='k', ls='--', lw=1)

axs[1].axvline(T+1, c='k', ls='--', lw=1)
axs[1].scatter(T+1, paths[1][-1], s=80)

return c_paths, k_paths

Now we can solve the model and plot the paths of consumption, capital, and Lagrange multiplier.

plot_paths(pp, 0.3, 0.3, [10]);

946 Chapter 50. Cass-Koopmans Model



Intermediate Quantitative Economics with Python

50.5 Setting Initial Capital to Steady State Capital

When 𝑇 → +∞, the optimal allocation converges to steady state values of 𝐶𝑡 and 𝐾𝑡.

It is instructive to set 𝐾0 equal to the lim𝑇 →+∞ 𝐾𝑡, which we’ll call steady state capital.

In a steady state 𝐾𝑡+1 = 𝐾𝑡 = 𝐾̄ for all very large 𝑡.
Evalauating feasibility constraint (50.5) at 𝐾̄ gives

𝑓(𝐾̄) − 𝛿𝐾̄ = ̄𝐶 (50.17)

Substituting 𝐾𝑡 = 𝐾̄ and 𝐶𝑡 = ̄𝐶 for all 𝑡 into (50.14) gives

1 = 𝛽 𝑢′( ̄𝐶)
𝑢′( ̄𝐶) [𝑓 ′(𝐾̄) + (1 − 𝛿)]

Defining 𝛽 = 1
1+𝜌 , and cancelling gives

1 + 𝜌 = 1[𝑓 ′(𝐾̄) + (1 − 𝛿)]

Simplifying gives

𝑓 ′(𝐾̄) = 𝜌 + 𝛿

and

𝐾̄ = 𝑓 ′−1(𝜌 + 𝛿)

For production function (50.4), this becomes

𝛼𝐾̄𝛼−1 = 𝜌 + 𝛿

As an example, after setting 𝛼 = .33, 𝜌 = 1/𝛽 − 1 = 1/(19/20) − 1 = 20/19 − 19/19 = 1/19, 𝛿 = 1/50, we get

𝐾̄ = (
33

100
1

50 + 1
19

)
67

100

≈ 9.57583

Let’s verify this with Python and then use this steady state 𝐾̄ as our initial capital stock 𝐾0.

ρ = 1 / pp.β - 1
k_ss = pp.f_prime_inv(ρ+pp.δ)

print(f'steady state for capital is: {k_ss}')

steady state for capital is: 9.57583816331462

Now we plot

plot_paths(pp, 0.3, k_ss, [150], k_ss=k_ss);
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Evidently, with a large value of 𝑇 , 𝐾𝑡 stays near 𝐾0 until 𝑡 approaches 𝑇 closely.

Let’s see what the planner does when we set 𝐾0 below 𝐾̄.

plot_paths(pp, 0.3, k_ss/3, [150], k_ss=k_ss);

Notice how the planner pushes capital toward the steady state, stays near there for a while, then pushes 𝐾𝑡 toward the
terminal value 𝐾𝑇 +1 = 0 when 𝑡 closely approaches 𝑇 .
The following graphs compare optimal outcomes as we vary 𝑇 .
plot_paths(pp, 0.3, k_ss/3, [150, 75, 50, 25], k_ss=k_ss);
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50.6 A Turnpike Property

The following calculation indicates that when 𝑇 is very large, the optimal capital stock stays close to its steady state value
most of the time.

plot_paths(pp, 0.3, k_ss/3, [250, 150, 50, 25], k_ss=k_ss);

In the above graphs, different colors are associated with different horizons 𝑇 .
Notice that as the horizon increases, the planner keeps 𝐾𝑡 closer to the steady state value 𝐾̄ for longer.

This pattern reflects a turnpike property of the steady state.

A rule of thumb for the planner is

• from 𝐾0, push 𝐾𝑡 toward the steady state and stay close to the steady state until time approaches 𝑇 .
The planner accomplishes this by adjusting the saving rate 𝑓(𝐾𝑡)−𝐶𝑡

𝑓(𝐾𝑡) over time.

Exercise 50.6.1

The turnpike property is independent of the initial condition 𝐾0 provided that 𝑇 is sufficiently large.

Expand the plot_paths function so that it plots trajectories for multiple initial points using k0s = [k_ss*2,
k_ss*3, k_ss/3].

Solution to Exercise 50.6.1

Here is one solution
def plot_multiple_paths(pp, c0, k0s, T_arr, k_ter=0, k_ss=None, axs=None):

if axs is None:
fig, axs = plt.subplots(1, 3, figsize=(16, 4))

ylabels = ['$c_t$', '$k_t$', r'$\mu_t$']
titles = ['Consumption', 'Capital', 'Lagrange Multiplier']

colors = plt.cm.viridis(np.linspace(0, 1, len(k0s)))

all_c_paths = []
all_k_paths = []

for i, k0 in enumerate(k0s):
k0_c_paths = []
k0_k_paths = []
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for T in T_arr:
c_vec, k_vec = bisection(pp, c0, k0, T, k_ter=k_ter, verbose=False)
k0_c_paths.append(c_vec)
k0_k_paths.append(k_vec)

μ_vec = pp.u_prime(c_vec)
paths = [c_vec, k_vec, μ_vec]

for j in range(3):
axs[j].plot(paths[j], color=colors[i],

label=f'$k_0 = {k0:.2f}$' if j == 0 and T == T_arr[0]␣
↪else "", alpha=0.7)

axs[j].set(xlabel='t', ylabel=ylabels[j], title=titles[j])

if k_ss is not None and i == 0 and T == T_arr[0]:
axs[1].axhline(k_ss, c='k', ls='--', lw=1)

axs[1].axvline(T+1, c='k', ls='--', lw=1)
axs[1].scatter(T+1, paths[1][-1], s=80, color=colors[i])

all_c_paths.append(k0_c_paths)
all_k_paths.append(k0_k_paths)

# Add legend if multiple initial points
if len(k0s) > 1:

axs[0].legend()

return all_c_paths, all_k_paths

_ = plot_multiple_paths(pp, 0.3, [k_ss*2, k_ss*3, k_ss/3], [250, 150, 75, 50], k_
↪ss=k_ss)

We see that the turnpike property holds for various initial values of 𝐾0.

Let’s calculate and plot the saving rate.

@jit
def saving_rate(pp, c_path, k_path):

'Given paths of c and k, computes the path of saving rate.'
production = pp.f(k_path[:-1])

return (production - c_path) / production
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def plot_saving_rate(pp, c0, k0, T_arr, k_ter=0, k_ss=None, s_ss=None):

fix, axs = plt.subplots(2, 2, figsize=(12, 9))

c_paths, k_paths = plot_paths(pp, c0, k0, T_arr, k_ter=k_ter, k_ss=k_ss, axs=axs.
↪flatten())

for i, T in enumerate(T_arr):
s_path = saving_rate(pp, c_paths[i], k_paths[i])
axs[1, 1].plot(s_path)

axs[1, 1].set(xlabel='t', ylabel='$s_t$', title='Saving rate')

if s_ss is not None:
axs[1, 1].hlines(s_ss, 0, np.max(T_arr), linestyle='--')

plot_saving_rate(pp, 0.3, k_ss/3, [250, 150, 75, 50], k_ss=k_ss)
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50.7 A Limiting Infinite Horizon Economy

We want to set 𝑇 = +∞.

The appropriate thing to do is to replace terminal condition (50.12) with

lim
𝑇 →+∞

𝛽𝑇 𝑢′(𝐶𝑇 )𝐾𝑇 +1 = 0,

a condition that will be satisfied by a path that converges to an optimal steady state.

We can approximate the optimal path by starting from an arbitrary initial 𝐾0 and shooting towards the optimal steady
state 𝐾 at a large but finite 𝑇 + 1.
In the following code, we do this for a large 𝑇 and plot consumption, capital, and the saving rate.

We know that in the steady state that the saving rate is constant and that ̄𝑠 = 𝑓(𝐾̄)− ̄𝐶
𝑓(𝐾̄) .

From (50.17) the steady state saving rate equals

̄𝑠 = 𝛿𝐾̄
𝑓(𝐾̄)

The steady state saving rate ̄𝑆 = ̄𝑠𝑓(𝐾̄) is the amount required to offset capital depreciation each period.
We first study optimal capital paths that start below the steady state.

# steady state of saving rate
s_ss = pp.δ * k_ss / pp.f(k_ss)

plot_saving_rate(pp, 0.3, k_ss/3, [130], k_ter=k_ss, k_ss=k_ss, s_ss=s_ss)
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Since 𝐾0 < 𝐾̄, 𝑓 ′(𝐾0) > 𝜌 + 𝛿.
The planner chooses a positive saving rate that is higher than the steady state saving rate.

Note that 𝑓″(𝐾) < 0, so as 𝐾 rises, 𝑓 ′(𝐾) declines.
The planner slowly lowers the saving rate until reaching a steady state in which 𝑓 ′(𝐾) = 𝜌 + 𝛿.

50.8 Stable Manifold and Phase Diagram

We now describe a classic diagram that describes an optimal (𝐾𝑡+1, 𝐶𝑡) path.
The diagram has 𝐾 on the ordinate axis and 𝐶 on the coordinate axis.

Given an arbitrary and fixed 𝐾, a fixed point 𝐶 of the consumption Euler equation (50.15) satisfies

𝐶 = 𝐶 (𝛽 [𝑓 ′ (𝑓 (𝐾) + (1 − 𝛿) 𝐾 − 𝐶) + (1 − 𝛿)])1/𝛾

which implies

𝐶 = 𝑓 (𝐾) + (1 − 𝛿) 𝐾 − 𝑓 ′−1 ( 1
𝛽 − (1 − 𝛿))

≡ ̃𝐶 (𝐾)
(50.18)

A positive fixed point 𝐶 = ̃𝐶(𝐾) exists only if 𝑓 (𝐾) + (1 − 𝛿) 𝐾 − 𝑓 ′−1 ( 1
𝛽 − (1 − 𝛿)) > 0
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@jit
def C_tilde(K, pp):

return pp.f(K) + (1 - pp.δ) * K - pp.f_prime_inv(1 / pp.β - 1 + pp.δ)

Next note that given a time-invariant arbitrary 𝐶, a fixed point 𝐾 of the feasibility condition (50.5) solves the following
equation

𝐾 = 𝑓(𝐾) + (1 − 𝛿𝐾) − 𝐶.

A fixed point of the above equation is described by a function

𝐾 = 𝐾̃(𝐶) (50.19)

@jit
def K_diff(K, C, pp):

return pp.f(K) - pp.δ * K - C

@jit
def K_tilde(C, pp):

res = brentq(K_diff, 1e-6, 100, args=(C, pp))

return res.root

A steady state (𝐾𝑠, 𝐶𝑠) is a pair (𝐾, 𝐶) that satisfies both equations (50.18) and (50.19).
It is thus the intersection of the two curves ̃𝐶 and 𝐾̃ that we’ll plot in Figure Fig. 50.1 below.

We can compute 𝐾𝑠 by solving the equation 𝐾𝑠 = 𝐾̃ ( ̃𝐶 (𝐾𝑠))
@jit
def K_tilde_diff(K, pp):

K_out = K_tilde(C_tilde(K, pp), pp)

return K - K_out

res = brentq(K_tilde_diff, 8, 10, args=(pp,))

Ks = res.root
Cs = C_tilde(Ks, pp)

Ks, Cs

(9.575838163314447, 1.9160839808123402)

We can use the shooting algorithm to compute trajectories that approach (𝐾𝑠, 𝐶𝑠).
For a given 𝐾, let’s compute ⃗𝐶 and 𝐾⃗ for a large 𝑇 , e.g., = 200.
We compute 𝐶0 by the bisection algorithm that assures that 𝐾𝑇 = 𝐾𝑠.

Let’s compute two trajectories towards (𝐾𝑠, 𝐶𝑠) that start from different sides of 𝐾𝑠: 𝐾̄0 = 1𝑒 − 3 < 𝐾𝑠 < 𝐾̄1 = 15.
c_vec1, k_vec1 = bisection(pp, 5, 15, T=200, k_ter=Ks)
c_vec2, k_vec2 = bisection(pp, 1e-3, 1e-3, T=200, k_ter=Ks)
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Converged successfully on iteration 46
Converged successfully on iteration 51

The following code generates Figure Fig. 50.1, which is patterned on a graph that appears on page 411 of [Intriligator,
2002].

Figure Fig. 50.1 is a classic “phase plane” with “state” variable 𝐾 on the ordinate axis and “co-state” variable 𝐶 on the
coordinate axis.

Figure Fig. 50.1 plots three curves:

• the blue line graphs 𝐶 = ̃𝐶(𝐾) of fixed points described by equation (50.18).
• the red line graphs 𝐾 = 𝐾̃(𝐶) of fixed points described by equation (50.19)
• the green line graphs the stable traced out by paths that converge to the steady state starting from an arbitrary 𝐾0
at time 0.

– for a given 𝐾0, the shooting algorithm sets 𝐶0 to the coordinate on the green line in order to initiate a path
that converges to the optimal steady state

– the arrows on the green line show the direction in which dynamics (50.16) push successive (𝐾𝑡+1, 𝐶𝑡) pairs.
In addition to the three curves, Figure Fig. 50.1 plots arrows that point where the dynamics (50.16) drive the system
when, for a given 𝐾0, 𝐶0 is not on the stable manifold depicted in the green line.

• If 𝐶0 is set below the green line for a given 𝐾0, too much capital is accumulated

• If 𝐶0 is set above the green line for a given 𝐾0, too little capital is accumulated

50.9 Concluding Remarks

In Cass-Koopmans Competitive Equilibrium, we study a decentralized version of an economy with exactly the same tech-
nology and preference structure as deployed here.

In that lecture, we replace the planner of this lecture with Adam Smith’s invisible hand.

In place of quantity choices made by the planner, there are market prices that are set by a deus ex machina from outside
the model, a so-called invisible hand.

Equilibrium market prices must reconcile distinct decisions that are made independently by a representative household
and a representative firm.

The relationship between a command economy like the one studied in this lecture and a market economy like that studied
in Cass-Koopmans Competitive Equilibrium is a foundational topic in general equilibrium theory and welfare economics.

50.9.1 Exercise

Exercise 50.9.1

• Plot the optimal consumption, capital, and saving paths when the initial capital level begins at 1.5 times the
steady state level as we shoot towards the steady state at 𝑇 = 130.

• Why does the saving rate respond as it does?
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Fig. 50.1: Stable Manifold and Phase Plane
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Solution to Exercise 50.9.1

plot_saving_rate(pp, 0.3, k_ss*1.5, [130], k_ter=k_ss, k_ss=k_ss, s_ss=s_ss)
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CHAPTER

FIFTYONE

CASS-KOOPMANS COMPETITIVE EQUILIBRIUM

Contents

• Cass-Koopmans Competitive Equilibrium

– Overview

– Review of Cass-Koopmans Model

– Competitive Equilibrium

– Market Structure

– Firm Problem

– Household Problem

– Computing a Competitive Equilibrium

– Yield Curves and Hicks-Arrow Prices

51.1 Overview

This lecture continues our analysis in this lectureCass-Koopmans PlanningModel about the model that Tjalling Koopmans
[Koopmans, 1965] and David Cass [Cass, 1965] used to study optimal capital accumulation.

This lecture illustrates what is, in fact, a more general connection between a planned economy and an economy organized
as a competitive equilibrium or a market economy.

The earlier lecture Cass-Koopmans Planning Model studied a planning problem and used ideas including

• A Lagrangian formulation of the planning problem that leads to a system of difference equations.

• A shooting algorithm for solving difference equations subject to initial and terminal conditions.

• A turnpike property that describes optimal paths for long-but-finite horizon economies.

The present lecture uses additional ideas including

• Hicks-Arrow prices, named after John R. Hicks and Kenneth Arrow.

• A connection between some Lagrange multipliers from the planning problem and the Hicks-Arrow prices.

• A Big 𝐾 , little 𝑘 trick widely used in macroeconomic dynamics.

– We shall encounter this trick in this lecture and also in this lecture.
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• A non-stochastic version of a theory of the term structure of interest rates.

• An intimate connection between two ways to organize an economy, namely:

– socialism in which a central planner commands the allocation of resources, and

– competitive markets in which competitive equilibrium prices induce individual consumers and producers
to choose a socially optimal allocation as unintended consequences of their selfish decisions

Let’s start with some standard imports:

import matplotlib.pyplot as plt
from numba import jit, float64
from numba.experimental import jitclass
import numpy as np

51.2 Review of Cass-Koopmans Model

The physical setting is identical with that in Cass-Koopmans Planning Model.

Time is discrete and takes values 𝑡 = 0, 1, … , 𝑇 .
Output of a single good can either be consumed or invested in physical capital.

The capital good is durable but partially depreciates each period at a constant rate.

We let 𝐶𝑡 be a nondurable consumption good at time t.

Let 𝐾𝑡 be the stock of physical capital at time t.

Let ⃗𝐶 = {𝐶0, … , 𝐶𝑇 } and 𝐾⃗ = {𝐾0, … , 𝐾𝑇 +1}.
A representative household is endowed with one unit of labor at each 𝑡 and likes the consumption good at each 𝑡.
The representative household inelastically supplies a single unit of labor 𝑁𝑡 at each 𝑡, so that 𝑁𝑡 = 1 for all 𝑡 ∈
{0, 1, … , 𝑇 }.
The representative household has preferences over consumption bundles ordered by the utility functional:

𝑈( ⃗𝐶) =
𝑇

∑
𝑡=0

𝛽𝑡 𝐶1−𝛾
𝑡

1 − 𝛾

where 𝛽 ∈ (0, 1) is a discount factor and 𝛾 > 0 governs the curvature of the one-period utility function.
We assume that 𝐾0 > 0.
There is an economy-wide production function

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡

with 0 < 𝛼 < 1, 𝐴 > 0.
A feasible allocation ⃗𝐶, 𝐾⃗ satisfies

𝐶𝑡 + 𝐾𝑡+1 ≤ 𝐹(𝐾𝑡, 𝑁𝑡) + (1 − 𝛿)𝐾𝑡 for all 𝑡 ∈ {0, 1, … , 𝑇 }

where 𝛿 ∈ (0, 1) is a depreciation rate of capital.
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51.2.1 Planning Problem

In this lecture Cass-Koopmans Planning Model, we studied a problem in which a planner chooses an allocation { ⃗𝐶, 𝐾⃗}
to maximize (50.2) subject to (50.5).

The allocation that solves the planning problem reappears in a competitive equilibrium, as we shall see below.

51.3 Competitive Equilibrium

We now study a decentralized version of the economy.

It shares the same technology and preference structure as the planned economy studied in this lecture Cass-Koopmans
Planning Model.

But now there is no planner.

There are (unit masses of) price-taking consumers and firms.

Market prices are set to reconcile distinct decisions that are made separately by a representative consumer and a repre-
sentative firm.

There is a representative consumer who has the same preferences over consumption plans as did a consumer in the planned
economy.

Instead of being told what to consume and save by a planner, a consumer (also known as a household) chooses for itself
subject to a budget constraint.

• At each time 𝑡, the consumer receives wages and rentals of capital from a firm – these comprise its income at time
𝑡.

• The consumer decides how much income to allocate to consumption or to savings.

• The household can save either by acquiring additional physical capital (it trades one for one with time 𝑡 consump-
tion) or by acquiring claims on consumption at dates other than 𝑡.

• The household owns physical capital and labor and rents them to the firm.

• The household consumes, supplies labor, and invests in physical capital.

• A profit-maximizing representative firm operates the production technology.

• The firm rents labor and capital each period from the representative household and sells its output each period to
the household.

• The representative household and the representative firm are both price takers who believe that prices are not
affected by their choices

Note

Again, we can think of there being unit measures of identical representative consumers and identical representative
firms.
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51.4 Market Structure

The representative household and the representative firm are both price takers.

The household owns both factors of production, namely, labor and physical capital.

Each period, the firm rents both factors from the household.

There is a single grand competitive market in which a household trades date 0 goods for goods at all other dates 𝑡 =
1, 2, … , 𝑇 .

51.4.1 Prices

There are sequences of prices {𝑤𝑡, 𝜂𝑡}𝑇
𝑡=0 = {𝑤⃗, ⃗𝜂} where

• 𝑤𝑡 is a wage, i.e., a rental rate, for labor at time 𝑡
• 𝜂𝑡 is a rental rate for capital at time 𝑡

In addition there is a vector {𝑞0
𝑡 } of intertemporal prices where

• 𝑞0
𝑡 is the price at time 0 of one unit of the good at date 𝑡.

We call {𝑞0
𝑡 }𝑇

𝑡=0 a vector of Hicks-Arrow prices, named after the 1972 economics Nobel prize winners.

Because is a relative price. the unit of account in terms of which the prices 𝑞0
𝑡 are stated is; we are free to re-normalize

them by multiplying all of them by a positive scalar, say 𝜆 > 0.
Units of 𝑞0

𝑡 could be set so that they are

number of time 0 goods
number of time t goods

In this case, we would be taking the time 0 consumption good to be the numeraire.

51.5 Firm Problem

At time 𝑡 a representative firm hires labor 𝑛̃𝑡 and capital 𝑘̃𝑡.

The firm’s profits at time 𝑡 are

𝐹(𝑘̃𝑡, 𝑛̃𝑡) − 𝑤𝑡𝑛̃𝑡 − 𝜂𝑡𝑘̃𝑡

where 𝑤𝑡 is a wage rate at 𝑡 and 𝜂𝑡 is the rental rate on capital at 𝑡.
As in the planned economy model

𝐹(𝑘̃𝑡, 𝑛̃𝑡) = 𝐴𝑘̃𝛼
𝑡 𝑛̃1−𝛼

𝑡
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51.5.1 Zero Profit Conditions

Zero-profits conditions for capital and labor are

𝐹𝑘(𝑘̃𝑡, 𝑛̃𝑡) = 𝜂𝑡

and

𝐹𝑛(𝑘̃𝑡, 𝑛̃𝑡) = 𝑤𝑡 (51.1)

These conditions emerge from a no-arbitrage requirement.

To describe this no-arbitrage profits reasoning, we begin by applying a theorem of Euler about linearly homogenous
functions.

The theorem applies to the Cobb-Douglas production function because we it displays constant returns to scale:

𝛼𝐹(𝑘̃𝑡, 𝑛̃𝑡) = 𝐹(𝛼𝑘̃𝑡, 𝛼𝑛̃𝑡)
for 𝛼 ∈ (0, 1).
Taking partial derivatives 𝜕

𝜕𝛼 on both sides of the above equation gives

𝐹(𝑘̃𝑡, 𝑛̃𝑡) = 𝜕𝐹
𝜕𝑘̃𝑡

𝑘̃𝑡 + 𝜕𝐹
𝜕𝑛̃𝑡

𝑛̃𝑡

Rewrite the firm’s profits as

𝜕𝐹
𝜕𝑘̃𝑡

𝑘̃𝑡 + 𝜕𝐹
𝜕𝑛̃𝑡

𝑛̃𝑡 − 𝑤𝑡𝑛̃𝑡 − 𝜂𝑡𝑘𝑡

or

( 𝜕𝐹
𝜕𝑘̃𝑡

− 𝜂𝑡) 𝑘̃𝑡 + ( 𝜕𝐹
𝜕𝑛̃𝑡

− 𝑤𝑡) 𝑛̃𝑡

Because 𝐹 is homogeneous of degree 1, it follows that 𝜕𝐹
𝜕𝑘̃𝑡

and 𝜕𝐹
𝜕𝑛̃𝑡

are homogeneous of degree 0 and therefore fixed

with respect to 𝑘̃𝑡 and 𝑛̃𝑡.

If 𝜕𝐹
𝜕𝑘̃𝑡

> 𝜂𝑡, then the firm makes positive profits on each additional unit of 𝑘̃𝑡, so it would want to make 𝑘̃𝑡 arbitrarily
large.

But setting 𝑘̃𝑡 = +∞ is not physically feasible, so equilibrium prices must take values that present the firm with no such
arbitrage opportunity.

A similar argument applies if 𝜕𝐹
𝜕𝑛̃𝑡

> 𝑤𝑡.

If 𝜕𝑘̃𝑡
𝜕𝑘̃𝑡

< 𝜂𝑡, the firm would want to set 𝑘̃𝑡 to zero, which is not feasible.

It is convenient to define 𝑤⃗ = {𝑤0, … , 𝑤𝑇 } and ⃗𝜂 = {𝜂0, … , 𝜂𝑇 }.

51.6 Household Problem

A representative household lives at 𝑡 = 0, 1, … , 𝑇 .
At 𝑡, the household rents 1 unit of labor and 𝑘𝑡 units of capital to a firm and receives income

𝑤𝑡1 + 𝜂𝑡𝑘𝑡

At 𝑡 the household allocates its income to the following purchases between the following two categories:
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• consumption 𝑐𝑡

• net investment 𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡

Here (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) is the household’s net investment in physical capital and 𝛿 ∈ (0, 1) is again a depreciation rate
of capital.

In period 𝑡, the consumer is free to purchase more goods to be consumed and invested in physical capital than its income
from supplying capital and labor to the firm, provided that in some other periods its income exceeds its purchases.

A consumer’s net excess demand for time 𝑡 consumption goods is the gap

𝑒𝑡 ≡ (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡)) − (𝑤𝑡1 + 𝜂𝑡𝑘𝑡)

Let ⃗𝑐 = {𝑐0, … , 𝑐𝑇 } and let 𝑘⃗ = {𝑘1, … , 𝑘𝑇 +1}.
𝑘0 is given to the household.

The household faces a single budget constraint that requires that the present value of the household’s net excess demands
must be zero:

𝑇
∑
𝑡=0

𝑞0
𝑡 𝑒𝑡 ≤ 0

or

𝑇
∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡)) ≤

𝑇
∑
𝑡=0

𝑞0
𝑡 (𝑤𝑡1 + 𝜂𝑡𝑘𝑡)

The household faces price system {𝑞0
𝑡 , 𝑤𝑡, 𝜂𝑡} as a price-taker and chooses an allocation to solve the constrained opti-

mization problem:

max
⃗𝑐,𝑘⃗

𝑇
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to
𝑇

∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) − (𝑤𝑡 − 𝜂𝑡𝑘𝑡)) ≤ 0

Components of a price system have the following units:

• 𝑤𝑡 is measured in units of the time 𝑡 good per unit of time 𝑡 labor hired
• 𝜂𝑡 is measured in units of the time 𝑡 good per unit of time 𝑡 capital hired
• 𝑞0

𝑡 is measured in units of a numeraire per unit of the time 𝑡 good

51.6.1 Definitions

• A price system is a sequence {𝑞0
𝑡 , 𝜂𝑡, 𝑤𝑡}𝑇

𝑡=0 = { ⃗𝑞, ⃗𝜂, 𝑤⃗}.
• An allocation is a sequence {𝑐𝑡, 𝑘𝑡+1, 𝑛𝑡 = 1}𝑇

𝑡=0 = { ⃗𝑐, 𝑘⃗, 𝑛⃗}.
• A competitive equilibrium is a price system and an allocation with the following properties:

– Given the price system, the allocation solves the household’s problem.

– Given the price system, the allocation solves the firm’s problem.

The vision here is that an equilibrium price system and allocation are determined once and for all.

In effect, we imagine that all trades occur just before time 0.
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51.7 Computing a Competitive Equilibrium

We compute a competitive equilibrium by using a guess and verify approach.

• We guess equilibrium price sequences { ⃗𝑞, ⃗𝜂, 𝑤⃗}.
• We then verify that at those prices, the household and the firm choose the same allocation.

51.7.1 Guess for Price System

In this lecture Cass-Koopmans Planning Model, we computed an allocation { ⃗𝐶, 𝐾⃗, ⃗𝑁} that solves a planning problem.
We use that allocation to construct a guess for the equilibrium price system.

Note

This allocation will constitute the Big 𝐾 to be in the present instance of the Big 𝐾 , little 𝑘 trick that we’ll apply to
a competitive equilibrium in the spirit of this lecture and this lecture.

In particular, we shall use the following procedure:

• obtain first-order conditions for the representative firm and the representative consumer.

• from these equations, obtain a new set of equations by replacing the firm’s choice variables 𝑘̃, 𝑛̃ and the consumer’s
choice variables with the quantities ⃗𝐶, 𝐾⃗ that solve the planning problem.

• solve the resulting equations for { ⃗𝑞, ⃗𝜂, 𝑤⃗} as functions of ⃗𝐶, 𝐾⃗.

• verify that at these prices, 𝑐𝑡 = 𝐶𝑡, 𝑘𝑡 = 𝑘̃𝑡 = 𝐾𝑡, 𝑛̃𝑡 = 1 for 𝑡 = 0, 1, … , 𝑇 .
Thus, we guess that for 𝑡 = 0, … , 𝑇 :

𝑞0
𝑡 = 𝛽𝑡𝑢′(𝐶𝑡) (51.2)

𝑤𝑡 = 𝑓(𝐾𝑡) − 𝐾𝑡𝑓 ′(𝐾𝑡) (51.3)

𝜂𝑡 = 𝑓 ′(𝐾𝑡) (51.4)

At these prices, let capital chosen by the household be

𝑘∗
𝑡( ⃗𝑞, 𝑤⃗, ⃗𝜂), 𝑡 ≥ 0 (51.5)

and let the allocation chosen by the firm be

𝑘̃∗
𝑡( ⃗𝑞, 𝑤⃗, ⃗𝜂), 𝑡 ≥ 0

and so on.

If our guess for the equilibrium price system is correct, then it must occur that

𝑘∗
𝑡 = 𝑘̃∗

𝑡 (51.6)

1 = 𝑛̃∗
𝑡 (51.7)

𝑐∗
𝑡 + 𝑘∗

𝑡+1 − (1 − 𝛿)𝑘∗
𝑡 = 𝐹(𝑘̃∗

𝑡 , 𝑛̃∗
𝑡)

We shall verify that for 𝑡 = 0, … , 𝑇 allocations chosen by the household and the firm both equal the allocation that solves
the planning problem:

𝑘∗
𝑡 = 𝑘̃∗

𝑡 = 𝐾𝑡, 𝑛̃𝑡 = 1, 𝑐∗
𝑡 = 𝐶𝑡 (51.8)
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51.7.2 Verification Procedure

Our approach is firsts to stare at first-order necessary conditions for optimization problems of the household and the firm.

At the price system we have guessed, we’ll then verify that both sets of first-order conditions are satisfied at the allocation
that solves the planning problem.

51.7.3 Household’s Lagrangian

To solve the household’s problem, we formulate the Lagrangian

ℒ( ⃗𝑐, 𝑘⃗, 𝜆) =
𝑇

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) + 𝜆 (
𝑇

∑
𝑡=0

𝑞0
𝑡 (((1 − 𝛿)𝑘𝑡 − 𝑤𝑡) + 𝜂𝑡𝑘𝑡 − 𝑐𝑡 − 𝑘𝑡+1))

and attack the min-max problem:

min
𝜆

max
⃗𝑐,𝑘⃗

ℒ( ⃗𝑐, 𝑘⃗, 𝜆)

First-order conditions are

𝑐𝑡 ∶ 𝛽𝑡𝑢′(𝑐𝑡) − 𝜆𝑞0
𝑡 = 0 𝑡 = 0, 1, … , 𝑇 (51.9)

𝑘𝑡 ∶ −𝜆𝑞0
𝑡 [(1 − 𝛿) + 𝜂𝑡] + 𝜆𝑞0

𝑡−1 = 0 𝑡 = 1, 2, … , 𝑇 + 1 (51.10)

𝜆 ∶ (
𝑇

∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) − 𝑤𝑡 − 𝜂𝑡𝑘𝑡)) ≤ 0 (51.11)

𝑘𝑇 +1 ∶ −𝜆𝑞𝑇 +1
0 ≤ 0, ≤ 0 if 𝑘𝑇 +1 = 0; = 0 if 𝑘𝑇 +1 > 0 (51.12)

Now we plug in our guesses of prices and do some algebra in the hope of recovering all first-order necessary conditions
(50.9)-(50.12) for the planning problem from this lecture Cass-Koopmans Planning Model.

Combining (51.9) and (51.2), we get:

𝑢′(𝐶𝑡) = 𝜇𝑡

which is (50.9).

Combining (51.10), (51.2), and (51.4), we get:

−𝜆𝛽𝑡𝜇𝑡 [(1 − 𝛿) + 𝑓 ′(𝐾𝑡)] + 𝜆𝛽𝑡−1𝜇𝑡−1 = 0 (51.13)

Rewriting (51.13) by dividing by 𝜆 on both sides (which is nonzero since u’>0) we get:

𝛽𝑡𝜇𝑡[(1 − 𝛿 + 𝑓 ′(𝐾𝑡)] = 𝛽𝑡−1𝜇𝑡−1

or

𝛽𝜇𝑡[(1 − 𝛿 + 𝑓 ′(𝐾𝑡)] = 𝜇𝑡−1

which is (50.10).

Combining (51.11), (51.2), (51.3) and (51.4) after multiplying both sides of (51.11) by 𝜆, we get
𝑇

∑
𝑡=0

𝛽𝑡𝜇𝑡 (𝐶𝑡 + (𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡) − 𝑓(𝐾𝑡) + 𝐾𝑡𝑓 ′(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡) ≤ 0
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which simplifies to

𝑇
∑
𝑡=0

𝛽𝑡𝜇𝑡 (𝐶𝑡 + 𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡 − 𝐹(𝐾𝑡, 1)) ≤ 0

Since 𝛽𝑡𝜇𝑡 > 0 for 𝑡 = 0, … , 𝑇 , it follows that
𝐶𝑡 + 𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡 − 𝐹(𝐾𝑡, 1) = 0 for all 𝑡 in {0, 1, … , 𝑇 }

which is (50.11).

Combining (51.12) and (51.2), we get:

−𝛽𝑇 +1𝜇𝑇 +1 ≤ 0

Dividing both sides by 𝛽𝑇 +1 gives

−𝜇𝑇 +1 ≤ 0

which is (50.12) for the planning problem.

Thus, at our guess of the equilibrium price system, the allocation that solves the planning problem also solves the problem
faced by a representative household living in a competitive equilibrium.

51.7.4 Representative Firm’s Problem

We now turn to the problem faced by a firm in a competitive equilibrium:

If we plug (51.8) into (51.1) for all t, we get

𝜕𝐹(𝐾𝑡, 1)
𝜕𝐾𝑡

= 𝑓 ′(𝐾𝑡) = 𝜂𝑡

which is (51.4).

If we now plug (51.8) into (51.1) for all t, we get:

𝜕𝐹(𝐾̃𝑡, 1)
𝜕𝐿̃𝑡

= 𝑓(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡 = 𝑤𝑡

which is exactly (51.5).

Thus, at our guess for the equilibrium price system, the allocation that solves the planning problem also solves the problem
faced by a firm within a competitive equilibrium.

By (51.6) and (51.7) this allocation is identical to the one that solves the consumer’s problem.

Note

Because budget sets are affected only by relative prices, {𝑞0
𝑡 } is determined only up to multiplication by a positive

constant.

Normalization: We are free to choose a {𝑞0
𝑡 } that makes 𝜆 = 1 so that we are measuring 𝑞0

𝑡 in units of the marginal
utility of time 0 goods.
We will plot 𝑞, 𝑤, 𝜂 below to show these equilibrium prices induce the same aggregate movements that we saw earlier in
the planning problem.

To proceed, we bring in Python code that Cass-Koopmans Planning Model used to solve the planning problem

First let’s define a jitclass that stores parameters and functions the characterize an economy.
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planning_data = [
('γ', float64), # Coefficient of relative risk aversion
('β', float64), # Discount factor
('δ', float64), # Depreciation rate on capital
('α', float64), # Return to capital per capita
('A', float64) # Technology

]

@jitclass(planning_data)
class PlanningProblem():

def __init__(self, γ=2, β=0.95, δ=0.02, α=0.33, A=1):

self.γ, self.β = γ, β
self.δ, self.α, self.A = δ, α, A

def u(self, c):
'''
Utility function
ASIDE: If you have a utility function that is hard to solve by hand
you can use automatic or symbolic differentiation
See https://github.com/HIPS/autograd
'''
γ = self.γ

return c ** (1 - γ) / (1 - γ) if γ!= 1 else np.log(c)

def u_prime(self, c):
'Derivative of utility'
γ = self.γ

return c ** (-γ)

def u_prime_inv(self, c):
'Inverse of derivative of utility'
γ = self.γ

return c ** (-1 / γ)

def f(self, k):
'Production function'
α, A = self.α, self.A

return A * k ** α

def f_prime(self, k):
'Derivative of production function'
α, A = self.α, self.A

return α * A * k ** (α - 1)

def f_prime_inv(self, k):
'Inverse of derivative of production function'
α, A = self.α, self.A

return (k / (A * α)) ** (1 / (α - 1))

(continues on next page)
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(continued from previous page)

def next_k_c(self, k, c):
''''
Given the current capital Kt and an arbitrary feasible
consumption choice Ct, computes Kt+1 by state transition law
and optimal Ct+1 by Euler equation.
'''
β, δ = self.β, self.δ
u_prime, u_prime_inv = self.u_prime, self.u_prime_inv
f, f_prime = self.f, self.f_prime

k_next = f(k) + (1 - δ) * k - c
c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))

return k_next, c_next

@jit
def shooting(pp, c0, k0, T=10):

'''
Given the initial condition of capital k0 and an initial guess
of consumption c0, computes the whole paths of c and k
using the state transition law and Euler equation for T periods.
'''
if c0 > pp.f(k0):

print("initial consumption is not feasible")

return None

# initialize vectors of c and k
c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.δ) * k_vec[T] - c_vec[T]

return c_vec, k_vec

@jit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):

# initial boundaries for guess c0
c0_upper = pp.f(k0)
c0_lower = 0

i = 0
while True:

c_vec, k_vec = shooting(pp, c0, k0, T)
error = k_vec[-1] - k_ter

# check if the terminal condition is satisfied
if np.abs(error) < tol:

if verbose:

(continues on next page)
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(continued from previous page)

print('Converged successfully on iteration ', i+1)
return c_vec, k_vec

i += 1
if i == max_iter:

if verbose:
print('Convergence failed.')

return c_vec, k_vec

# if iteration continues, updates boundaries and guess of c0
if error > 0:

c0_lower = c0
else:

c0_upper = c0

c0 = (c0_lower + c0_upper) / 2

pp = PlanningProblem()

# Steady states
ρ = 1 / pp.β - 1
k_ss = pp.f_prime_inv(ρ+pp.δ)
c_ss = pp.f(k_ss) - pp.δ * k_ss

The above code from this lecture Cass-Koopmans Planning Model lets us compute an optimal allocation for the planning
problem.

• from the preceding analysis, we know that it will also be an allocation associated with a competitive equilibium.

Now we’re ready to bring in Python code that we require to compute additional objects that appear in a competitive
equilibrium.

@jit
def q(pp, c_path):

# Here we choose numeraire to be u'(c_0) -- this is q^(t_0)_t
T = len(c_path) - 1
q_path = np.ones(T+1)
q_path[0] = 1
for t in range(1, T+1):

q_path[t] = pp.β ** t * pp.u_prime(c_path[t])
return q_path

@jit
def w(pp, k_path):

w_path = pp.f(k_path) - k_path * pp.f_prime(k_path)
return w_path

@jit
def η(pp, k_path):

η_path = pp.f_prime(k_path)
return η_path

Now we calculate and plot for each 𝑇
T_arr = [250, 150, 75, 50]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))

(continues on next page)
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(continued from previous page)

titles = ['Arrow-Hicks Prices', 'Labor Rental Rate', 'Capital Rental Rate',
'Consumption', 'Capital', 'Lagrange Multiplier']

ylabels = ['$q_t^0$', '$w_t$', r'$\eta_t$', '$c_t$', '$k_t$', r'$\mu_t$']

for T in T_arr:
c_path, k_path = bisection(pp, 0.3, k_ss/3, T, verbose=False)
μ_path = pp.u_prime(c_path)

q_path = q(pp, c_path)
w_path = w(pp, k_path)[:-1]
η_path = η(pp, k_path)[:-1]
paths = [q_path, w_path, η_path, c_path, k_path, μ_path]

for i, ax in enumerate(axs.flatten()):
ax.plot(paths[i])
ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
if titles[i] == 'Capital':

ax.axhline(k_ss, lw=1, ls='--', c='k')
if titles[i] == 'Consumption':

ax.axhline(c_ss, lw=1, ls='--', c='k')

plt.tight_layout()
plt.show()

Varying Curvature

Now we see how our results change if we keep 𝑇 constant, but allow the curvature parameter, 𝛾 to vary, starting with 𝐾0
below the steady state.

We plot the results for 𝑇 = 150
T = 150
γ_arr = [1.1, 4, 6, 8]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))

(continues on next page)
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(continued from previous page)

for γ in γ_arr:
pp_γ = PlanningProblem(γ=γ)
c_path, k_path = bisection(pp_γ, 0.3, k_ss/3, T, verbose=False)
μ_path = pp_γ.u_prime(c_path)

q_path = q(pp_γ, c_path)
w_path = w(pp_γ, k_path)[:-1]
η_path = η(pp_γ, k_path)[:-1]
paths = [q_path, w_path, η_path, c_path, k_path, μ_path]

for i, ax in enumerate(axs.flatten()):
ax.plot(paths[i], label=fr'$\gamma = {γ}$')
ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
if titles[i] == 'Capital':

ax.axhline(k_ss, lw=1, ls='--', c='k')
if titles[i] == 'Consumption':

ax.axhline(c_ss, lw=1, ls='--', c='k')

axs[0, 0].legend()
plt.tight_layout()
plt.show()

Adjusting 𝛾 means adjusting how much individuals prefer to smooth consumption.

Higher 𝛾 means individuals prefer to smooth more resulting in slower convergence to a steady state allocation.

Lower 𝛾 means individuals prefer to smooth less, resulting in faster convergence to a steady state allocation.
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51.8 Yield Curves and Hicks-Arrow Prices

We return to Hicks-Arrow prices and calculate how they are related to yields on loans of alternative maturities.

This will let us plot a yield curve that graphs yields on bonds of maturities 𝑗 = 1, 2, … against 𝑗 = 1, 2, ….

We use the following formulas.

A yield to maturity on a loan made at time 𝑡0 that matures at time 𝑡 > 𝑡0

𝑟𝑡0,𝑡 = − log 𝑞𝑡0
𝑡

𝑡 − 𝑡0

A Hicks-Arrow price system for a base-year 𝑡0 ≤ 𝑡 satisfies

𝑞𝑡0
𝑡 = 𝛽𝑡−𝑡0

𝑢′(𝑐𝑡)
𝑢′(𝑐𝑡0

) = 𝛽𝑡−𝑡0
𝑐−𝛾

𝑡
𝑐−𝛾

𝑡0

We redefine our function for 𝑞 to allow arbitrary base years, and define a new function for 𝑟, then plot both.
We begin by continuing to assume that 𝑡0 = 0 and plot things for different maturities 𝑡 = 𝑇 , with 𝐾0 below the steady
state

@jit
def q_generic(pp, t0, c_path):

# simplify notations
β = pp.β
u_prime = pp.u_prime

T = len(c_path) - 1
q_path = np.zeros(T+1-t0)
q_path[0] = 1
for t in range(t0+1, T+1):

q_path[t-t0] = β ** (t-t0) * u_prime(c_path[t]) / u_prime(c_path[t0])
return q_path

@jit
def r(pp, t0, q_path):

'''Yield to maturity'''
r_path = - np.log(q_path[1:]) / np.arange(1, len(q_path))
return r_path

def plot_yield_curves(pp, t0, c0, k0, T_arr):

fig, axs = plt.subplots(1, 2, figsize=(10, 5))

for T in T_arr:
c_path, k_path = bisection(pp, c0, k0, T, verbose=False)
q_path = q_generic(pp, t0, c_path)
r_path = r(pp, t0, q_path)

axs[0].plot(range(t0, T+1), q_path)
axs[0].set(xlabel='t', ylabel='$q_t^0$', title='Hicks-Arrow Prices')

axs[1].plot(range(t0+1, T+1), r_path)
axs[1].set(xlabel='t', ylabel='$r_t^0$', title='Yields')
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T_arr = [150, 75, 50]
plot_yield_curves(pp, 0, 0.3, k_ss/3, T_arr)

Now we plot when 𝑡0 = 20
plot_yield_curves(pp, 20, 0.3, k_ss/3, T_arr)
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CHAPTER

FIFTYTWO

CASS-KOOPMANS MODEL WITH DISTORTING TAXES

52.1 Overview

This lecture studies effects of foreseen fiscal and technology shocks on competitive equilibrium prices and quantities
in a nonstochastic version of a Cass-Koopmans growth model with features described in this QuantEcon lecture Cass-
Koopmans Competitive Equilibrium.

This model is discussed in more detail in chapter 11 of [Ljungqvist and Sargent, 2018].

We use the model as a laboratory to experiment with numerical techniques for approximating equilibria and to display
the structure of dynamic models in which decision makers have perfect foresight about future government decisions.

Following a classic paper by Robert E. Hall [Hall, 1971], we augment a nonstochastic version of the Cass-Koopmans op-
timal growth model with a government that purchases a stream of goods and that finances its purchases with an sequences
of several distorting flat-rate taxes.

Distorting taxes prevent a competitive equilibrium allocation from solving a planning problem.

Therefore, to compute an equilibrium allocation and price system, we solve a system of nonlinear difference equations
consisting of the first-order conditions for decision makers and the other equilibrium conditions.

We present two ways to approximate an equilibrium:

• The first is a shooting algorithm like the one that we deployed in Cass-Koopmans Competitive Equilibrium.

• The second method is a root-finding algorithm that minimizes residuals from the first-order conditions of the
consumer and representative firm.

52.2 The Economy

52.2.1 Technology

Feasible allocations satisfy

𝑔𝑡 + 𝑐𝑡 + 𝑥𝑡 ≤ 𝐹(𝑘𝑡, 𝑛𝑡), (52.1)

where

• 𝑔𝑡 is government purchases of the time 𝑡 good
• 𝑥𝑡 is gross investment, and

• 𝐹(𝑘𝑡, 𝑛𝑡) is a linearly homogeneous production function with positive and decreasing marginal products of capital
𝑘𝑡 and labor 𝑛𝑡.
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Physical capital evolves according to

𝑘𝑡+1 = (1 − 𝛿)𝑘𝑡 + 𝑥𝑡,

where 𝛿 ∈ (0, 1) is a depreciation rate.
It is sometimes convenient to eliminate 𝑥𝑡 from (52.1) and to represent it as as

𝑔𝑡 + 𝑐𝑡 + 𝑘𝑡+1 ≤ 𝐹(𝑘𝑡, 𝑛𝑡) + (1 − 𝛿)𝑘𝑡.

52.2.2 Components of a competitive equilibrium

All trades occurring at time 0.
The representative household owns capital, makes investment decisions, and rents capital and labor to a representative
production firm.

The representative firm uses capital and labor to produce goods with the production function 𝐹(𝑘𝑡, 𝑛𝑡).
A price system is a triple of sequences {𝑞𝑡, 𝜂𝑡, 𝑤𝑡}∞

𝑡=0, where

• 𝑞𝑡 is the time 0 pretax price of one unit of investment or consumption at time 𝑡 (𝑥𝑡 or 𝑐𝑡),

• 𝜂𝑡 is the pretax price at time 𝑡 that the household receives from the firm for renting capital at time 𝑡, and
• 𝑤𝑡 is the pretax price at time 𝑡 that the household receives for renting labor to the firm at time 𝑡.

The prices 𝑤𝑡 and 𝜂𝑡 are expressed in terms of time 𝑡 goods, while 𝑞𝑡 is expressed in terms of a numeraire at time 0, as
in Cass-Koopmans Competitive Equilibrium.

The presence of a government distinguishes this lecture from Cass-Koopmans Competitive Equilibrium.

Government purchases of goods at time 𝑡 are 𝑔𝑡 ≥ 0.
A government expenditure plan is a sequence 𝑔 = {𝑔𝑡}∞

𝑡=0.

A government tax plan is a 4-tuple of sequences {𝜏𝑐𝑡, 𝜏𝑘𝑡, 𝜏𝑛𝑡, 𝜏ℎ𝑡}∞
𝑡=0, where

• 𝜏𝑐𝑡 is a tax rate on consumption at time 𝑡,
• 𝜏𝑘𝑡 is a tax rate on rentals of capital at time 𝑡,
• 𝜏𝑛𝑡 is a tax rate on wage earnings at time 𝑡, and
• 𝜏ℎ𝑡 is a lump sum tax on a consumer at time 𝑡.

Because lump-sum taxes 𝜏ℎ𝑡 are available, the government actually should not use any distorting taxes.

Nevertheless, we include all of these taxes because, like [Hall, 1971], they allow us to analyze how various taxes distort
production and consumption decisions.

In the experiment section, we shall see how variations in government tax plan affect the transition path and equilibrium.

52.2.3 Representative Household

A representative household has preferences over nonnegative streams of a single consumption good 𝑐𝑡 and leisure 1 − 𝑛𝑡
that are ordered by:

∞
∑
𝑡=0

𝛽𝑡𝑈(𝑐𝑡, 1 − 𝑛𝑡), 𝛽 ∈ (0, 1), (52.2)

where
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• 𝑈 is strictly increasing in 𝑐𝑡, twice continuously differentiable, and strictly concave with 𝑐𝑡 ≥ 0 and 𝑛𝑡 ∈ [0, 1].
The representative hßousehold maximizes (52.2) subject to the single budget constraint:

∞
∑
𝑡=0

𝑞𝑡

⎧{
⎨{⎩

(1 + 𝜏𝑐𝑡)𝑐𝑡 + [𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡]⏟⏟⏟⏟⏟⏟⏟
no tax when investing

⎫}
⎬}⎭

≤
∞

∑
𝑡=0

𝑞𝑡
⎧{
⎨{⎩

𝜂𝑡𝑘𝑡 − 𝜏𝑘𝑡(𝜂𝑡 − 𝛿)𝑘𝑡⏟⏟⏟⏟⏟
tax on rental return

+(1 − 𝜏𝑛𝑡)𝑤𝑡𝑛𝑡 − 𝜏ℎ𝑡
⎫}
⎬}⎭

.
(52.3)

Here we have assumed that the government gives a depreciation allowance 𝛿𝑘𝑡 from the gross rentals on capital 𝜂𝑡𝑘𝑡 and
so collects taxes 𝜏𝑘𝑡(𝜂𝑡 − 𝛿)𝑘𝑡 on rentals from capital.

52.2.4 Government

Government plans {𝑔𝑡}∞
𝑡=0 for government purchases and taxes {𝜏𝑐𝑡, 𝜏𝑘𝑡, 𝜏𝑛𝑡, 𝜏ℎ𝑡}∞

𝑡=0 must respect the budget constraint
∞

∑
𝑡=0

𝑞𝑡𝑔𝑡 ≤
∞

∑
𝑡=0

𝑞𝑡 {𝜏𝑐𝑡𝑐𝑡 + 𝜏𝑘𝑡(𝜂𝑡 − 𝛿)𝑘𝑡 + 𝜏𝑛𝑡𝑤𝑡𝑛𝑡 + 𝜏ℎ𝑡} . (52.4)

Given a budget-feasible government policy {𝑔𝑡}∞
𝑡=0 and {𝜏𝑐𝑡, 𝜏𝑘𝑡, 𝜏𝑛𝑡, 𝜏ℎ𝑡}∞

𝑡=0 subject to (52.4),

• Household chooses {𝑐𝑡}∞
𝑡=0, {𝑛𝑡}∞

𝑡=0, and {𝑘𝑡+1}∞
𝑡=0 to maximize utility(52.2) subject to budget constraint(52.3),

and

• Frim chooses sequences of capital {𝑘𝑡}∞
𝑡=0 and {𝑛𝑡}∞

𝑡=0 to maximize profits
∞

∑
𝑡=0

𝑞𝑡[𝐹 (𝑘𝑡, 𝑛𝑡) − 𝜂𝑡𝑘𝑡 − 𝑤𝑡𝑛𝑡] (52.5)

• A feasible allocation is a sequence {𝑐𝑡, 𝑥𝑡, 𝑛𝑡, 𝑘𝑡}∞
𝑡=0 that satisfies feasibility condition (52.1).

52.3 Equilibrium

Definition 52.3.1

A competitive equilibrium with distorting taxes is a budget-feasible government policy, a feasible allocation,
and a price system for which, given the price system and the government policy, the allocation solves the household’s
problem and the firm’s problem.

52.4 No-arbitrage Condition

A no-arbitrage argument implies a restriction on prices and tax rates across time.

By rearranging (52.3) and group 𝑘𝑡 at the same 𝑡, we can get
∞

∑
𝑡=0

𝑞𝑡 [(1 + 𝜏𝑐𝑡)𝑐𝑡] ≤
∞

∑
𝑡=0

𝑞𝑡(1 − 𝜏𝑛𝑡)𝑤𝑡𝑛𝑡 −
∞

∑
𝑡=0

𝑞𝑡𝜏ℎ𝑡

+
∞

∑
𝑡=1

{[(1 − 𝜏𝑘𝑡)(𝜂𝑡 − 𝛿) + 1] 𝑞𝑡 − 𝑞𝑡−1} 𝑘𝑡

+ [(1 − 𝜏𝑘0)(𝜂0 − 𝛿) + 1] 𝑞0𝑘0 − lim
𝑇 →∞

𝑞𝑇 𝑘𝑇 +1

(52.6)
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The household inherits a given 𝑘0 that it takes as initial condition and is free to choose {𝑐𝑡, 𝑛𝑡, 𝑘𝑡+1}∞
𝑡=0.

The household’s budget constraint (52.3) must be bounded in equilibrium due to finite resources.

This imposes a restriction on price and tax sequences.

Specifically, for 𝑡 ≥ 1, the terms multiplying 𝑘𝑡 must equal zero.

If they were strictly positive (negative), the household could arbitrarily increase (decrease) the right-hand side of (52.3)
by selecting an arbitrarily large positive (negative) 𝑘𝑡, leading to unbounded profit or arbitrage opportunities:

• For strictly positive terms, the household could purchase large capital stocks 𝑘𝑡 and profit from their rental services
and undepreciated value.

• For strictly negative terms, the household could engage in “short selling” synthetic units of capital. Both cases
would make (52.3) unbounded.

Hence, by setting the terms multiplying 𝑘𝑡 to 0 we have the non-arbitrage condition:
𝑞𝑡

𝑞𝑡+1
= [(1 − 𝜏𝑘𝑡+1)(𝜂𝑡+1 − 𝛿) + 1] . (52.7)

Moreover, we have terminal condition:

− lim
𝑇 →∞

𝑞𝑇 𝑘𝑇 +1 = 0. (52.8)

Zero-profit conditions for the representative firm impose additional restrictions on equilibrium prices and quantities.

The present value of the firm’s profits is

∞
∑
𝑡=0

𝑞𝑡 [𝐹 (𝑘𝑡, 𝑛𝑡) − 𝑤𝑡𝑛𝑡 − 𝜂𝑡𝑘𝑡] .

Applying Euler’s theorem on linearly homogeneous functions to 𝐹(𝑘, 𝑛), the firm’s present value is:
∞

∑
𝑡=0

𝑞𝑡 [(𝐹𝑘𝑡 − 𝜂𝑡)𝑘𝑡 + (𝐹𝑛𝑡 − 𝑤𝑡)𝑛𝑡] .

No-arbitrage (or zero-profit) conditions are:

𝜂𝑡 = 𝐹𝑘𝑡, 𝑤𝑡 = 𝐹𝑛𝑡. (52.9)

52.5 Household’s First Order Condition

Household maximize (52.2) under (52.3).

Let 𝑈1 = 𝜕𝑈
𝜕𝑐 , 𝑈2 = 𝜕𝑈

𝜕(1−𝑛) = − 𝜕𝑈
𝜕𝑛 ., we can derive FOC from the Lagrangian

ℒ =
∞

∑
𝑡=0

𝛽𝑡𝑈(𝑐𝑡, 1 − 𝑛𝑡) + 𝜇 (
∞

∑
𝑡=0

𝑞𝑡 [(1 + 𝜏𝑐𝑡)𝑐𝑡 − (1 − 𝜏𝑛𝑡)𝑤𝑡𝑛𝑡 + …]) ,

First-order necessary conditions for the representative household’s problem are

𝜕ℒ
𝜕𝑐𝑡

= 𝛽𝑡𝑈1(𝑐𝑡, 1 − 𝑛𝑡) − 𝜇𝑞𝑡(1 + 𝜏𝑐𝑡) = 0 (52.10)

and

𝜕ℒ
𝜕𝑛𝑡

= 𝛽𝑡 (−𝑈2𝑡(𝑐𝑡, 1 − 𝑛𝑡)) − 𝜇𝑞𝑡(1 − 𝜏𝑛𝑡)𝑤𝑡 = 0 (52.11)
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Rearranging (52.10) and (52.11), we have

𝛽𝑡𝑈1(𝑐𝑡, 1 − 𝑛𝑡) = 𝛽𝑡𝑈1𝑡 = 𝜇𝑞𝑡(1 + 𝜏𝑐𝑡), (52.12)

𝛽𝑡𝑈2(𝑐𝑡, 1 − 𝑛𝑡) = 𝛽𝑡𝑈2𝑡 = 𝜇𝑞𝑡(1 − 𝜏𝑛𝑡)𝑤𝑡. (52.13)

Plugging (52.12) into (52.8) and replacing 𝑞𝑡, we get terminal condition

− lim
𝑇 →∞

𝛽𝑇 𝑈1𝑇
(1 + 𝜏𝑐𝑇 )𝑘𝑇 +1 = 0. (52.14)

52.6 Computing Equilibria

To compute an equilibrium, we seek a price system {𝑞𝑡, 𝜂𝑡, 𝑤𝑡}, a budget feasible government policy {𝑔𝑡, 𝜏𝑡} ≡
{𝑔𝑡, 𝜏𝑐𝑡, 𝜏𝑛𝑡, 𝜏𝑘𝑡, 𝜏ℎ𝑡}, and an allocation {𝑐𝑡, 𝑛𝑡, 𝑘𝑡+1} that solve a system of nonlinear difference equations consisting
of

• feasibility condition (52.1), no-arbitrage condition for household (52.7) and firms (52.9), household’s first order
conditions (52.12) and (52.13).

• an initial condition 𝑘0 and a terminal condition (52.14).

52.7 Python Code

We require the following imports

import numpy as np
from scipy.optimize import root
import matplotlib.pyplot as plt
from collections import namedtuple
from mpmath import mp, mpf
from warnings import warn

# Set the precision
mp.dps = 40
mp.pretty = True

We use the mpmath library to perform high-precision arithmetic in the shooting algorithm in cases where the solution
diverges due to numerical instability.

Note

In the functions below, we include routines to handle the growth component, which will be discussed further in the
section Exogenous growth.

We include them here to avoid code duplication.

We set the following parameters

# Create a namedtuple to store the model parameters
Model = namedtuple("Model",

["β", "γ", "δ", "α", "A"])

(continues on next page)
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(continued from previous page)

def create_model(β=0.95, # discount factor
γ=2.0, # relative risk aversion coefficient
δ=0.2, # depreciation rate
α=0.33, # capital share
A=1.0 # TFP
):

"""Create a model instance."""
return Model(β=β, γ=γ, δ=δ, α=α, A=A)

model = create_model()

# Total number of periods
S = 100

52.7.1 Inelastic Labor Supply

In this lecture, we consider the special case where 𝑈(𝑐, 1 − 𝑛) = 𝑢(𝑐) and 𝑓(𝑘) ∶= 𝐹(𝑘, 1).
We rewrite (52.1) with 𝑓(𝑘) ∶= 𝐹(𝑘, 1),

𝑘𝑡+1 = 𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 − 𝑔𝑡 − 𝑐𝑡. (52.15)

def next_k(k_t, g_t, c_t, model, μ_t=1):
"""
Capital next period: k_{t+1} = f(k_t) + (1 - δ) * k_t - c_t - g_t
with optional growth adjustment: k_{t+1} = (f(k_t) + (1 - δ) * k_t - c_t - g_t) /␣

↪μ_{t+1}
"""
return (f(k_t, model) + (1 - model.δ) * k_t - g_t - c_t) / μ_t

By the properties of a linearly homogeneous production function, we have 𝐹𝑘(𝑘, 𝑛) = 𝑓 ′(𝑘) and 𝐹𝑛(𝑘, 1) = 𝑓(𝑘, 1) −
𝑓 ′(𝑘)𝑘.
Substituting (52.12), (52.9), and (52.15) into (52.7), we obtain the Euler equation

𝑢′(𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 − 𝑔𝑡 − 𝑘𝑡+1)
(1 + 𝜏𝑐𝑡)

− 𝛽 𝑢′(𝑓(𝑘𝑡+1) + (1 − 𝛿)𝑘𝑡+1 − 𝑔𝑡+1 − 𝑘𝑡+2)
(1 + 𝜏𝑐𝑡+1)

× [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1] = 0.

(52.16)

This can be simplified to:

𝑢′(𝑐𝑡) = 𝛽𝑢′(𝑐𝑡+1) (1 + 𝜏𝑐𝑡)
(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1]. (52.17)

Equation (52.17) will appear prominently in our equilibrium computation algorithms.
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52.7.2 Steady state

Tax rates and government expenditures act as forcing functions for difference equations (52.15) and (52.17).

Define 𝑧𝑡 = [𝑔𝑡, 𝜏𝑘𝑡, 𝜏𝑐𝑡]′.
Represent the second-order difference equation as:

𝐻(𝑘𝑡, 𝑘𝑡+1, 𝑘𝑡+2; 𝑧𝑡, 𝑧𝑡+1) = 0. (52.18)

We assume that a government policy reaches a steady state such that lim𝑡→∞ 𝑧𝑡 = ̄𝑧 and that the steady state prevails for
𝑡 > 𝑇 .
The terminal steady-state capital stock 𝑘̄ satisfies:

𝐻(𝑘̄, 𝑘̄, 𝑘̄, ̄𝑧, ̄𝑧) = 0.

From difference equation (52.17), we can infer a restriction on the steady-state:

𝑢′( ̄𝑐) = 𝛽𝑢′( ̄𝑐) (1 + ̄𝜏𝑐)
(1 + ̄𝜏𝑐) [(1 − ̄𝜏𝑘)(𝑓 ′(𝑘̄) − 𝛿) + 1].

⟹ 1 = 𝛽[(1 − ̄𝜏𝑘)(𝑓 ′(𝑘̄) − 𝛿) + 1].
(52.19)

52.7.3 Other equilibrium quantities and prices

Price:

𝑞𝑡 = 𝛽𝑡𝑢′(𝑐𝑡)
𝑢′(𝑐0) (52.20)

def compute_q_path(c_path, model, S=100, A_path=None):
"""
Compute q path: q_t = (β^t * u'(c_t)) / u'(c_0)
with optional A_path for growth models.
"""
A = np.ones_like(c_path) if A_path is None else np.asarray(A_path)
q_path = np.zeros_like(c_path)
for t in range(S):

q_path[t] = (model.β ** t *
u_prime(c_path[t], model, A[t])) / u_prime(c_path[0], model,␣

↪A[0])
return q_path

Capital rental rate

𝜂𝑡 = 𝑓 ′(𝑘𝑡)

def compute_η_path(k_path, model, S=100, A_path=None):
"""
Compute η path: η_t = f'(k_t)
with optional A_path for growth models.
"""
A = np.ones_like(k_path) if A_path is None else np.asarray(A_path)
η_path = np.zeros_like(k_path)
for t in range(S):

η_path[t] = f_prime(k_path[t], model, A[t])
return η_path
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Labor rental rate:

𝑤𝑡 = 𝑓(𝑘𝑡) − 𝑘𝑡𝑓 ′(𝑘𝑡)

def compute_w_path(k_path, η_path, model, S=100, A_path=None):
"""
Compute w path: w_t = f(k_t) - k_t * f'(k_t)
with optional A_path for growth models.
"""
A = np.ones_like(k_path) if A_path is None else np.asarray(A_path)
w_path = np.zeros_like(k_path)
for t in range(S):

w_path[t] = f(k_path[t], model, A[t]) - k_path[t] * η_path[t]
return w_path

Gross one-period return on capital:

𝑅̄𝑡+1 = (1 + 𝜏𝑐𝑡)
(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1] = (1 + 𝜏𝑐𝑡)

(1 + 𝜏𝑐𝑡+1)𝑅𝑡,𝑡+1 (52.21)

def compute_R_bar(τ_ct, τ_ctp1, τ_ktp1, k_tp1, model):
"""
Gross one-period return on capital:
R_bar = [(1 + τ_c_t) / (1 + τ_c_{t+1})]

* { [1 - τ_k_{t+1}] * [f'(k_{t+1}) - δ] + 1 }
"""
return ((1 + τ_ct) / (1 + τ_ctp1)) * (

(1 - τ_ktp1) * (f_prime(k_tp1, model) - model.δ) + 1)

def compute_R_bar_path(shocks, k_path, model, S=100):
"""
Compute R_bar path over time.
"""
R_bar_path = np.zeros(S + 1)
for t in range(S):

R_bar_path[t] = compute_R_bar(
shocks['τ_c'][t], shocks['τ_c'][t + 1], shocks['τ_k'][t + 1],
k_path[t + 1], model)

R_bar_path[S] = R_bar_path[S - 1]
return R_bar_path

One-period discount factor:

𝑅−1
𝑡,𝑡+1 = 𝑞𝑡+1

𝑞𝑡
= 𝑚𝑡,𝑡+1 = 𝛽 𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
(1 + 𝜏𝑐𝑡)

(1 + 𝜏𝑐𝑡+1) (52.22)

Net one-period rate of interest:

𝑟𝑡,𝑡+1 ≡ 𝑅𝑡,𝑡+1 − 1 = (1 − 𝜏𝑘,𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) (52.23)

By (52.22) and 𝑟𝑡,𝑡+1 = − ln( 𝑞𝑡+1
𝑞𝑡

), we have

𝑅𝑡,𝑡+𝑠 = 𝑒𝑠⋅𝑟𝑡,𝑡+𝑠 .

Then by (52.23), we have

𝑞𝑡+𝑠
𝑞𝑡

= 𝑒−𝑠⋅𝑟𝑡,𝑡+𝑠 .
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Rearranging the above equation, we have

𝑟𝑡,𝑡+𝑠 = −1
𝑠 ln(𝑞𝑡+𝑠

𝑞𝑡
) .

def compute_rts_path(q_path, S, t):
"""
Compute r path:
r_t,t+s = - (1/s) * ln(q_{t+s} / q_t)
"""
s = np.arange(1, S + 1)
q_path = np.array([float(q) for q in q_path])

with np.errstate(divide='ignore', invalid='ignore'):
rts_path = - np.log(q_path[t + s] / q_path[t]) / s

return rts_path

52.8 Some functional forms

We assume that the representative household’ period utility has the following CRRA (constant relative risk aversion) form

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾

def u_prime(c, model, A_t=1):
"""
Marginal utility: u'(c) = c^{-γ}
with optional technology adjustment: u'(cA) = (cA)^{-γ}
"""
return (c * A_t) ** (-model.γ)

By substituting (52.21) into (52.17), we obtain

𝑐𝑡+1 = 𝑐𝑡 [𝛽 (1 + 𝜏𝑐𝑡)
(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘,𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1]]

1
𝛾

= 𝑐𝑡 [𝛽𝑅𝑡+1]
1
𝛾 (52.24)

def next_c(c_t, R_bar, model, μ_t=1):
"""
Consumption next period: c_{t+1} = c_t * (β * R)̄^{1/γ}
with optional growth adjustment: c_{t+1} = c_t * (β * R_bar)^{1/γ} * μ_{t+1}^{-1}
"""
return c_t * (model.β * R_bar) ** (1 / model.γ) / μ_t

For the production function we assume a Cobb-Douglas form:

𝐹(𝑘, 1) = 𝐴𝑘𝛼

def f(k, model, A=1):
"""
Production function: f(k) = A * k^{α}
"""
return A * k ** model.α

def f_prime(k, model, A=1):

(continues on next page)
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"""
Marginal product of capital: f'(k) = α * A * k^{α - 1}
"""
return model.α * A * k ** (model.α - 1)

52.9 Computation

We describe two ways to compute an equilibrium:

• a shooting algorithm

• a residual-minimization method that focuses on imposing Euler equation (52.17) and the feasibility condition
(52.15).

52.9.1 Shooting Algorithm

This algorithm deploys the following steps.

1. Solve the equation (52.19) for the terminal steady-state capital 𝑘̄ that corresponds to the permanent policy vector
̄𝑧.

2. Select a large time index 𝑆 ≫ 𝑇 , guess an initial consumption rate 𝑐0, and use the equation (52.15) to solve for
𝑘1.

3. Use the equation (52.24) to determine 𝑐𝑡+1. Then, apply the equation (52.15) to compute 𝑘𝑡+2.

4. Iterate step 3 to compute candidate values 𝑘̂𝑡 for 𝑡 = 1, … , 𝑆.
5. Compute the difference 𝑘̂𝑆 − 𝑘̄. If ∣𝑘̂𝑆 − 𝑘̄∣ > 𝜖 for some small 𝜖, adjust 𝑐0 and repeat steps 2-5.

6. Adjust 𝑐0 iteratively using the bisection method to find a value that ensures ∣𝑘̂𝑆 − 𝑘̄∣ < 𝜖.
The following code implements these steps.

# Steady-state calculation
def steady_states(model, g_ss, τ_k_ss=0.0, μ_ss=None):

"""
Calculate steady state values for capital and
consumption with optional A_path for growth models.
"""

β, δ, α, γ = model.β, model.δ, model.α, model.γ

A = model.A or 1.0

# growth‐adjustment in the numerator: μ^γ or 1
μ_eff = μ_ss**γ if μ_ss is not None else 1.0

num = δ + (μ_eff/β - 1) / (1 - τ_k_ss)
k_ss = (num / (α * A)) ** (1 / (α - 1))

c_ss = (
A * k_ss**α - δ * k_ss - g_ss
if μ_ss is None
else k_ss**α + (1 - δ - μ_ss) * k_ss - g_ss

(continues on next page)
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)

return k_ss, c_ss

def shooting_algorithm(
c0, k0, shocks, S, model, A_path=None):
"""
Shooting algorithm for given initial c0 and k0
with optional A_path for growth models.
"""
# unpack & mpf‐ify shocks, fill μ with ones if missing
g = np.array(list(map(mpf, shocks['g'])), dtype=object)
τ_c = np.array(list(map(mpf, shocks['τ_c'])), dtype=object)
τ_k = np.array(list(map(mpf, shocks['τ_k'])), dtype=object)
μ = (np.array(list(map(mpf, shocks['μ'])), dtype=object)

if 'μ' in shocks else np.ones_like(g))
A = np.ones_like(g) if A_path is None else A_path

k_path = np.empty(S+1, dtype=object)
c_path = np.empty(S+1, dtype=object)
k_path[0], c_path[0] = mpf(k0), mpf(c0)

for t in range(S):
k_t, c_t = k_path[t], c_path[t]
k_tp1 = next_k(k_t, g[t], c_t, model, μ[t+1])
if k_tp1 < 0:

return None, None
k_path[t+1] = k_tp1

R_bar = compute_R_bar(
τ_c[t], τ_c[t+1], τ_k[t+1], k_tp1, model

)
c_tp1 = next_c(c_t, R_bar, model, μ[t+1])
if c_tp1 < 0:

return None, None
c_path[t+1] = c_tp1

return k_path, c_path

def bisection_c0(
c0_guess, k0, shocks, S, model, tol=mpf('1e-6'),
max_iter=1000, verbose=False, A_path=None):
"""
Bisection method to find initial c0
"""
# steady‐state uses last shocks (μ=1 if missing)
g_last = mpf(shocks['g'][-1])
τ_k_last = mpf(shocks['τ_k'][-1])
μ_last = mpf(shocks['μ'][-1]) if 'μ' in shocks else mpf('1')
k_ss_fin, _ = steady_states(model, g_last, τ_k_last, μ_last)

c0_lo, c0_hi = mpf('0'), f(k_ss_fin, model)
c0 = mpf(c0_guess)

for i in range(1, max_iter+1):
k_path, _ = shooting_algorithm(c0, k0, shocks, S, model, A_path)

(continues on next page)

52.9. Computation 985



Intermediate Quantitative Economics with Python

(continued from previous page)

if k_path is None:
if verbose:

print(f"[{i}] shoot failed at c0={c0}")
c0_hi = c0

else:
err = k_path[-1] - k_ss_fin
if verbose and i % 100 == 0:

print(f"[{i}] c0={c0}, err={err}")
if abs(err) < tol:

if verbose:
print(f"Converged after {i} iter")

return c0
# update bounds in one line
c0_lo, c0_hi = (c0, c0_hi) if err > 0 else (c0_lo, c0)

c0 = (c0_lo + c0_hi) / mpf('2')

warn(f"bisection did not converge after {max_iter} iters; returning c0={c0}")
return c0

def run_shooting(
shocks, S, model, A_path=None,
c0_finder=bisection_c0, shooter=shooting_algorithm):
"""
Compute initial SS, find c0, and return [k,c] paths
with optional A_path for growth models.
"""
# initial SS at t=0 (μ=1 if missing)
g0 = mpf(shocks['g'][0])
τ_k0 = mpf(shocks['τ_k'][0])
μ0 = mpf(shocks['μ'][0]) if 'μ' in shocks else mpf('1')
k0, c0 = steady_states(model, g0, τ_k0, μ0)

optimal_c0 = c0_finder(c0, k0, shocks, S, model, A_path=A_path)
print(f"Model: {model}\nOptimal initial consumption c0 = {mpf(optimal_c0)}")

k_path, c_path = shooter(optimal_c0, k0, shocks, S, model, A_path)
return np.column_stack([k_path, c_path])

52.9.2 Experiments

Let’s run some experiments.

1. A foreseen once-and-for-all increase in 𝑔 from 0.2 to 0.4 occurring in period 10,

2. A foreseen once-and-for-all increase in 𝜏𝑐 from 0.0 to 0.2 occurring in period 10,

3. A foreseen once-and-for-all increase in 𝜏𝑘 from 0.0 to 0.2 occurring in period 10, and

4. A foreseen one-time increase in 𝑔 from 0.2 to 0.4 in period 10, after which 𝑔 reverts to 0.2 permanently.
To start, we prepare sequences that we’ll used to initialize our iterative algorithm.

We will start from an initial steady state and apply shocks at an the indicated time.

def plot_results(
solution, k_ss, c_ss, shocks, shock_param, axes, model,

(continues on next page)
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A_path=None, label='', linestyle='-', T=40):
"""
Plot simulation results (k, c, R, η, and a policy shock)
with optional A_path for growth models.
"""
k_path = solution[:, 0]
c_path = solution[:, 1]
T = min(T, k_path.size)

# handle growth parameters
μ0 = shocks['μ'][0] if 'μ' in shocks else 1.0
A0 = A_path[0] if A_path is not None else (model.A or 1.0)

# steady‐state lines
R_bar_ss = (1 / model.β) * (μ0**model.γ)
η_ss = model.α * A0 * k_ss**(model.α - 1)

# plot k
axes[0].plot(k_path[:T], linestyle=linestyle, label=label)
axes[0].axhline(k_ss, linestyle='--', color='black')
axes[0].set_title('k')

# plot c
axes[1].plot(c_path[:T], linestyle=linestyle, label=label)
axes[1].axhline(c_ss, linestyle='--', color='black')
axes[1].set_title('c')

# plot R bar
S_full = k_path.size - 1
R_bar_path = compute_R_bar_path(shocks, k_path, model, S_full)
axes[2].plot(R_bar_path[:T], linestyle=linestyle, label=label)
axes[2].axhline(R_bar_ss, linestyle='--', color='black')
axes[2].set_title(r'$\bar{R}$')

# plot η
η_path = compute_η_path(k_path, model, S_full)
axes[3].plot(η_path[:T], linestyle=linestyle, label=label)
axes[3].axhline(η_ss, linestyle='--', color='black')
axes[3].set_title(r'$\eta$')

# plot shock
shock_series = np.array(shocks[shock_param], dtype=object)
axes[4].plot(shock_series[:T], linestyle=linestyle, label=label)
axes[4].axhline(shock_series[0], linestyle='--', color='black')
axes[4].set_title(rf'${shock_param}$')

if label:
for ax in axes[:5]:

ax.legend()

Experiment 1: Foreseen once-and-for-all increase in 𝑔 from 0.2 to 0.4 in period 10

The figure below shows consequences of a foreseen permanent increase in 𝑔 at 𝑡 = 𝑇 = 10 that is financed by an increase
in lump-sum taxes

# Define shocks as a dictionary
shocks = {

(continues on next page)
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'g': np.concatenate(
(np.repeat(0.2, 10), np.repeat(0.4, S - 9))

),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1)

}

k_ss_initial, c_ss_initial = steady_states(model,
shocks['g'][0],
shocks['τ_k'][0])

print(f"Steady-state capital: {k_ss_initial:.4f}")
print(f"Steady-state consumption: {c_ss_initial:.4f}")

solution = run_shooting(shocks, S, model)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

plot_results(solution, k_ss_initial,
c_ss_initial, shocks, 'g', axes, model, T=40)

for ax in axes[5:]:
fig.delaxes(ax)

plt.tight_layout()
plt.show()

Steady-state capital: 1.4900
Steady-state consumption: 0.6426

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6092419528879239645312185699727132533517

988 Chapter 52. Cass-Koopmans Model with Distorting Taxes



Intermediate Quantitative Economics with Python

The above figures indicate that an equilibrium consumption smoothing mechanism is at work, driven by the represen-
tative consumer’s preference for smooth consumption paths coming from the curvature of its one-period utility function.

• The steady-state value of the capital stock remains unaffected:

– This follows from the fact that 𝑔 disappears from the steady state version of the Euler equation ((52.19)).

• Consumption begins to decline gradually before time 𝑇 due to increased government consumption:

– Households reduce consumption to offset government spending, which is financed through increased lump-
sum taxes.

– The competitive economy signals households to consume less through an increase in the stream of lump-sum
taxes.

– Households, caring about the present value rather than the timing of taxes, experience an adverse wealth effect
on consumption, leading to an immediate response.

• Capital gradually accumulates between time 0 and 𝑇 due to increased savings and reduces gradually after time 𝑇 :
– This temporal variation in capital stock smooths consumption over time, driven by the representative con-
sumer’s consumption-smoothing motive.

Let’s collect the procedures used above into a function that runs the solver and draws plots for a given experiment

The following figure compares responses to a foreseen increase in 𝑔 at 𝑡 = 10 for two economies:
• our original economy with 𝛾 = 2, shown in the solid line, and
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• an otherwise identical economy with 𝛾 = 0.2.
This comparison interest us because the utility curvature parameter 𝛾 governs the household’s willingness to substitute
consumption over time, and thus it preferences about smoothness of consumption paths over time.

# Solve the model using shooting
solution = run_shooting(shocks, S, model)

# Compute the initial steady states
k_ss_initial, c_ss_initial = steady_states(model,

shocks['g'][0],
shocks['τ_k'][0])

# Plot the solution for γ=2
fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

label = fr"$\gamma = {model.γ}$"
plot_results(solution, k_ss_initial, c_ss_initial,

shocks, 'g', axes, model, label=label,
T=40)

# Solve and plot the result for γ=0.2
model_γ2 = create_model(γ=0.2)
solution = run_shooting(shocks, S, model_γ2)

plot_results(solution, k_ss_initial, c_ss_initial,
shocks, 'g', axes, model_γ2,
label=fr"$\gamma = {model_γ2.γ}$",
linestyle='-.', T=40)

handles, labels = axes[0].get_legend_handles_labels()
fig.legend(handles, labels, loc='lower right',

ncol=3, fontsize=14, bbox_to_anchor=(1, 0.1))

for ax in axes[5:]:
fig.delaxes(ax)

plt.tight_layout()
plt.show()

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6092419528879239645312185699727132533517

Model: Model(β=0.95, γ=0.2, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6420330412987902926414768724607623681745
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The outcomes indicate that lowering 𝛾 affects both the consumption and capital stock paths because - it increases the
representative consumer’s willingness to substitute consumption across time:

• Consumption path:

– When 𝛾 = 0.2, consumption becomes less smooth compared to 𝛾 = 2.
– For 𝛾 = 0.2, consumptionmirrors the government expenditure path more closely, staying higher until 𝑡 = 10.

• Capital stock path:

– With 𝛾 = 0.2, there are smaller build-ups and drawdowns of capital stock.
– There are also smaller fluctuations in 𝑅̄ and 𝜂.

Let’s write another function that runs the solver and draws plots for these two experiments

Now we plot other equilibrium quantities:

def plot_prices(solution, c_ss, shock_param, axes,
model, label='', linestyle='-', T=40):

"""
Compares and plots prices
"""
α, β, δ, γ, A = model.α, model.β, model.δ, model.γ, model.A

k_path = solution[:, 0]
c_path = solution[:, 1]

(continues on next page)
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# Plot for c
axes[0].plot(c_path[:T], linestyle=linestyle, label=label)
axes[0].axhline(c_ss, linestyle='--', color='black')
axes[0].set_title('c')

# Plot for q
q_path = compute_q_path(c_path, model, S=S)
axes[1].plot(q_path[:T], linestyle=linestyle, label=label)
axes[1].plot(β**np.arange(T), linestyle='--', color='black')
axes[1].set_title('q')

# Plot for r_{t,t+1}
R_bar_path = compute_R_bar_path(shocks, k_path, model, S)
axes[2].plot(R_bar_path[:T] - 1, linestyle=linestyle, label=label)
axes[2].axhline(1 / β - 1, linestyle='--', color='black')
axes[2].set_title('$r_{t,t+1}$')

# Plot for r_{t,t+s}
for style, s in zip(['-', '-.', '--'], [0, 10, 60]):

rts_path = compute_rts_path(q_path, T, s)
axes[3].plot(rts_path, linestyle=style,

color='black' if style == '--' else None,
label=f'$t={s}$')

axes[3].set_xlabel('s')
axes[3].set_title('$r_{t,t+s}$')

# Plot for g
axes[4].plot(shocks[shock_param][:T], linestyle=linestyle, label=label)
axes[4].axhline(shocks[shock_param][0], linestyle='--', color='black')
axes[4].set_title(shock_param)

For 𝛾 = 2 again, the next figure describes the response of 𝑞𝑡 and the term structure of interest rates to a foreseen increase
in 𝑔𝑡 at 𝑡 = 10
solution = run_shooting(shocks, S, model)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

plot_prices(solution, c_ss_initial, 'g', axes, model, T=40)

for ax in axes[5:]:
fig.delaxes(ax)

handles, labels = axes[3].get_legend_handles_labels()
fig.legend(handles, labels, title=r"$r_{t,t+s}$ with ", loc='lower right',

ncol=3, fontsize=10, bbox_to_anchor=(1, 0.1))
plt.tight_layout()
plt.show()

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6092419528879239645312185699727132533517
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The second panel on the top compares 𝑞𝑡 for the initial steady state with 𝑞𝑡 after the increase in 𝑔 is foreseen at 𝑡 = 0,
while the third panel compares the implied short rate 𝑟𝑡.

The fourth panel shows the term structure of interest rates at 𝑡 = 0, 𝑡 = 10, and 𝑡 = 60.
Notice that, by 𝑡 = 60, the system has converged to the new steady state, and the term structure of interest rates becomes
flat.

At 𝑡 = 10, the term structure of interest rates is upward sloping.

This upward slope reflects the expected increase in the rate of growth of consumption over time, as shown in the con-
sumption panel.

At 𝑡 = 0, the term structure of interest rates exhibits a “U-shaped” pattern:

• It declines until maturity at 𝑠 = 10.
• After 𝑠 = 10, it increases for longer maturities.

This pattern aligns with the pattern of consumption growth in the first two figures, which declines at an increasing rate
until 𝑡 = 10 and then declines at a decreasing rate afterward.
Experiment 2: Foreseen once-and-for-all increase in 𝜏𝑐 from 0.0 to 0.2 in period 10

With an inelastic labor supply, the Euler equation (52.16) and the other equilibrium conditions show that

• constant consumption taxes do not distort decisions, but

• anticipated changes in them do.
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Indeed, (52.16) or (52.17) indicates that a foreseen in- crease in 𝜏𝑐𝑡 (i.e., a decrease in (1 + 𝜏𝑐𝑡) (1 + 𝜏𝑐𝑡+1)) operates
like an increase in 𝜏𝑘𝑡.

The following figure portrays the response to a foreseen increase in the consumption tax 𝜏𝑐.

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.concatenate((np.repeat(0.0, 10), np.repeat(0.2, S - 9))),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model,
solver=run_shooting,
plot_func=plot_results,
policy_shock='τ_c')

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6492795614681543372301864705195788398396

Evidently all variables in the figures above eventually return to their initial steady-state values.
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The anticipated increase in 𝜏𝑐𝑡 leads to variations in consumption and capital stock across time:

• At 𝑡 = 0:
– Anticipation of the increase in 𝜏𝑐 causes an immediate jump in consumption.

– This is followed by a consumption binge that sends the capital stock downward until 𝑡 = 𝑇 = 10.
• Between 𝑡 = 0 and 𝑡 = 𝑇 = 10:

– The decline in the capital stock raises 𝑅̄ over time.

– The equilibrium conditions require the growth rate of consumption to rise until 𝑡 = 𝑇 .
• At 𝑡 = 𝑇 = 10:

– The jump in 𝜏𝑐 depresses 𝑅̄ below 1, causing a sharp drop in consumption.

• After 𝑇 = 10:
– The effects of anticipated distortion are over, and the economy gradually adjusts to the lower capital stock.

– Capital must now rise, requiring austerity—consumption plummets after 𝑡 = 𝑇 , indicated by lower levels of
consumption.

– The interest rate gradually declines, and consumption grows at a diminishing rate along the path to the terminal
steady-state.

Experiment 3: Foreseen once-and-for-all increase in 𝜏𝑘 from 0.0 to 0.2 in period 10

For the two 𝛾 values 2 and 0.2, the next figure shows the response to a foreseen permanent jump in 𝜏𝑘𝑡 at 𝑡 = 𝑇 = 10.
shocks = {

'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.concatenate((np.repeat(0.0, 10), np.repeat(0.2, S - 9)))

}

experiment_two_models(shocks, S, model, model_γ2,
solver=run_shooting,
plot_func=plot_results,
policy_shock='τ_k')

Model 1 (γ=2.0): steady state k=1.4900, c=0.6426
Model 2 (γ=0.2): steady state k=1.4900, c=0.6426
----------------------------------------------------------------

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6448856400318608460996300822707014890199

Model: Model(β=0.95, γ=0.2, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6428407772240506727464152695921513767415
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The path of government expenditures remains fixed

• the increase in 𝜏𝑘𝑡 is offset by a reduction in the present value of lump-sum taxes to keep the budget balanced.

The figure shows that:

• Anticipation of the increase in 𝜏𝑘𝑡 leads to immediate decline in capital stock due to increased current consumption
and a growing consumption flow.

• 𝑅̄ starts rising at 𝑡 = 0 and peaks at 𝑡 = 9, and at 𝑡 = 10, 𝑅̄ drops sharply due to the tax change.

– Variations in 𝑅̄ align with the impact of the tax increase at 𝑡 = 10 on consumption across time.
• Transition dynamics push 𝑘𝑡 (capital stock) toward a new, lower steady-state level. In the new steady state:

– Consumption is lower due to reduced output from the lower capital stock.

– Smoother consumption paths occur when 𝛾 = 2 than when 𝛾 = 0.2.
So far we have explored consequences of foreseen once-and-for-all changes in government policy. Next we describe some
experiments in which there is a foreseen one-time change in a policy variable (a “pulse”).

Experiment 4: Foreseen one-time increase in 𝑔 from 0.2 to 0.4 in period 10, after which 𝑔 returns to 0.2 forever
g_path = np.repeat(0.2, S + 1)
g_path[10] = 0.4

shocks = {

(continues on next page)

996 Chapter 52. Cass-Koopmans Model with Distorting Taxes



Intermediate Quantitative Economics with Python

(continued from previous page)

'g': g_path,
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model,
solver=run_shooting,
plot_func=plot_results,
policy_shock='g')

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
Optimal initial consumption c0 = 0.6378298012463969247674771825320030214755

The figure indicates how:

• Consumption:

– Drops immediately upon announcement of the policy and continues to decline over time in anticipation of
the one-time surge in 𝑔.
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– After the shock at 𝑡 = 10, consumption begins to recover, rising at a diminishing rate toward its steady-state
value.

• Capital and 𝑅̄:

– Before 𝑡 = 10, capital accumulates as interest rate changes induce households to prepare for the anticipated
increase in government spending.

– At 𝑡 = 10, the capital stock sharply decreases as the government consumes part of it.
– 𝑅̄ jumps above its steady-state value due to the capital reduction and then gradually declines toward its
steady-state level.

52.9.3 Method 2: Residual Minimization

The second method involves minimizing residuals (i.e., deviations from equalities) of the following equations:

• The Euler equation (52.17):

1 = 𝛽 (𝑐𝑡+1
𝑐𝑡

)
−𝛾 (1 + 𝜏𝑐𝑡)

(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝛼𝐴𝑘𝛼−1
𝑡+1 − 𝛿) + 1]

• The feasibility condition (52.15):

𝑘𝑡+1 = 𝐴𝑘𝛼
𝑡 + (1 − 𝛿)𝑘𝑡 − 𝑔𝑡 − 𝑐𝑡.

# Euler's equation and feasibility condition
def euler_residual(c_t, c_tp1, τ_c_t, τ_c_tp1, τ_k_tp1, k_tp1, model, μ_tp1=1):

"""
Computes the residuals for Euler's equation
with optional growth model parameters μ_tp1.
"""
R_bar = compute_R_bar(τ_c_t, τ_c_tp1, τ_k_tp1, k_tp1, model)

c_expected = next_c(c_t, R_bar, model, μ_tp1)

return c_expected / c_tp1 - 1.0

def feasi_residual(k_t, k_tm1, c_tm1, g_t, model, μ_t=1):
"""
Computes the residuals for feasibility condition
with optional growth model parameter μ_t.
"""
k_t_expected = next_k(k_tm1, g_t, c_tm1, model, μ_t)
return k_t_expected - k_t

The algorithm proceeds follows:

1. Find initial steady state 𝑘0 based on the government plan at 𝑡 = 0.
2. Initialize a sequence of initial guesses { ̂𝑐𝑡, 𝑘̂𝑡}𝑆

𝑡=0.

3. Compute residuals 𝑙𝑎 and 𝑙𝑘 for 𝑡 = 0, … , 𝑆, as well as 𝑙𝑘0
for 𝑡 = 0 and 𝑙𝑘𝑆

for 𝑡 = 𝑆:
• Compute the Euler equation residual for 𝑡 = 0, … , 𝑆 using (52.17):

𝑙𝑡𝑎 = 𝛽𝑢′(𝑐𝑡+1) (1 + 𝜏𝑐𝑡)
(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1] − 1
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• Compute the feasibility condition residual for 𝑡 = 1, … , 𝑆 − 1 using (52.15):

𝑙𝑡𝑘 = 𝑘𝑡+1 − 𝑓(𝑘𝑡) − (1 − 𝛿)𝑘𝑡 + 𝑔𝑡 + 𝑐𝑡

• Compute the residual for the initial condition for 𝑘0 using (52.19) and the initial capital 𝑘0:

𝑙𝑘0
= 1 − 𝛽 [(1 − 𝜏𝑘0) (𝑓 ′(𝑘0) − 𝛿) + 1]

• Compute the residual for the terminal condition for 𝑡 = 𝑆 using (52.17) under the assumptions 𝑐𝑡 = 𝑐𝑡+1 =
𝑐𝑆 , 𝑘𝑡 = 𝑘𝑡+1 = 𝑘𝑆 , 𝜏𝑐𝑡 = 𝜏𝑐𝑡+1 = 𝜏𝑐𝑠

, and 𝜏𝑘𝑡 = 𝜏𝑘𝑡+1 = 𝜏𝑘𝑠
:

𝑙𝑘𝑆
= 𝛽𝑢′(𝑐𝑆)

(1 + 𝜏𝑐𝑠
)

(1 + 𝜏𝑐𝑠
) [(1 − 𝜏𝑘𝑠

)(𝑓 ′(𝑘𝑆) − 𝛿) + 1] − 1

4. Iteratively adjust guesses for { ̂𝑐𝑡, 𝑘̂𝑡}𝑆
𝑡=0 to minimize residuals 𝑙𝑘0

, 𝑙𝑡𝑎, 𝑙𝑡𝑘, and 𝑙𝑘𝑆
for 𝑡 = 0, … , 𝑆.

def compute_residuals(vars_flat, k_init, S, shock_paths, model):
"""
Compute the residuals for the Euler equation and feasibility condition.
"""
g, τ_c, τ_k, μ = (shock_paths[key] for key in ('g','τ_c','τ_k','μ'))
k, c = vars_flat.reshape((S+1, 2)).T
res = np.empty(2*S+2, dtype=float)

# boundary condition on initial capital
res[0] = k[0] - k_init

# interior Euler and feasibility
for t in range(S):

res[2*t + 1] = euler_residual(
c[t], c[t+1],
τ_c[t], τ_c[t+1],
τ_k[t+1],k[t+1],
model, μ[t+1])

res[2*t + 2] = feasi_residual(
k[t+1], k[t], c[t],
g[t], model,
μ[t+1])

# terminal Euler condition at t=S
res[-1] = euler_residual(

c[S], c[S],
τ_c[S], τ_c[S],
τ_k[S], k[S],
model,
μ[S])

return res

def run_min(shocks, S, model, A_path=None):
"""
Solve for the full (k,c) path by root‐finding the residuals.
"""
shocks['μ'] = shocks['μ'] if 'μ' in shocks else np.ones_like(shocks['g'])

(continues on next page)

52.9. Computation 999



Intermediate Quantitative Economics with Python

(continued from previous page)

# compute the steady‐state to serve as both initial capital and guess
k_ss, c_ss = steady_states(

model,
shocks['g'][0],
shocks['τ_k'][0],
shocks['μ'][0] # =1 if no growth

)

# initial guess: flat at the steady‐state
guess = np.column_stack([

np.full(S+1, k_ss),
np.full(S+1, c_ss)

]).flatten()

sol = root(
compute_residuals,
guess,
args=(k_ss, S, shocks, model),
tol=1e-8

)

return sol.x.reshape((S+1, 2))

We found that method 2 did not encounter numerical stability issues, so using mp.mpf is not necessary.

We leave as exercises replicating some of our experiments by using the second method.

Exercise 52.9.1

Replicate the plots of our four experiments using the second method of residual minimization:

1. A foreseen once-and-for-all increase in 𝑔 from 0.2 to 0.4 occurring in period 10,

2. A foreseen once-and-for-all increase in 𝜏𝑐 from 0.0 to 0.2 occurring in period 10,

3. A foreseen once-and-for-all increase in 𝜏𝑘 from 0.0 to 0.2 occurring in period 10, and

4. A foreseen one-time increase in 𝑔 from 0.2 to 0.4 in period 10, after which 𝑔 reverts to 0.2 permanently,

Solution to Exercise 52.9.1

Here is one solution:

Experiment 1: Foreseen once-and-for-all increase in 𝑔 from 0.2 to 0.4 in period 10

shocks = {
'g': np.concatenate((np.repeat(0.2, 10), np.repeat(0.4, S - 9))),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model, solver=run_min,
plot_func=plot_results,
policy_shock='g')

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------
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experiment_two_models(shocks, S, model, model_γ2,
run_min, plot_results, 'g')

Model 1 (γ=2.0): steady state k=1.4900, c=0.6426
Model 2 (γ=0.2): steady state k=1.4900, c=0.6426
----------------------------------------------------------------
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solution = run_min(shocks, S, model)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

plot_prices(solution, c_ss_initial, 'g', axes, model, T=40)

for ax in axes[5:]:
fig.delaxes(ax)

handles, labels = axes[3].get_legend_handles_labels()
fig.legend(handles, labels, title=r"$r_{t,t+s}$ with ", loc='lower right', ncol=3,␣

↪fontsize=10, bbox_to_anchor=(1, 0.1))
plt.tight_layout()
plt.show()
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Experiment 2: Foreseen once-and-for-all increase in 𝜏𝑐 from 0.0 to 0.2 in period 10.

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.concatenate((np.repeat(0.0, 10), np.repeat(0.2, S - 9))),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model, solver=run_min,
plot_func=plot_results,
policy_shock='τ_c')

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------
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Experiment 3: Foreseen once-and-for-all increase in 𝜏𝑘 from 0.0 to 0.2 in period 10.

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.concatenate((np.repeat(0.0, 10), np.repeat(0.2, S - 9)))

}

experiment_two_models(shocks, S, model, model_γ2,
solver=run_min,
plot_func=plot_results,
policy_shock='τ_k')

Model 1 (γ=2.0): steady state k=1.4900, c=0.6426
Model 2 (γ=0.2): steady state k=1.4900, c=0.6426
----------------------------------------------------------------
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Experiment 4: Foreseen one-time increase in 𝑔 from 0.2 to 0.4 in period 10, after which 𝑔 returns to 0.2 forever

g_path = np.repeat(0.2, S + 1)
g_path[10] = 0.4

shocks = {
'g': g_path,
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model, solver=run_min,
plot_func=plot_results,
policy_shock='g')

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------
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Exercise 52.9.2

Design a new experiment where the government expenditure 𝑔 increases from 0.2 to 0.4 in period 10, and then
decreases to 0.1 in period 20 permanently.

Solution to Exercise 52.9.2

Here is one solution:
g_path = np.repeat(0.2, S + 1)
g_path[10:20] = 0.4
g_path[20:] = 0.1

shocks = {
'g': g_path,
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1)

}

experiment_model(shocks, S, model, solver=run_min,
plot_func=plot_results,
policy_shock='g')

1006 Chapter 52. Cass-Koopmans Model with Distorting Taxes



Intermediate Quantitative Economics with Python

Steady-state capital: 1.4900
Steady-state consumption: 0.6426
----------------------------------------------------------------

52.10 Exogenous growth

In the previous section, we considered a model without exogenous growth.

We set the term 𝐴𝑡 in the production function to a constant by setting 𝐴𝑡 = 1 for all 𝑡.
Now we are ready to consider growth.

To incorporate growth, we modify the production function to be

𝑌𝑡 = 𝐹(𝐾𝑡, 𝐴𝑡𝑛𝑡)

where 𝑌𝑡 is aggregate output, 𝑁𝑡 is total employment, 𝐴𝑡 is labor-augmenting technical change, and 𝐹(𝐾, 𝐴𝑁) is the
same linearly homogeneous production function as before.

We assume that 𝐴𝑡 follows the process

𝐴𝑡+1 = 𝜇𝑡+1𝐴𝑡 (52.25)

and that 𝜇𝑡+1 = ̄𝜇 > 1.

52.10. Exogenous growth 1007



Intermediate Quantitative Economics with Python

# Set the constant A parameter to None
model = create_model(A=None)

def compute_A_path(A0, shocks, S=100):
"""
Compute A path over time.
"""
A_path = np.full(S + 1, A0)
for t in range(1, S + 1):

A_path[t] = A_path[t-1] * shocks['μ'][t-1]
return A_path

52.10.1 Inelastic Labor Supply

By linear homogeneity, the production function can be expressed as

𝑦𝑡 = 𝑓(𝑘𝑡)

where 𝑓(𝑘) = 𝐹(𝑘, 1) = 𝑘𝛼 and 𝑘𝑡 = 𝐾𝑡
𝑛𝑡𝐴𝑡

, 𝑦𝑡 = 𝑌𝑡
𝑛𝑡𝐴𝑡

.

𝑘𝑡 and 𝑦𝑡 are measured per unit of “effective labor” 𝐴𝑡𝑛𝑡.

We also let 𝑐𝑡 = 𝐶𝑡
𝐴𝑡𝑛𝑡

and 𝑔𝑡 = 𝐺𝑡
𝐴𝑡𝑛𝑡

, where 𝐶𝑡 and 𝐺𝑡 are total consumption and total government expenditures.

We continue to consider the case of inelastic labor supply.

Based on this, feasibility can be summarized by the following modified version of equation (52.15):

𝑘𝑡+1 = 𝜇−1
𝑡+1[𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 − 𝑔𝑡 − 𝑐𝑡] (52.26)

Again, by the properties of a linearly homogeneous production function, we have

𝜂𝑡 = 𝐹𝑘(𝑘𝑡, 1) = 𝑓 ′(𝑘𝑡), 𝑤𝑡 = 𝐹𝑛(𝑘𝑡, 1) = 𝑓(𝑘𝑡) − 𝑓 ′(𝑘𝑡)𝑘𝑡

Since per capita consumption is now 𝑐𝑡𝐴𝑡, the counterpart to the Euler equation (52.17) is

𝑢′(𝑐𝑡𝐴𝑡) = 𝛽𝑢′(𝑐𝑡+1𝐴𝑡+1) (1 + 𝜏𝑐𝑡)
(1 + 𝜏𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1]. (52.27)

𝑅̄𝑡+1 continues to be defined by (52.21), except that now 𝑘𝑡 is capital per effective unit of labor.

Thus, substituting (52.21), (52.27) becomes

𝑢′(𝑐𝑡𝐴𝑡) = 𝛽𝑢′(𝑐𝑡+1𝐴𝑡+1)𝑅̄𝑡+1

Assuming that the household’s utility function is the same as before, we have

(𝑐𝑡𝐴𝑡)−𝛾 = 𝛽(𝑐𝑡+1𝐴𝑡+1)−𝛾𝑅̄𝑡+1

Thus, the counterpart to (52.24) is

𝑐𝑡+1 = 𝑐𝑡 [𝛽𝑅̄𝑡+1]
1
𝛾 𝜇−1

𝑡+1 (52.28)
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52.10.2 Steady State

In a steady state, 𝑐𝑡+1 = 𝑐𝑡. Then (52.27) becomes

1 = 𝜇−𝛾𝛽[(1 − 𝜏𝑘)(𝑓 ′(𝑘) − 𝛿) + 1] (52.29)

from which we can compute that the steady-state level of capital per unit of effective labor satisfies

𝑓 ′(𝑘) = 𝛿 + (
1
𝛽 𝜇𝛾 − 1
1 − 𝜏𝑘

) (52.30)

and that

𝑅̄ = 𝜇𝛾

𝛽 (52.31)

The steady-state level of consumption per unit of effective labor can be found using (52.26):

𝑐 = 𝑓(𝑘) + (1 − 𝛿 − 𝜇)𝑘 − 𝑔

Since the algorithm and plotting routines are the same as before, we include the steady-state calculations and shooting
routine in the section Python Code.

52.10.3 Shooting Algorithm

Nowwe can apply the shooting algorithm to compute equilibrium. We augment the vector of shock variables by including
𝜇𝑡, then proceed as before.

52.10.4 Experiments

Let’s run some experiments:

1. A foreseen once-and-for-all increase in 𝜇 from 1.02 to 1.025 in period 10

2. An unforeseen once-and-for-all increase in 𝜇 to 1.025 in period 0

Experiment 1: A foreseen increase in 𝜇 from 1.02 to 1.025 at t=10

The figures below show the effects of a permanent increase in productivity growth 𝜇 from 1.02 to 1.025 at t=10.

They now measure 𝑐 and 𝑘 in effective units of labor.

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1),
'μ': np.concatenate((np.repeat(1.02, 10), np.repeat(1.025, S - 9)))

}

A_path = compute_A_path(1.0, shocks, S)

k_ss_initial, c_ss_initial = steady_states(model,
shocks['g'][0],
shocks['τ_k'][0],
shocks['μ'][0]

(continues on next page)
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)

print(f"Steady-state capital: {k_ss_initial:.4f}")
print(f"Steady-state consumption: {c_ss_initial:.4f}")

# Run the shooting algorithm with the A_path parameter
solution = run_shooting(shocks, S, model, A_path)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

plot_results(solution, k_ss_initial,
c_ss_initial, shocks, 'μ', axes, model,
A_path, T=40)

for ax in axes[5:]:
fig.delaxes(ax)

plt.tight_layout()
plt.show()

Steady-state capital: 1.1812
Steady-state consumption: 0.5966

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=None)
Optimal initial consumption c0 = 0.5971184749344462396270918337183607339919
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The results in the figures are mainly driven by (52.29) and imply that a permanent increase in 𝜇 will lead to a decrease in
the steady-state value of capital per unit of effective labor.

The figures indicate the following:

• As capital becomes more efficient, even with less of it, consumption per capita can be raised.

• Consumption smoothing drives an immediate jump in consumption in anticipation of the increase in 𝜇.
• The increased productivity of capital leads to an increase in the gross return 𝑅̄.

• Perfect foresight makes the effects of the increase in the growth of capital precede it, with the effect visible at 𝑡 = 0.

Experiment 2: An unforeseen increase in 𝜇 from 1.02 to 1.025 at t=0

The figures below show the effects of an immediate jump in 𝜇 to 1.025 at t=0.

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1),
'μ': np.concatenate((np.repeat(1.02, 1), np.repeat(1.025, S)))

}

A_path = compute_A_path(1.0, shocks, S)

(continues on next page)
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k_ss_initial, c_ss_initial = steady_states(model,
shocks['g'][0],
shocks['τ_k'][0],
shocks['μ'][0]

)

print(f"Steady-state capital: {k_ss_initial:.4f}")
print(f"Steady-state consumption: {c_ss_initial:.4f}")

# Run the shooting algorithm with the A_path parameter
solution = run_shooting(shocks, S, model, A_path)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

plot_results(solution, k_ss_initial,
c_ss_initial, shocks, 'μ', axes, model, A_path, T=40)

for ax in axes[5:]:
fig.delaxes(ax)

plt.tight_layout()
plt.show()

Steady-state capital: 1.1812
Steady-state consumption: 0.5966

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=None)
Optimal initial consumption c0 = 0.6011494930430641150395883753109588316638
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Again, we can collect the procedures used above into a function that runs the solver and draws plots for a given experiment.

def experiment_model(shocks, S, model, A_path, solver, plot_func, policy_shock, T=40):
"""
Run the shooting algorithm given a model and plot the results.
"""
k0, c0 = steady_states(model, shocks['g'][0], shocks['τ_k'][0], shocks['μ'][0])

print(f"Steady-state capital: {k0:.4f}")
print(f"Steady-state consumption: {c0:.4f}")
print('-'*64)

fig, axes = plt.subplots(2, 3, figsize=(10, 8))
axes = axes.flatten()

solution = solver(shocks, S, model, A_path)
plot_func(solution, k0, c0,

shocks, policy_shock, axes, model, A_path, T=T)

for ax in axes[5:]:
fig.delaxes(ax)

plt.tight_layout()
plt.show()
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shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1),
'μ': np.concatenate((np.repeat(1.02, 1), np.repeat(1.025, S)))

}

experiment_model(shocks, S, model, A_path, run_shooting, plot_results, 'μ')

Steady-state capital: 1.1812
Steady-state consumption: 0.5966
----------------------------------------------------------------

Model: Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=None)
Optimal initial consumption c0 = 0.6011494930430641150395883753109588316638

The figures show that:

• The paths of all variables are now smooth due to the absence of feedforward effects.

• Capital per effective unit of labor gradually declines to a lower steady-state level.

• Consumption per effective unit of labor jumps immediately and then declines smoothly toward its lower steady-state
value.
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• The after-tax gross return 𝑅̄ once again co-moves with the consumption growth rate, verifying the Euler equation
(52.29).

Exercise 52.10.1

Replicate the plots of our two experiments using the second method of residual minimization:

1. A foreseen increase in 𝜇 from 1.02 to 1.025$ at t=10

2. An unforeseen increase in 𝜇 from 1.02 to 1.025$ at t=0

Solution to Exercise 52.10.1

Here is one solution:

Experiment 1: A foreseen increase in 𝜇 from 1.02 to 1.025 at 𝑡 = 10
shocks = {

'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1),
'μ': np.concatenate((np.repeat(1.02, 10), np.repeat(1.025, S - 9)))

}

A_path = compute_A_path(1.0, shocks, S)

experiment_model(shocks, S, model, A_path, run_min, plot_results, 'μ')

Steady-state capital: 1.1812
Steady-state consumption: 0.5966
----------------------------------------------------------------
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Experiment 2: An unforeseen increase in 𝜇 from 1.02 to 1.025 at 𝑡 = 0

shocks = {
'g': np.repeat(0.2, S + 1),
'τ_c': np.repeat(0.0, S + 1),
'τ_k': np.repeat(0.0, S + 1),
'μ': np.concatenate((np.repeat(1.02, 1), np.repeat(1.025, S)))

}

experiment_model(shocks, S, model, A_path, run_min, plot_results, 'μ')

Steady-state capital: 1.1812
Steady-state consumption: 0.5966
----------------------------------------------------------------
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In this this sequel Two-Country Model with Distorting Taxes, we study a two-country version of our one-country model
that is closely related to Mendoza and Tesar [1998].
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CHAPTER

FIFTYTHREE

TWO-COUNTRY MODEL WITH DISTORTING TAXES

53.1 Overview

This lecture is a sequel to this QuantEcon lecture Cass-Koopmans Model with Distorting Taxes in which we studied
consequences of foreseen fiscal and technology shocks on competitive equilibrium prices and quantities in a nonstochastic
version of a Cass-Koopmans growth model like the one described in this QuantEcon lecture Cass-Koopmans Competitive
Equilibrium.

Here we study a two-country version of that model.

We construct it by putting instances of two Cass-Koopmans Competitive Equilibrium economies together back to back,
and then opening international trade in some commodities, but not in others.

This lets us focus on some of the issues studied by Mendoza and Tesar [1998].

Let’s start with some imports:

import numpy as np
from scipy.optimize import root
import matplotlib.pyplot as plt
from collections import namedtuple
from mpmath import mp, mpf
from warnings import warn

# Set the precision
mp.dps = 40
mp.pretty = True

53.2 A Two-Country Cass-Koopmans Model

This section describes a two-country version of the basic model of The Economy.

The model has a structure similar to ones used in the international real business cycle literature and is in the spirit of an
analysis of distorting taxes by Mendoza and Tesar [1998].

We allow two countries to trade goods and claims on future goods, but not labor.

Both countries have production technologies, and consumers in each country can hold capital in either country, subject
to different tax treatments.

We denote variables in the second country with asterisks (*).
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Households in both countries maximize lifetime utility:

∞
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) and
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐∗
𝑡 ),

where 𝑢(𝑐) = 𝑐1−𝛾
1−𝛾 with 𝛾 > 0.

There are Cobb-Douglas functions with identical technology parameters in the two countries.

The world resource constraint in this two-country economy is:

(𝑐𝑡 + 𝑐∗
𝑡 ) + (𝑔𝑡 + 𝑔∗

𝑡 ) + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) + (𝑘∗
𝑡+1 − (1 − 𝛿)𝑘∗

𝑡) = 𝑓(𝑘𝑡) + 𝑓(𝑘∗
𝑡)

which combines the feasibility constraints for the two countries.

Later, we will use this constraint as a global feasibility constraint in our computation.

To connect the two countries, we need to specify how capital flows across borders and how taxes are levied in different
jurisdictions.

53.2.1 Capital Mobility and Taxation

A consumer in country one can hold capital in either country but pays taxes on rentals from foreign holdings of capital at
the rate set by the foreign country.

Residents in both countries can purchase consumption at date 𝑡 at a common Arrow-Debreu price 𝑞𝑡. We assume capital
markets are complete.

Let 𝐵𝑓
𝑡 be the amount of time 𝑡 goods that the representative domestic consumer raises by issuing a one-period IOU to

the representative foreign consumer.

So 𝐵𝑓
𝑡 > 0 indicates the domestic consumer is borrowing from abroad at 𝑡, and 𝐵𝑓

𝑡 < 0 indicates the domestic consumer
is lending abroad at 𝑡.
Hence, the budget constraint of a representative consumer in country one is:

∞
∑
𝑡=0

𝑞𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) + (𝑘̃𝑡+1 − (1 − 𝛿)𝑘̃𝑡) + 𝑅𝑡−1,𝑡𝐵𝑓
𝑡−1) ≤

∞
∑
𝑡=0

𝑞𝑡 ((𝜂𝑡 − 𝜏𝑘𝑡(𝜂𝑡 − 𝛿))𝑘𝑡 + (𝜂∗
𝑡 − 𝜏∗

𝑘𝑡(𝜂∗
𝑡 − 𝛿))𝑘̃𝑡 + (1 − 𝜏𝑛𝑡)𝑤𝑡𝑛𝑡 − 𝜏ℎ𝑡 + 𝐵𝑓

𝑡 ) .

No-arbitrage conditions for 𝑘𝑡 and 𝑘̃𝑡 for 𝑡 ≥ 1 imply

𝑞𝑡−1 = [(1 − 𝜏𝑘𝑡)(𝜂𝑡 − 𝛿) + 1]𝑞𝑡,
𝑞𝑡−1 = [(1 − 𝜏∗

𝑘𝑡)(𝜂∗
𝑡 − 𝛿) + 1]𝑞𝑡,

which together imply that after-tax rental rates on capital are equalized across the two countries:

(1 − 𝜏∗
𝑘𝑡)(𝜂∗

𝑡 − 𝛿) = (1 − 𝜏𝑘𝑡)(𝜂𝑡 − 𝛿).

The no-arbitrage conditions for 𝐵𝑓
𝑡 for 𝑡 ≥ 0 are 𝑞𝑡 = 𝑞𝑡+1𝑅𝑡+1,𝑡, which implies that

𝑞𝑡−1 = 𝑞𝑡𝑅𝑡−1,𝑡

for 𝑡 ≥ 1.
Since domestic capital, foreign capital, and consumption loans bear the same rates of return, portfolios are indeterminate.
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We can set holdings of foreign capital equal to zero in each country if we allow 𝐵𝑓
𝑡 to be nonzero.

This way of resolving portfolio indeterminacy is convenient because it reduces the number of initial conditions we need
to specify.

Therefore, we set holdings of foreign capital equal to zero in both countries while allowing international lending.

Given an initial level𝐵𝑓
−1 of debt from the domestic country to the foreign country, andwhere𝑅𝑡−1,𝑡 = 𝑞𝑡−1

𝑞𝑡
, international

debt dynamics satisfy

𝐵𝑓
𝑡 = 𝑅𝑡−1,𝑡𝐵𝑓

𝑡−1 + 𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) + 𝑔𝑡 − 𝑓(𝑘𝑡)

def Bf_path(k, c, g, model):
"""
Compute B^{f}_t:
Bf_t = R_{t-1} Bf_{t-1} + c_t + (k_{t+1}-(1-δ)k_t) + g_t - f(k_t)

with Bf_0 = 0.
"""
S = len(c) - 1
R = c[:-1]**(-model.γ) / (model.β * c[1:]**(-model.γ))

Bf = np.zeros(S + 1)
for t in range(1, S + 1):

inv = k[t] - (1 - model.δ) * k[t-1]
Bf[t] = (

R[t-1] * Bf[t-1] + c[t] + inv + g[t-1]
- f(k[t-1], model))

return Bf

def Bf_ss(c_ss, k_ss, g_ss, model):
"""
Compute the steady-state B^f
"""
R_ss = 1.0 / model.β
inv_ss = model.δ * k_ss
num = c_ss + inv_ss + g_ss - f(k_ss, model)
den = 1.0 - R_ss
return num / den

and

𝑐∗
𝑡 + (𝑘∗

𝑡+1 − (1 − 𝛿)𝑘∗
𝑡) + 𝑔∗

𝑡 − 𝑅𝑡−1,𝑡𝐵𝑓
𝑡−1 = 𝑓(𝑘∗

𝑡) − 𝐵𝑓
𝑡 .

The firms’ first-order conditions in the two countries are:

𝜂𝑡 = 𝑓 ′(𝑘𝑡), 𝑤𝑡 = 𝑓(𝑘𝑡) − 𝑘𝑡𝑓 ′(𝑘𝑡)
𝜂∗

𝑡 = 𝑓 ′(𝑘∗
𝑡), 𝑤∗

𝑡 = 𝑓(𝑘∗
𝑡) − 𝑘∗

𝑡𝑓 ′(𝑘∗
𝑡).

International trade in goods establishes:

𝑞𝑡
𝛽𝑡 = 𝑢′(𝑐𝑡)

1 + 𝜏𝑐𝑡
= 𝜇∗ 𝑢′(𝑐∗

𝑡 )
1 + 𝜏∗

𝑐𝑡
,

where 𝜇∗ is a nonnegative number that is a function of the Lagrange multiplier on the budget constraint for a consumer
in country ∗.
We have normalized the Lagrange multiplier on the budget constraint of the domestic country to set the corresponding 𝜇
for the domestic country to unity.
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def compute_rs(c_t, c_tp1, c_s_t, c_s_tp1, τc_t,
τc_tp1, τc_s_t, τc_s_tp1, model):

"""
Compute international risk sharing after trade starts.
"""

return (c_t**(-model.γ)/(1+τc_t)) * ((1+τc_s_t)/c_s_t**(-model.γ)) - (
c_tp1**(-model.γ)/(1+τc_tp1)) * ((1+τc_s_tp1)/c_s_tp1**(-model.γ))

Equilibrium requires that the following two national Euler equations be satisfied for 𝑡 ≥ 0:

𝑢′(𝑐𝑡) = 𝛽𝑢′(𝑐𝑡+1) [(1 − 𝜏𝑘𝑡+1)(𝑓 ′(𝑘𝑡+1) − 𝛿) + 1] [1 + 𝜏𝑐𝑡+1
1 + 𝜏𝑐𝑡

] ,

𝑢′(𝑐∗
𝑡 ) = 𝛽𝑢′(𝑐∗

𝑡+1) [(1 − 𝜏∗
𝑘𝑡+1)(𝑓 ′(𝑘∗

𝑡+1) − 𝛿) + 1] [1 + 𝜏∗
𝑐𝑡+1

1 + 𝜏∗
𝑐𝑡

] .

The following code computes both the domestic and foreign Euler equations.

Since they have the same form but use different variables, we can write a single function that handles both cases.

def compute_euler(c_t, c_tp1, τc_t,
τc_tp1, τk_tp1, k_tp1, model):

"""
Compute the Euler equation.
"""
Rbar = (1 - τk_tp1)*(f_prime(k_tp1, model) - model.δ) + 1
return model.β * (c_tp1/c_t)**(-model.γ) * (1+τc_t)/(1+τc_tp1) * Rbar - 1

53.2.2 Initial condition and steady state

For the initial conditions, we choose the pre-trade allocation of capital (𝑘0, 𝑘∗
0) and the initial level 𝐵𝑓

−1 of international
debt owed by the unstarred (domestic) country to the starred (foreign) country.

53.2.3 Equilibrium steady state values

The steady state of the two-country model is characterized by two sets of equations.

First, the following equations determine the steady-state capital-labor ratios 𝑘̄ and 𝑘̄∗ in each country:

𝑓 ′(𝑘̄) = 𝛿 + 𝜌
1 − 𝜏𝑘

(53.1)

𝑓 ′(𝑘̄∗) = 𝛿 + 𝜌
1 − 𝜏∗

𝑘
(53.2)

Given these steady-state capital-labor ratios, the domestic and foreign consumption values ̄𝑐 and ̄𝑐∗ are determined by:

( ̄𝑐 + ̄𝑐∗) = 𝑓(𝑘̄) + 𝑓(𝑘̄∗) − 𝛿(𝑘̄ + 𝑘̄∗) − ( ̄𝑔 + ̄𝑔∗) (53.3)

̄𝑐 = 𝑓(𝑘̄) − 𝛿𝑘̄ − ̄𝑔 − 𝜌𝐵̄𝑓 (53.4)

Equation (53.3) expresses feasibility at the steady state, while equation (53.4) represents the trade balance, including
interest payments, at the steady state.

The steady-state level of debt 𝐵̄𝑓 from the domestic country to the foreign country influences the consumption allocation
between countries but not the total world capital stock.
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We assume 𝐵̄𝑓 = 0 in the steady state, which gives us the following function to compute the steady-state values of capital
and consumption

def compute_steady_state_global(model, g_ss=0.2):
"""
Calculate steady state values for capital, consumption, and investment.
"""
k_ss = ((1/model.β - (1-model.δ)) / (model.A * model.α)) ** (1/(model.α-1))
c_ss = f(k_ss, model) - model.δ * k_ss - g_ss
return k_ss, c_ss

Now, we can apply the residual minimization method to compute the steady-state values of capital and consumption.

Again, we minimize the residuals of the Euler equation, the global resource constraint, and the no-arbitrage condition.

def compute_residuals_global(z, model, shocks, T, k0_ss, k_star, Bf_star):
"""
Compute residuals for the two-country model.
"""
k, c, k_s, c_s = z.reshape(T+1, 4).T
g, gs = shocks['g'], shocks['g_s']
τc, τk = shocks['τ_c'], shocks['τ_k']
τc_s, τk_s = shocks['τ_c_s'], shocks['τ_k_s']

res = [k[0] - k0_ss, k_s[0] - k0_ss]

for t in range(T):
e_d = compute_euler(

c[t], c[t+1],
τc[t], τc[t+1], τk[t+1],
k[t+1], model)

e_f = compute_euler(
c_s[t], c_s[t+1],
τc_s[t], τc_s[t+1], τk_s[t+1],
k_s[t+1], model)

rs = compute_rs(
c[t], c[t+1], c_s[t], c_s[t+1],
τc[t], τc[t+1], τc_s[t], τc_s[t+1],
model)

# Global resource constraint
grc = k[t+1] + k_s[t+1] - (

f(k[t], model) + f(k_s[t], model) +
(1-model.δ)*(k[t] + k_s[t]) -
c[t] - c_s[t] - g[t] - gs[t]

)

res.extend([e_d, e_f, rs, grc])

Bf_term = Bf_path(k, c, shocks['g'], model)[-1]
res.append(k[T] - k_star)
res.append(Bf_term - Bf_star)
return np.array(res)

Now we plot the results
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# Function to plot global two-country model results
def plot_global_results(k, k_s, c, c_s, shocks, model,

k0_ss, c0_ss, g_ss, S, T=40, shock='g',
# a dictionary storing sequence for lower left panel
ll_series='None'):

"""
Plot results for the two-country model.
"""
fig, axes = plt.subplots(2, 3, figsize=(10, 8))
x = np.arange(T)
τc, τk = shocks['τ_c'], shocks['τ_k']
Bf = Bf_path(k, c, shocks['g'], model)

# Compute derived series
R_ratio = c[:-1]**(-model.γ) / (model.β * c[1:]**(-model.γ)) \
*(1+τc[:-1])/(1+τc[1:])
inv = k[1:] - (1-model.δ)*k[:-1]
inv_s = k_s[1:] - (1-model.δ)*k_s[:-1]

# Add initial conditions into the series
R_ratio = np.append(1/model.β, R_ratio)
c = np.append(c0_ss, c)
c_s = np.append(c0_ss, c_s)
k = np.append(k0_ss, k)
k_s = np.append(k0_ss, k_s)

# Capital
axes[0,0].plot(x, k[:T], '-', lw=1.5)
axes[0,0].plot(x, np.full(T, k0_ss), 'k-.', lw=1.5)
axes[0,0].plot(x, k_s[:T], '--', lw=1.5)
axes[0,0].set_title('k')
axes[0,0].set_xlim(0, T-1)

# Consumption
axes[0,1].plot(x, c[:T], '-', lw=1.5)
axes[0,1].plot(x, np.full(T, c0_ss), 'k-.', lw=1.5)
axes[0,1].plot(x, c_s[:T], '--', lw=1.5)
axes[0,1].set_title('c')
axes[0,1].set_xlim(0, T-1)

# Interest rate
axes[0,2].plot(x, R_ratio[:T], '-', lw=1.5)
axes[0,2].plot(x, np.full(T, 1/model.β), 'k-.', lw=1.5)
axes[0,2].set_title(r'$\bar{R}$')
axes[0,2].set_xlim(0, T-1)

# Investment
axes[1,0].plot(x, np.full(T, model.δ * k0_ss),
'k-.', lw=1.5)
axes[1,0].plot(x, np.append(model.δ*k0_ss, inv[:T-1]),
'-', lw=1.5)
axes[1,0].plot(x, np.append(model.δ*k0_ss, inv_s[:T-1]),
'--', lw=1.5)
axes[1,0].set_title('x')
axes[1,0].set_xlim(0, T-1)

# Shock

(continues on next page)
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(continued from previous page)

axes[1,1].plot(x, shocks[shock][:T], '-', lw=1.5)
axes[1,1].plot(x, np.full(T, shocks[shock][0]), 'k-.', lw=1.5)
axes[1,1].set_title(f'${shock}$')
axes[1,1].set_ylim(-0.1, 0.5)
axes[1,1].set_xlim(0, T-1)

# Capital flow
axes[1,2].plot(x, np.append(0, Bf[1:T]), lw=1.5)
axes[1,2].plot(x, np.zeros(T), 'k-.', lw=1.5)
axes[1,2].set_title(r'$B^{f}$')
axes[1,2].set_xlim(0, T-1)

plt.tight_layout()
return fig, axes

As in our in the one-countrymodel inCass-KoopmansModel with Distorting Taxes, we assume a Cobb-Douglas production
function:

𝐹(𝑘, 1) = 𝐴𝑘𝛼

def f(k, model, A=1):
"""
Production function: f(k) = A * k^{α}
"""
return A * k ** model.α

def f_prime(k, model, A=1):
"""
Marginal product of capital: f'(k) = α * A * k^{α - 1}
"""
return model.α * A * k ** (model.α - 1)

Similarly, we define the capital rental rate

𝜂𝑡 = 𝑓 ′(𝑘𝑡)

def compute_η_path(k_path, model, S=100, A_path=None):
"""
Compute η path: η_t = f'(k_t)
with optional A_path for growth models.
"""
A = np.ones_like(k_path) if A_path is None else np.asarray(A_path)
η_path = np.zeros_like(k_path)
for t in range(S):

η_path[t] = f_prime(k_path[t], model, A[t])
return η_path
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Experiment 1: A foreseen increase in 𝑔 from 0.2 to 0.4 at t=10

The figure below presents transition dynamics after an increase in 𝑔 in the domestic economy from 0.2 to 0.4 that is
announced ten periods in advance.

We start both economies from a steady state with 𝐵𝑓
0 = 0.

In the figure below, the blue lines represent the domestic economy and orange dotted lines represent the foreign economy.

Model = namedtuple("Model", ["β", "γ", "δ", "α", "A"])
model = Model(β=0.95, γ=2.0, δ=0.2, α=0.33, A=1.0)
S = 100

shocks_global = {
'g': np.concatenate((np.full(10, 0.2), np.full(S-9, 0.4))),
'g_s': np.full(S+1, 0.2),
'τ_c': np.zeros(S+1),
'τ_k': np.zeros(S+1),
'τ_c_s': np.zeros(S+1),
'τ_k_s': np.zeros(S+1)

}
g_ss = 0.2
k0_ss, c0_ss = compute_steady_state_global(model, g_ss)

k_star = k0_ss
Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)

init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)
sol_glob = root(

lambda z: compute_residuals_global(z, model, shocks_global,
S, k0_ss, k_star, Bf_star),

init_glob, tol=1e-12
)
k, c, k_s, c_s = sol_glob.x.reshape(S+1, 4).T

# Plot global results via function
plot_global_results(k, k_s, c, c_s,

shocks_global, model,
k0_ss, c0_ss, g_ss,
S)

plt.show()
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At time 1, the government announces that domestic government purchases 𝑔 will rise ten periods later, cutting into future
private resources.

To smooth consumption, domestic households immediately increase saving, offsetting the anticipated hit to their future
wealth.

In a closed economy, they would save solely by accumulating extra domestic capital; with open capital markets, they can
also lend to foreigners.

Once the capital flow opens up at time 1, the no-arbitrage conditions connect adjustments of both types of saving: the
increase in savings by domestic households will reduce the equilibrium return on bonds and capital in the foreign economy
to prevent arbitrage opportunities.

Because no-arbitrage equalizes the ratio of marginal utilities, the resulting paths of consumption and capital are synchro-
nized across the two economies.

Up to the date the higher 𝑔 takes effect, both countries continue to build their capital stocks.
When government spending finally rises 10 periods later, domestic households begin to draw down part of that capital to
cushion consumption.

Again by no-arbitrage conditions, when 𝑔 actually increases, both countries reduce their investment rates.
The domestic economy, in turn, starts running current-account deficits partially to fund the increase in 𝑔.
This means that foreign households begin repaying part of their external debt by reducing their capital stock.
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Experiment 2: A foreseen increase in 𝑔 from 0.2 to 0.4 at t=10

We now explore the impact of an increase in capital taxation in the domestic economy 10 periods after its announcement
at 𝑡 = 1.
Because the change is anticipated, households in both countries adjust immediately—even though the tax does not take
effect until period 𝑡 = 11.
shocks_global = {

'g': np.full(S+1, g_ss),
'g_s': np.full(S+1, g_ss),
'τ_c': np.zeros(S+1),
'τ_k': np.concatenate((np.zeros(10), np.full(S-9, 0.2))),
'τ_c_s': np.zeros(S+1),
'τ_k_s': np.zeros(S+1),

}

k0_ss, c0_ss = compute_steady_state_global(model, g_ss)
k_star = k0_ss
Bf_star = Bf_ss(c0_ss, k_star, g_ss, model)

init_glob = np.tile([k0_ss, c0_ss, k0_ss, c0_ss], S+1)

sol_glob = root(
lambda z: compute_residuals_global(z, model,

shocks_global, S, k0_ss, k_star, Bf_star),
init_glob, tol=1e-12)

k, c, k_s, c_s = sol_glob.x.reshape(S+1, 4).T

# plot
fig, axes = plot_global_results(k, k_s, c, c_s, shocks_global, model,

k0_ss, c0_ss, g_ss, S, shock='τ_k')
plt.tight_layout()
plt.show()
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After the tax increase is announced, domestic households foresee lower after-tax returns on capital, so they shift toward
higher present consumption and allow the domestic capital stock to decline.

This shrinkage of the world capital supply drives the global real interest rate upward, prompting foreign households to
raise current consumption as well.

Prior to the actual tax hike, the domestic economy finances part of its consumption by importing capital, generating a
current-account deficit.

When 𝜏𝑘 finally rises, international arbitrage leads investors to reallocate capital quickly toward the untaxed foreign
market, compressing the yield on bonds everywhere.

The bond-rate drop reflects the lower after-tax return on domestic capital and the higher foreign capital stock, which
depresses its marginal product.

Foreign households fund their capital purchases by borrowing abroad, creating a pronounced current-account deficit and
a buildup of external debt.

After the policy change, both countries move smoothly toward a new steady state in which:

• Consumption levels in each economy settle below their pre-announcement paths.

• Capital stocks differ just enough to equalize after-tax returns across borders.

Despite carrying positive net liabilities, the foreign country enjoys higher steady-state consumption because its larger
capital stock yields greater output.

The episode demonstrates how open capital markets transmit a domestic tax shock internationally: capital flows and
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interest-rate movements share the burden, smoothing consumption adjustments in both the taxed and untaxed economies
over time.

Exercise 53.2.1

In this exercise, replace the plot for 𝑥𝑡 with 𝜂𝑡 to replicate the figure in [Ljungqvist and Sargent, 2018].

Compare the figures for 𝑘𝑡 and 𝜂𝑡 and discuss the economic intuition.

Solution to Exercise 53.2.1

Here is one solution.

fig, axes = plot_global_results(k, k_s, c, c_s, shocks_global, model,
k0_ss, c0_ss, g_ss, S, shock='τ_k')

# Clear the plot for x_t
axes[1,0].cla()

# Plot η_t
axes[1,0].plot(compute_η_path(k, model)[:40])
axes[1,0].plot(compute_η_path(k_s, model)[:40], '--')
axes[1,0].plot(np.full(40, f_prime(k_s, model)[0]), 'k-.', lw=1.5)
axes[1,0].set_title(r'$\eta$')

plt.tight_layout()
plt.show()

1030 Chapter 53. Two-Country Model with Distorting Taxes



Intermediate Quantitative Economics with Python

When capital 𝑘𝑡 decreases in the domestic country after the tax shock, the rental rate 𝜂𝑡 increases in that country.

This happens because when capital becomes scarcer, its marginal product rises.
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CHAPTER

FIFTYFOUR

TRANSITIONS IN AN OVERLAPPING GENERATIONS MODEL

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

54.1 Introduction

This lecture presents a life-cycle model consisting of overlapping generations of two-period lived people proposed by
Peter Diamond [Diamond, 1965].

We’ll present the version that was analyzed in chapter 2 of Auerbach and Kotlikoff (1987) [Auerbach and Kotlikoff,
1987].

Auerbach and Kotlikoff (1987) used their two period model as a warm-up for their analysis of overlapping generation
models of long-lived people that is the main topic of their book.

Their model of two-period lived overlapping generations is a useful starting point because

• it sets forth the structure of interactions between generations of different agents who are alive at a given date

• it activates forces and tradeoffs confronting the government and successive generations of people

• it is good laboratory for studying connections between government tax and subsidy programs and for policies for
issuing and servicing government debt

• some interesting experiments involving transitions from one steady state to another can be computed by hand

• it is a good setting for illustrating a shooting method for solving a system of non-linear difference equations with
initial and terminal condition

Note

Auerbach and Kotlikoff use computer code to calculate transition paths for their models with long-lived people.

We take the liberty of extending Auerbach and Kotlikoff’s chapter 2 model to study some arrangements for redistributing
resources across generations

• these take the form of a sequence of age-specific lump sum taxes and transfers

We study how these arrangements affect capital accumulation and government debt
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54.2 Setting

Time is discrete and is indexed by 𝑡 = 0, 1, 2, ….

The economy lives forever, but the people inside it do not.

At each time 𝑡 ≥ 0 a representative old person and a representative young person are alive.
At time 𝑡 a representative old person coexists with a representative young person who will become an old person at time
𝑡 + 1.
We assume that the population size is constant over time.

A young person works, saves, and consumes.

An old person dissaves and consumes, but does not work,

A government lives forever, i.e., at 𝑡 = 0, 1, 2, ….

Each period 𝑡 ≥ 0, the government taxes, spends, transfers, and borrows.
Initial conditions set outside the model at time 𝑡 = 0 are

• 𝐾0 – initial capital stock brought into time 𝑡 = 0 by a representative initial old person
• 𝐷0 – government debt falling due at 𝑡 = 0 and owned by a representative old person at time 𝑡 = 0

𝐾0 and 𝐷0 are both measured in units of time 0 goods.
A government policy consists of five sequences {𝐺𝑡, 𝐷𝑡, 𝜏𝑡, 𝛿𝑜𝑡, 𝛿𝑦𝑡}∞

𝑡=0 whose components are

• 𝜏𝑡 – flat rate tax at time 𝑡 on wages and earnings from capital and government bonds

• 𝐷𝑡 – one-period government bond principal due at time 𝑡, per capita
• 𝐺𝑡 – government purchases of goods at time 𝑡, per capita
• 𝛿𝑦𝑡 – a lump sum tax on each young person at time 𝑡
• 𝛿𝑜𝑡 – a lump sum tax on each old person at time 𝑡

An allocation is a collection of sequences {𝐶𝑦𝑡, 𝐶𝑜𝑡, 𝐾𝑡+1, 𝐿𝑡, 𝑌𝑡, 𝐺𝑡}∞
𝑡=0; constituents of the sequences include

• 𝐾𝑡 – physical capital per capita

• 𝐿𝑡 – labor per capita

• 𝑌𝑡 – output per capita

and also

• 𝐶𝑦𝑡 – consumption of young person at time 𝑡 ≥ 0
• 𝐶𝑜𝑡 – consumption of old person at time 𝑡 ≥ 0
• 𝐾𝑡+1 − 𝐾𝑡 ≡ 𝐼𝑡 – investment in physical capital at time 𝑡 ≥ 0
• 𝐺𝑡 – government purchases

National income and product accounts consist of a sequence of equalities

• 𝑌𝑡 = 𝐶𝑦𝑡 + 𝐶𝑜𝑡 + (𝐾𝑡+1 − 𝐾𝑡) + 𝐺𝑡, 𝑡 ≥ 0
A price system is a pair of sequences {𝑊𝑡, 𝑟𝑡}∞

𝑡=0; constituents of a price sequence include rental rates for the factors
of production

• 𝑊𝑡 – rental rate for labor at time 𝑡 ≥ 0
• 𝑟𝑡 – rental rate for capital at time 𝑡 ≥ 0
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54.3 Production

There are two factors of production, physical capital 𝐾𝑡 and labor 𝐿𝑡.

Capital does not depreciate.

The initial capital stock 𝐾0 is owned by the representative initial old person, who rents it to the firm at time 0.
Net investment rate 𝐼𝑡 at time 𝑡 is

𝐼𝑡 = 𝐾𝑡+1 − 𝐾𝑡

The capital stock at time 𝑡 emerges from cumulating past rates of investment:

𝐾𝑡 = 𝐾0 +
𝑡−1
∑
𝑠=0

𝐼𝑠

A Cobb-Douglas technology converts physical capital 𝐾𝑡 and labor services 𝐿𝑡 into output 𝑌𝑡

𝑌𝑡 = 𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 , 𝛼 ∈ (0, 1) (54.1)

54.4 Government

At time 𝑡 − 1, the government issues one-period risk-free debt that promises to pay 𝐷𝑡 time 𝑡 goods per capita at time 𝑡.
Young people at time 𝑡 purchase government debt 𝐷𝑡+1 that matures at time 𝑡 + 1.
Government debt issued at 𝑡 bears a before-tax net rate of interest rate of 𝑟𝑡 at time 𝑡 + 1.
The government budget constraint at time 𝑡 ≥ 0 is

𝐷𝑡+1 − 𝐷𝑡 = 𝑟𝑡𝐷𝑡 + 𝐺𝑡 − 𝑇𝑡

or

𝐷𝑡+1 = (1 + 𝑟𝑡)𝐷𝑡 + 𝐺𝑡 − 𝑇𝑡. (54.2)

Total tax collections net of transfers equal 𝑇𝑡 and satisfy

𝑇𝑡 = 𝜏𝑡𝑊𝑡𝐿𝑡 + 𝜏𝑡𝑟𝑡(𝐷𝑡 + 𝐾𝑡) + 𝛿𝑦𝑡 + 𝛿𝑜𝑡

54.5 Activities in Factor Markets

Old people: At each 𝑡 ≥ 0, a representative old person
• brings 𝐾𝑡 and 𝐷𝑡 into the period,

• rents capital to a representative firm for 𝑟𝑡𝐾𝑡,

• pays taxes 𝜏𝑡𝑟𝑡(𝐾𝑡 + 𝐷𝑡) on its rental and interest earnings,
• pays a lump sum tax 𝛿𝑜𝑡 to the government,

• sells 𝐾𝑡 to a young person.

Young people: At each 𝑡 ≥ 0, a representative young person
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• sells one unit of labor services to a representative firm for 𝑊𝑡 in wages,

• pays taxes 𝜏𝑡𝑊𝑡 on its labor earnings

• pays a lump sum tax 𝛿𝑦𝑡 to the goverment,

• spends 𝐶𝑦𝑡 on consumption,

• acquires non-negative assets 𝐴𝑡+1 consisting of a sum of physical capital 𝐾𝑡+1 and one-period government bonds
𝐷𝑡+1 that mature at 𝑡 + 1.

Note

If a lump-sum tax is negative, it means that the government pays the person a subsidy.

54.6 Representative firm’s problem

The representative firm hires labor services from young people at competitive wage rate 𝑊𝑡 and hires capital from old
people at competitive rental rate 𝑟𝑡.

The rental rate on capital 𝑟𝑡 equals the interest rate on government one-period bonds.

Units of the rental rates are:

• for 𝑊𝑡, output at time 𝑡 per unit of labor at time 𝑡
• for 𝑟𝑡, output at time 𝑡 per unit of capital at time 𝑡

We take output at time 𝑡 as numeraire, so the price of output at time 𝑡 is one.
The firm’s profits at time 𝑡 are

𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 − 𝑟𝑡𝐾𝑡 − 𝑊𝑡𝐿𝑡.

To maximize profits a firm equates marginal products to rental rates:

𝑊𝑡 = (1 − 𝛼)𝐾𝛼
𝑡 𝐿−𝛼

𝑡
𝑟𝑡 = 𝛼𝐾𝛼

𝑡 𝐿1−𝛼
𝑡

(54.3)

Output can be consumed either by old people or young people; or sold to young people who use it to augment the capital
stock; or sold to the government for uses that do not generate utility for the people in the model (i.e., “it is thrown into
the ocean”).

The firm thus sells output to old people, young people, and the government.

54.7 Individuals’ problems

54.7.1 Initial old person

At time 𝑡 = 0, a representative initial old person is endowed with (1 + 𝑟0(1 − 𝜏0))𝐴0 in initial assets.

It must pay a lump sum tax to (if positive) or receive a subsidy from (if negative) 𝛿𝑜𝑡 the government.

An old person’s budget constraint is

𝐶𝑜0 = (1 + 𝑟0(1 − 𝜏0))𝐴0 − 𝛿𝑜𝑡. (54.4)

An initial old person’s utility function is 𝐶𝑜0, so the person’s optimal consumption plan is provided by equation (54.4).
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54.7.2 Young person

At each 𝑡 ≥ 0, a young person inelastically supplies one unit of labor and in return receives pre-tax labor earnings of 𝑊𝑡
units of output.

A young person’s post-tax-and-transfer earnings are 𝑊𝑡(1 − 𝜏𝑡) − 𝛿𝑦𝑡.

At each 𝑡 ≥ 0, a young person chooses a consumption plan 𝐶𝑦𝑡, 𝐶𝑜𝑡+1 to maximize the Cobb-Douglas utility function

𝑈𝑡 = 𝐶𝛽
𝑦𝑡𝐶1−𝛽

𝑜,𝑡+1, 𝛽 ∈ (0, 1) (54.5)

subject to the following budget constraints at times 𝑡 and 𝑡 + 1:

𝐶𝑦𝑡 + 𝐴𝑡+1 = 𝑊𝑡(1 − 𝜏𝑡) − 𝛿𝑦𝑡
𝐶𝑜𝑡+1 = (1 + 𝑟𝑡+1(1 − 𝜏𝑡+1))𝐴𝑡+1 − 𝛿𝑜𝑡

(54.6)

Solving the second equation of (54.6) for savings 𝐴𝑡+1 and substituting it into the first equation implies the present value
budget constraint

𝐶𝑦𝑡 + 𝐶𝑜𝑡+1
1 + 𝑟𝑡+1(1 − 𝜏𝑡+1) = 𝑊𝑡(1 − 𝜏𝑡) − 𝛿𝑦𝑡 − 𝛿𝑜𝑡

1 + 𝑟𝑡+1(1 − 𝜏𝑡+1) (54.7)

To solve the young person’s choice problem, form a Lagrangian

ℒ = 𝐶𝛽
𝑦𝑡𝐶1−𝛽

𝑜,𝑡+1

+ 𝜆[𝐶𝑦𝑡 + 𝐶𝑜𝑡+1
1 + 𝑟𝑡+1(1 − 𝜏𝑡+1) − 𝑊𝑡(1 − 𝜏𝑡) + 𝛿𝑦𝑡 + 𝛿𝑜𝑡

1 + 𝑟𝑡+1(1 − 𝜏𝑡+1)],
(54.8)

where 𝜆 is a Lagrange multiplier on the intertemporal budget constraint (54.7).

After several lines of algebra, the intertemporal budget constraint (54.7) and the first-order conditions for maximizing ℒ
with respect to 𝐶𝑦𝑡, 𝐶𝑜𝑡+1 imply that an optimal consumption plan satisfies

𝐶𝑦𝑡 = 𝛽[𝑊𝑡(1 − 𝜏𝑡) − 𝛿𝑦𝑡 − 𝛿𝑜𝑡
1 + 𝑟𝑡+1(1 − 𝜏𝑡+1)]

𝐶0𝑡+1
1 + 𝑟𝑡+1(1 − 𝜏𝑡+1) = (1 − 𝛽)[𝑊𝑡(1 − 𝜏𝑡) − 𝛿𝑦𝑡 − 𝛿𝑜𝑡

1 + 𝑟𝑡+1(1 − 𝜏𝑡+1)]
(54.9)

The first-order condition for minimizing Lagrangian (54.8) with respect to the Lagrange multipler 𝜆 recovers the budget
constraint (54.7), which, using (54.9) gives the optimal savings plan

𝐴𝑡+1 = (1 − 𝛽)[(1 − 𝜏𝑡)𝑊𝑡 − 𝛿𝑦𝑡] + 𝛽 𝛿𝑜𝑡
1 + 𝑟𝑡+1(1 − 𝜏𝑡+1) (54.10)

54.8 Equilbrium

Definition: An equilibrium is an allocation, a government policy, and a price system with the properties that

• given the price system and the government policy, the allocation solves

– representative firms’ problems for 𝑡 ≥ 0
– individual persons’ problems for 𝑡 ≥ 0

• given the price system and the allocation, the government budget constraint is satisfied for all 𝑡 ≥ 0.
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54.9 Next steps

To begin our analysis of equilibrium outcomes, we’ll study the special case of the model with which Auerbach and
Kotlikoff (1987) [Auerbach and Kotlikoff, 1987] began their analysis in chapter 2.

It can be solved by hand.

We shall do that next.

After we derive a closed form solution, we’ll pretend that we don’t know and will compute equilibrium outcome paths.

We’ll do that by first formulating an equilibrium as a fixed point of a mapping from sequences of factor prices and tax
rates to sequences of factor prices and tax rates.

We’ll compute an equilibrium by iterating to convergence on that mapping.

54.10 Closed form solution

To get the special chapter 2 case of Auerbach and Kotlikoff (1987) [Auerbach and Kotlikoff, 1987], we set both 𝛿𝑜𝑡 and
𝛿𝑦𝑡 to zero.

As our special case of (54.9), we compute the following consumption-savings plan for a representative young person:

𝐶𝑦𝑡 = 𝛽(1 − 𝜏𝑡)𝑊𝑡
𝐴𝑡+1 = (1 − 𝛽)(1 − 𝜏𝑡)𝑊𝑡

Using (54.3) and 𝐴𝑡 = 𝐾𝑡 + 𝐷𝑡, we obtain the following closed form transition law for capital:

𝐾𝑡+1 = 𝐾𝛼
𝑡 (1 − 𝜏𝑡) (1 − 𝛼) (1 − 𝛽) − 𝐷𝑡 (54.11)

54.10.1 Steady states

From (54.11) and the government budget constraint (54.2), we compute time-invariant or steady state values 𝐾̂, 𝐷̂, ̂𝑇 :

𝐾̂ = 𝐾̂ (1 − ̂𝜏) (1 − 𝛼) (1 − 𝛽) − 𝐷̂
𝐷̂ = (1 + ̂𝑟)𝐷̂ + ̂𝐺 − ̂𝑇

̂𝑇 = ̂𝜏 ̂𝑌 + ̂𝜏 ̂𝑟𝐷̂.
(54.12)

These imply

𝐾̂ = [(1 − ̂𝜏) (1 − 𝛼) (1 − 𝛽)]
1

1−𝛼

̂𝜏 =
̂𝐺 + ̂𝑟𝐷̂
̂𝑌 + ̂𝑟𝐷̂

Let’s take an example in which

1. there is no initial government debt, 𝐷𝑡 = 0,
2. government consumption 𝐺𝑡 equals 15% of output 𝑌𝑡

Our formulas for steady-state values tell us that

𝐷̂ = 0
̂𝐺 = 0.15 ̂𝑌
̂𝜏 = 0.15

1038 Chapter 54. Transitions in an Overlapping Generations Model



Intermediate Quantitative Economics with Python

54.10.2 Implementation

import numpy as np
import matplotlib.pyplot as plt
from numba import jit
from quantecon.optimize import brent_max

For parameters 𝛼 = 0.3 and 𝛽 = 0.5, let’s compute 𝐾̂:

# parameters
α = 0.3
β = 0.5

# steady states of τ and D
τ_hat = 0.15
D_hat = 0.

# solve for steady state of K
K_hat = ((1 - τ_hat) * (1 - α) * (1 - β)) ** (1 / (1 - α))
K_hat

0.17694509514972878

Knowing 𝐾̂, we can calculate other equilibrium objects.

Let’s first define some Python helper functions.

@jit
def K_to_Y(K, α):

return K ** α

@jit
def K_to_r(K, α):

return α * K ** (α - 1)

@jit
def K_to_W(K, α):

return (1 - α) * K ** α

@jit
def K_to_C(K, D, τ, r, α, β):

# optimal consumption for the old when δ=0
A = K + D
Co = A * (1 + r * (1 - τ))

# optimal consumption for the young when δ=0
W = K_to_W(K, α)
Cy = β * W * (1 - τ)

return Cy, Co

We can use these helper functions to obtain steady state values ̂𝑌 , ̂𝑟, and 𝑊̂ associated with steady state values 𝐾̂ and ̂𝑟.
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Y_hat, r_hat, W_hat = K_to_Y(K_hat, α), K_to_r(K_hat, α), K_to_W(K_hat, α)
Y_hat, r_hat, W_hat

(0.5947734290747186, 1.0084033613445376, 0.41634140035230305)

Since steady state government debt 𝐷̂ is 0, all taxes are used to pay for government expenditures
G_hat = τ_hat * Y_hat
G_hat

0.0892160143612078

We use the optimal consumption plans to find steady state consumptions for young and old

Cy_hat, Co_hat = K_to_C(K_hat, D_hat, τ_hat, r_hat, α, β)
Cy_hat, Co_hat

(0.17694509514972878, 0.32861231956378195)

Let’s store the steady state quantities and prices using an array called init_ss

init_ss = np.array([K_hat, Y_hat, Cy_hat, Co_hat, # quantities
W_hat, r_hat, # prices
τ_hat, D_hat, G_hat # policies
])

54.10.3 Transitions

We have computed a steady state in which the government policy sequences are each constant over time.

We’ll use this steady state as an initial condition at time 𝑡 = 0 for another economy in which government policy sequences
are with time-varying sequences.

To make sense of our calculation, we’ll treat 𝑡 = 0 as time when a huge unanticipated shock occurs in the form of

• a time-varying government policy sequences that disrupts an original steady state

• new government policy sequences are eventually time-invariant in the sense that after some date 𝑇 > 0, each
sequence is constant over time.

• sudden revelation of a new government policy in the form of sequences starting at time 𝑡 = 0
We assume that everyone, including old people at time 𝑡 = 0, knows the new government policy sequence and chooses
accordingly.

As the capital stock and other aggregates adjust to the fiscal policy change over time, the economy will approach a new
steady state.

We can find a transition path from an old steady state to a new steady state by employing a fixed-point algorithm in a
space of sequences.

But in our special case with its closed form solution, we have available a simpler and faster approach.

Here we define a Python class ClosedFormTrans that computes length 𝑇 transition path in response to a particular
fiscal policy change.

We choose 𝑇 large enough so that we have gotten very close to a new steady state after 𝑇 periods.

The class takes three keyword arguments, τ_pol, D_pol, and G_pol.
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These are sequences of tax rate, government debt level, and government purchases, respectively.

In each policy experiment below, we will pass two out of three as inputs required to depict a fiscal policy.

We’ll then compute the single remaining undetermined policy variable from the government budget constraint.

When we simulate transition paths, it is useful to distinguish state variables at time 𝑡 such as 𝐾𝑡, 𝑌𝑡, 𝐷𝑡, 𝑊𝑡, 𝑟𝑡 from
control variables that include 𝐶𝑦𝑡, 𝐶𝑜𝑡, 𝜏𝑡, 𝐺𝑡.

class ClosedFormTrans:
"""
This class simulates length T transitional path of a economy
in response to a fiscal policy change given its initial steady
state. The simulation is based on the closed form solution when
the lump sum taxations are absent.

"""

def __init__(self, α, β):

self.α, self.β = α, β

def simulate(self,
T, # length of transitional path to simulate
init_ss, # initial steady state
τ_pol=None, # sequence of tax rates
D_pol=None, # sequence of government debt levels
G_pol=None): # sequence of government purchases

α, β = self.α, self.β

# unpack the steady state variables
K_hat, Y_hat, Cy_hat, Co_hat = init_ss[:4]
W_hat, r_hat = init_ss[4:6]
τ_hat, D_hat, G_hat = init_ss[6:9]

# initialize array containers
# K, Y, Cy, Co
quant_seq = np.empty((T+1, 4))

# W, r
price_seq = np.empty((T+1, 2))

# τ, D, G
policy_seq = np.empty((T+2, 3))

# t=0, starting from steady state
K0, Y0 = K_hat, Y_hat
W0, r0 = W_hat, r_hat
D0 = D_hat

# fiscal policy
if τ_pol is None:

D1 = D_pol[1]
G0 = G_pol[0]
τ0 = (G0 + (1 + r0) * D0 - D1) / (Y0 + r0 * D0)

elif D_pol is None:
τ0 = τ_pol[0]
G0 = G_pol[0]

(continues on next page)
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D1 = (1 + r0) * D0 + G0 - τ0 * (Y0 + r0 * D0)
elif G_pol is None:

D1 = D_pol[1]
τ0 = τ_pol[0]
G0 = τ0 * (Y0 + r0 * D0) + D1 - (1 + r0) * D0

# optimal consumption plans
Cy0, Co0 = K_to_C(K0, D0, τ0, r0, α, β)

# t=0 economy
quant_seq[0, :] = K0, Y0, Cy0, Co0
price_seq[0, :] = W0, r0
policy_seq[0, :] = τ0, D0, G0
policy_seq[1, 1] = D1

# starting from t=1 to T
for t in range(1, T+1):

# transition of K
K_old, τ_old = quant_seq[t-1, 0], policy_seq[t-1, 0]
D = policy_seq[t, 1]
K = K_old ** α * (1 - τ_old) * (1 - α) * (1 - β) - D

# output, capital return, wage
Y, r, W = K_to_Y(K, α), K_to_r(K, α), K_to_W(K, α)

# to satisfy the government budget constraint
if τ_pol is None:

D = D_pol[t]
D_next = D_pol[t+1]
G = G_pol[t]
τ = (G + (1 + r) * D - D_next) / (Y + r * D)

elif D_pol is None:
τ = τ_pol[t]
G = G_pol[t]
D = policy_seq[t, 1]
D_next = (1 + r) * D + G - τ * (Y + r * D)

elif G_pol is None:
D = D_pol[t]
D_next = D_pol[t+1]
τ = τ_pol[t]
G = τ * (Y + r * D) + D_next - (1 + r) * D

# optimal consumption plans
Cy, Co = K_to_C(K, D, τ, r, α, β)

# store time t economy aggregates
quant_seq[t, :] = K, Y, Cy, Co
price_seq[t, :] = W, r
policy_seq[t, 0] = τ
policy_seq[t+1, 1] = D_next
policy_seq[t, 2] = G

self.quant_seq = quant_seq
self.price_seq = price_seq
self.policy_seq = policy_seq

(continues on next page)
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return quant_seq, price_seq, policy_seq

def plot(self):

quant_seq = self.quant_seq
price_seq = self.price_seq
policy_seq = self.policy_seq

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# quantities
for i, name in enumerate(['K', 'Y', 'Cy', 'Co']):

ax = axs[i//3, i%3]
ax.plot(range(T+1), quant_seq[:T+1, i], label=name)
ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# prices
for i, name in enumerate(['W', 'r']):

ax = axs[(i+4)//3, (i+4)%3]
ax.plot(range(T+1), price_seq[:T+1, i], label=name)
ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# policies
for i, name in enumerate(['τ', 'D', 'G']):

ax = axs[(i+6)//3, (i+6)%3]
ax.plot(range(T+1), policy_seq[:T+1, i], label=name)
ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

We can create an instance closed for model parameters {𝛼, 𝛽} and use it for various fiscal policy experiments.
closed = ClosedFormTrans(α, β)

54.10.4 Experiment 1: Tax cut

To illustrate the power of ClosedFormTrans, let’s first experiment with the following fiscal policy change:

1. at 𝑡 = 0, the government unexpectedly announces a one-period tax cut, 𝜏0 = (1 − 1
3 ) ̂𝜏 , by issuing government

debt 𝐷̄
2. from 𝑡 = 1, the government will keep 𝐷𝑡 = 𝐷̄ and adjust 𝜏𝑡 to collect taxation to pay for the government

consumption and interest payments on the debt

3. government consumption 𝐺𝑡 will be fixed at 0.15 ̂𝑌
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The following equations completely characterize the equilibrium transition path originating from the initial steady state

𝐾𝑡+1 = 𝐾𝛼
𝑡 (1 − 𝜏𝑡) (1 − 𝛼) (1 − 𝛽) − 𝐷̄

𝜏0 = (1 − 1
3) ̂𝜏

𝐷̄ = ̂𝐺 − 𝜏0 ̂𝑌

𝜏𝑡 =
̂𝐺 + 𝑟𝑡𝐷̄
̂𝑌 + 𝑟𝑡𝐷̄

We can simulate the transition for 20 periods, after which the economy will be close to a new steady state.

The first step is to prepare sequences of policy variables that describe fiscal policy.

We must define sequences of government expenditure {𝐺𝑡}𝑇
𝑡=0 and debt level {𝐷𝑡}𝑇 +1

𝑡=0 in advance, then pass them to
the solver.

T = 20

# tax cut
τ0 = τ_hat * (1 - 1/3)

# sequence of government purchase
G_seq = τ_hat * Y_hat * np.ones(T+1)

# sequence of government debt
D_bar = G_hat - τ0 * Y_hat
D_seq = np.ones(T+2) * D_bar
D_seq[0] = D_hat

Let’s use the simulate method of closed to compute dynamic transitions.

Note that we leave τ_pol as None, since the tax rates need to be determined to satisfy the government budget constraint.

quant_seq1, price_seq1, policy_seq1 = closed.simulate(T, init_ss,
D_pol=D_seq,
G_pol=G_seq)

closed.plot()
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We can also experiment with a lower tax cut rate, such as 0.2.
# lower tax cut rate
τ0 = 0.15 * (1 - 0.2)

# the corresponding debt sequence
D_bar = G_hat - τ0 * Y_hat
D_seq = np.ones(T+2) * D_bar
D_seq[0] = D_hat

quant_seq2, price_seq2, policy_seq2 = closed.simulate(T, init_ss,
D_pol=D_seq,
G_pol=G_seq)

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# quantities
for i, name in enumerate(['K', 'Y', 'Cy', 'Co']):

ax = axs[i//3, i%3]
ax.plot(range(T+1), quant_seq1[:T+1, i], label=f'{name}, 1/3')
ax.plot(range(T+1), quant_seq2[:T+1, i], label=f'{name}, 0.2')
ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# prices
for i, name in enumerate(['W', 'r']):

(continues on next page)
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ax = axs[(i+4)//3, (i+4)%3]
ax.plot(range(T+1), price_seq1[:T+1, i], label=f'{name}, 1/3')
ax.plot(range(T+1), price_seq2[:T+1, i], label=f'{name}, 0.2')
ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# policies
for i, name in enumerate(['τ', 'D', 'G']):

ax = axs[(i+6)//3, (i+6)%3]
ax.plot(range(T+1), policy_seq1[:T+1, i], label=f'{name}, 1/3')
ax.plot(range(T+1), policy_seq2[:T+1, i], label=f'{name}, 0.2')
ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

The economy with lower tax cut rate at 𝑡 = 0 has the same transitional pattern, but is less distorted, and it converges to
a new steady state with higher physical capital stock.
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54.10.5 Experiment 2: Government asset accumulation

Assume that the economy is initially in the same steady state.

Now the government promises to cut its spending on services and goods by half ∀𝑡 ≥ 0.
The government targets the same tax rate 𝜏𝑡 = ̂𝜏 and to accumulate assets −𝐷𝑡 over time.

To conduct this experiment, we pass τ_seq and G_seq as inputs and let D_pol be determined along the path by
satisfying the government budget constraint.

# government expenditure cut by a half
G_seq = τ_hat * 0.5 * Y_hat * np.ones(T+1)

# targeted tax rate
τ_seq = τ_hat * np.ones(T+1)

closed.simulate(T, init_ss, τ_pol=τ_seq, G_pol=G_seq);
closed.plot()

As the government accumulates the asset and uses it in production, the rental rate on capital falls and private investment
falls.

As a result, the ratio − 𝐷𝑡
𝐾𝑡

of the government asset to physical capital used in production will increase over time

plt.plot(range(T+1), -closed.policy_seq[:-1, 1] / closed.quant_seq[:, 0])
plt.xlabel('t')
plt.title('-D/K');
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We want to know how this policy experiment affects individuals.

In the long run, future cohorts will enjoy higher consumption throughout their lives because they will earn higher labor
income when they work.

However, in the short run, old people suffer because increases in their labor income are not big enough to offset their
losses of capital income.

Such distinct long run and short run effects motivate us to study transition paths.

Note

Although the consumptions in the new steady state are strictly higher, it is at a cost of fewer public services and goods.

54.10.6 Experiment 3: Temporary expenditure cut

Let’s now investigate a scenario in which the government also cuts its spending by half and accumulates the asset.

But now let the government cut its expenditures only at 𝑡 = 0.
From 𝑡 ≥ 1, the government expeditures return to ̂𝐺 and 𝜏𝑡 adjusts to maintain the asset level −𝐷𝑡 = −𝐷1.

# sequence of government purchase
G_seq = τ_hat * Y_hat * np.ones(T+1)
G_seq[0] = 0

(continues on next page)
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# sequence of government debt
D_bar = G_seq[0] - τ_hat * Y_hat
D_seq = D_bar * np.ones(T+2)
D_seq[0] = D_hat

closed.simulate(T, init_ss, D_pol=D_seq, G_pol=G_seq);
closed.plot()

The economy quickly converges to a new steady state with higher physical capital stock, lower interest rate, higher wage
rate, and higher consumptions for both the young and the old.

Even though government expenditure 𝐺𝑡 returns to its high initial level from 𝑡 ≥ 1, the government can balance the
budget at a lower tax rate because it gathers additional revenue −𝑟𝑡𝐷𝑡 from the asset accumulated during the temporary
cut in the spendings.

As in Experiment 2: Government asset accumulation, old perople early in the transition periods suffer from this policy
shock.
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54.11 A computational strategy

With the preceding caluations, we studied dynamic transitions instigated by alternative fiscal policies.

In all these experiments, we maintained the assumption that lump sum taxes were absent so that 𝛿𝑦𝑡 = 0, 𝛿𝑜𝑡 = 0.
In this section, we investigate the transition dynamics when the lump sum taxes are present.

The government will use lump sum taxes and transfers to redistribute resources across successive generations.

Including lump sum taxes disrupts closed form solution because of how they make optimal consumption and saving plans
depend on future prices and tax rates.

Therefore, we compute equilibrium transitional paths by finding a fixed point of a mapping from sequences to sequences.

• that fixed point pins down an equilibrium

To set the stage for the entry of the mapping whose fixed point we seek, we return to concepts introduced in section
Equilbrium.

Definition: Given parameters {𝛼, 𝛽}, a competitive equilibrium consists of

• sequences of optimal consumptions {𝐶𝑦𝑡, 𝐶𝑜𝑡}
• sequences of prices {𝑊𝑡, 𝑟𝑡}
• sequences of capital stock and output {𝐾𝑡, 𝑌𝑡}
• sequences of tax rates, government assets (debt), government purchases {𝜏𝑡, 𝐷𝑡, 𝐺𝑡 𝛿𝑦𝑡, 𝛿𝑜𝑡}

with the properties that

• given the price system and government fiscal policy, consumption plans are optimal

• the government budget constraints are satisfied for all 𝑡
An equilibrium transition path can be computed by “guessing and verifying” some endogenous sequences.

In our Experiment 1: Tax cut example, sequences {𝐷𝑡}𝑇
𝑡=0 and {𝐺𝑡}𝑇

𝑡=0 are exogenous.

In addition, we assume that the lump sum taxes {𝛿𝑦𝑡, 𝛿𝑜𝑡}𝑇
𝑡=0 are given and known to everybody inside the model.

We can solve for sequences of other equilibrium sequences following the steps below

1. guess prices {𝑊𝑡, 𝑟𝑡}𝑇
𝑡=0 and tax rates {𝜏𝑡}𝑇

𝑡=0

2. solve for optimal consumption and saving plans {𝐶𝑦𝑡, 𝐶𝑜𝑡}𝑇
𝑡=0, treating the guesses of future prices and taxes as

true

3. solve for transition of the capital stock {𝐾𝑡}𝑇
𝑡=0

4. update the guesses for prices and tax rates with the values implied by the equilibrium conditions

5. iterate until convergence

Let’s implement this “guess and verify” approach

We start by defining the Cobb-Douglas utility function

@jit
def U(Cy, Co, β):

return (Cy ** β) * (Co ** (1-β))
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We use Cy_val to compute the lifetime value of an arbitrary consumption plan, 𝐶𝑦, given the intertemporal budget
constraint.

Note that it requires knowing future prices 𝑟𝑡+1 and tax rate 𝜏𝑡+1.

@jit
def Cy_val(Cy, W, r_next, τ, τ_next, δy, δo_next, β):

# Co given by the budget constraint
Co = (W * (1 - τ) - δy - Cy) * (1 + r_next * (1 - τ_next)) - δo_next

return U(Cy, Co, β)

An optimal consumption plan 𝐶∗
𝑦 can be found by maximizing Cy_val.

Here is an example that computes optimal consumption 𝐶∗
𝑦 = ̂𝐶𝑦 in the steady state with 𝛿𝑦𝑡 = 𝛿𝑜𝑡 = 0, like one that

we studied earlier

W, r_next, τ, τ_next = W_hat, r_hat, τ_hat, τ_hat
δy, δo_next = 0, 0

Cy_opt, U_opt, _ = brent_max(Cy_val, # maximand
1e-6, # lower bound
W*(1-τ)-δy-1e-6, # upper bound
args=(W, r_next, τ, τ_next, δy, δo_next, β))

Cy_opt, U_opt

(0.17694509514972878, 0.241135518231111)

Let’s define a Python class AK2 that computes the transition paths with the fixed-point algorithm.

It can handle nonzero lump sum taxes

class AK2():
"""
This class simulates length T transitional path of a economy
in response to a fiscal policy change given its initial steady
state. The transitional path is found by employing a fixed point
algorithm to satisfy the equilibrium conditions.

"""

def __init__(self, α, β):

self.α, self.β = α, β

def simulate(self,
T, # length of transitional path to simulate
init_ss, # initial steady state
δy_seq, # sequence of lump sum tax for the young
δo_seq, # sequence of lump sum tax for the old
τ_pol=None, # sequence of tax rates
D_pol=None, # sequence of government debt levels
G_pol=None, # sequence of government purchases
verbose=False,
max_iter=500,
tol=1e-5):

(continues on next page)
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(continued from previous page)

α, β = self.α, self.β

# unpack the steady state variables
K_hat, Y_hat, Cy_hat, Co_hat = init_ss[:4]
W_hat, r_hat = init_ss[4:6]
τ_hat, D_hat, G_hat = init_ss[6:9]

# K, Y, Cy, Co
quant_seq = np.empty((T+2, 4))

# W, r
price_seq = np.empty((T+2, 2))

# τ, D, G
policy_seq = np.empty((T+2, 3))
policy_seq[:, 1] = D_pol
policy_seq[:, 2] = G_pol

# initial guesses of prices
price_seq[:, 0] = np.ones(T+2) * W_hat
price_seq[:, 1] = np.ones(T+2) * r_hat

# initial guesses of policies
policy_seq[:, 0] = np.ones(T+2) * τ_hat

# t=0, starting from steady state
quant_seq[0, :2] = K_hat, Y_hat

if verbose:
# prepare to plot iterations until convergence
fig, axs = plt.subplots(1, 3, figsize=(14, 4))

# containers for checking convergence
price_seq_old = np.empty_like(price_seq)
policy_seq_old = np.empty_like(policy_seq)

# start iteration
i_iter = 0
while True:

if verbose:
# plot current prices at ith iteration
for i, name in enumerate(['W', 'r']):

axs[i].plot(range(T+1), price_seq[:T+1, i])
axs[i].set_title(name)
axs[i].set_xlabel('t')

axs[2].plot(range(T+1), policy_seq[:T+1, 0],
label=f'{i_iter}th iteration')

axs[2].legend(bbox_to_anchor=(1.05, 1), loc='upper left')
axs[2].set_title('τ')
axs[2].set_xlabel('t')

# store old prices from last iteration
price_seq_old[:] = price_seq
policy_seq_old[:] = policy_seq

(continues on next page)
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(continued from previous page)

# start updating quantities and prices
for t in range(T+1):

K, Y = quant_seq[t, :2]
W, r = price_seq[t, :]
r_next = price_seq[t+1, 1]
τ, D, G = policy_seq[t, :]
τ_next, D_next, G_next = policy_seq[t+1, :]
δy, δo = δy_seq[t], δo_seq[t]
δy_next, δo_next = δy_seq[t+1], δo_seq[t+1]

# consumption for the old
Co = (1 + r * (1 - τ)) * (K + D) - δo

# optimal consumption for the young
out = brent_max(Cy_val, 1e-6, W*(1-τ)-δy-1e-6,

args=(W, r_next, τ, τ_next,
δy, δo_next, β))

Cy = out[0]

quant_seq[t, 2:] = Cy, Co
τ_num = ((1 + r) * D + G - D_next - δy - δo)
τ_denom = (Y + r * D)
policy_seq[t, 0] = τ_num / τ_denom

# saving of the young
A_next = W * (1 - τ) - δy - Cy

# transition of K
K_next = A_next - D_next
Y_next = K_to_Y(K_next, α)
W_next, r_next = K_to_W(K_next, α), K_to_r(K_next, α)

quant_seq[t+1, :2] = K_next, Y_next
price_seq[t+1, :] = W_next, r_next

i_iter += 1

if (np.max(np.abs(price_seq_old - price_seq)) < tol) & \
(np.max(np.abs(policy_seq_old - policy_seq)) < tol):
if verbose:

print(f"Converge using {i_iter} iterations")
break

if i_iter > max_iter:
if verbose:

print(f"Fail to converge using {i_iter} iterations")
break

self.quant_seq = quant_seq
self.price_seq = price_seq
self.policy_seq = policy_seq

return quant_seq, price_seq, policy_seq

def plot(self):

quant_seq = self.quant_seq
(continues on next page)
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price_seq = self.price_seq
policy_seq = self.policy_seq

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# quantities
for i, name in enumerate(['K', 'Y', 'Cy', 'Co']):

ax = axs[i//3, i%3]
ax.plot(range(T+1), quant_seq[:T+1, i], label=name)
ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# prices
for i, name in enumerate(['W', 'r']):

ax = axs[(i+4)//3, (i+4)%3]
ax.plot(range(T+1), price_seq[:T+1, i], label=name)
ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# policies
for i, name in enumerate(['τ', 'D', 'G']):

ax = axs[(i+6)//3, (i+6)%3]
ax.plot(range(T+1), policy_seq[:T+1, i], label=name)
ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

We can initialize an instance of class AK2 with model parameters {𝛼, 𝛽} and then use it to conduct fiscal policy experi-
ments.

ak2 = AK2(α, β)

We first examine that the “guess and verify” method leads to the same numerical results as we obtain with the closed form
solution when lump sum taxes are muted

δy_seq = np.ones(T+2) * 0.
δo_seq = np.ones(T+2) * 0.

D_pol = np.zeros(T+2)
G_pol = np.ones(T+2) * G_hat

# tax cut
τ0 = τ_hat * (1 - 1/3)
D1 = D_hat * (1 + r_hat * (1 - τ0)) + G_hat - τ0 * Y_hat - δy_seq[0] - δo_seq[0]
D_pol[0] = D_hat
D_pol[1:] = D1

quant_seq3, price_seq3, policy_seq3 = ak2.simulate(T, init_ss,
δy_seq, δo_seq,
D_pol=D_pol, G_pol=G_pol,
verbose=True)

Converge using 10 iterations
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ak2.plot()

Next, we activate lump sum taxes.

Let’s alter our Experiment 1: Tax cut fiscal policy experiment by assuming that the government also increases lump sum
taxes for both young and old people 𝛿𝑦𝑡 = 𝛿𝑜𝑡 = 0.005, 𝑡 ≥ 0.
δy_seq = np.ones(T+2) * 0.005
δo_seq = np.ones(T+2) * 0.005

D1 = D_hat * (1 + r_hat * (1 - τ0)) + G_hat - τ0 * Y_hat - δy_seq[0] - δo_seq[0]
D_pol[1:] = D1

quant_seq4, price_seq4, policy_seq4 = ak2.simulate(T, init_ss,

(continues on next page)
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(continued from previous page)

δy_seq, δo_seq,
D_pol=D_pol, G_pol=G_pol)

Note how “crowding out” has been mitigated.

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# quantities
for i, name in enumerate(['K', 'Y', 'Cy', 'Co']):

ax = axs[i//3, i%3]
ax.plot(range(T+1), quant_seq3[:T+1, i], label=rf'{name}, $\delta$s=0')
ax.plot(range(T+1), quant_seq4[:T+1, i], label=rf'{name}, $\delta$s=0.005')
ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# prices
for i, name in enumerate(['W', 'r']):

ax = axs[(i+4)//3, (i+4)%3]
ax.plot(range(T+1), price_seq3[:T+1, i], label=rf'{name}, $\delta$s=0')
ax.plot(range(T+1), price_seq4[:T+1, i], label=rf'{name}, $\delta$s=0.005')
ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# policies
for i, name in enumerate(['τ', 'D', 'G']):

ax = axs[(i+6)//3, (i+6)%3]
ax.plot(range(T+1), policy_seq3[:T+1, i], label=rf'{name}, $\delta$s=0')
ax.plot(range(T+1), policy_seq4[:T+1, i], label=rf'{name}, $\delta$s=0.005')
ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')
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Comparing to Experiment 1: Tax cut, the government raises lump-sum taxes to finance the increasing debt interest pay-
ment, which is less distortionary comparing to raising the capital income tax rate.

54.11.1 Experiment 4: Unfunded Social Security System

In this experiment, lump-sum taxes are of equal magnitudes for old and the young, but of opposite signs.

A negative lump-sum tax is a subsidy.

Thus, in this experiment we tax the young and subsidize the old.

We start the economy at the same initial steady state that we assumed in several earlier experiments.

The government sets the lump sum taxes 𝛿𝑦,𝑡 = −𝛿𝑜,𝑡 = 10% ̂𝐶𝑦 starting from 𝑡 = 0.

It keeps debt levels and expenditures at their steady state levels 𝐷̂ and ̂𝐺.

In effect, this experiment amounts to launching an unfunded social security system.

We can use our code to compute the transition ignited by launching this system.

Let’s compare the results to the Experiment 1: Tax cut.

δy_seq = np.ones(T+2) * Cy_hat * 0.1
δo_seq = np.ones(T+2) * -Cy_hat * 0.1

D_pol[:] = D_hat

(continues on next page)
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quant_seq5, price_seq5, policy_seq5 = ak2.simulate(T, init_ss,
δy_seq, δo_seq,
D_pol=D_pol, G_pol=G_pol)

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# quantities
for i, name in enumerate(['K', 'Y', 'Cy', 'Co']):

ax = axs[i//3, i%3]
ax.plot(range(T+1), quant_seq3[:T+1, i], label=f'{name}, tax cut')
ax.plot(range(T+1), quant_seq5[:T+1, i], label=f'{name}, transfer')
ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# prices
for i, name in enumerate(['W', 'r']):

ax = axs[(i+4)//3, (i+4)%3]
ax.plot(range(T+1), price_seq3[:T+1, i], label=f'{name}, tax cut')
ax.plot(range(T+1), price_seq5[:T+1, i], label=f'{name}, transfer')
ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')

# policies
for i, name in enumerate(['τ', 'D', 'G']):

ax = axs[(i+6)//3, (i+6)%3]
ax.plot(range(T+1), policy_seq3[:T+1, i], label=f'{name}, tax cut')
ax.plot(range(T+1), policy_seq5[:T+1, i], label=f'{name}, transfer')
ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--')
ax.legend()
ax.set_xlabel('t')
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An initial old person benefits especially when the social security system is launched because he receives a transfer but
pays nothing for it.

But in the long run, consumption rates of both young and old people decrease because the the social security system
decreases incentives to save.

That lowers the stock of physical capital and consequently lowers output.

The government must then raise tax rate in order to pay for its expenditures.

The higher rate on capital income further distorts incentives to save.

54.11. A computational strategy 1059



Intermediate Quantitative Economics with Python

1060 Chapter 54. Transitions in an Overlapping Generations Model



CHAPTER

FIFTYFIVE

CAKE EATING I: INTRODUCTION TO OPTIMAL SAVING

Contents

• Cake Eating I: Introduction to Optimal Saving

– Overview

– The model

– The value function

– The optimal policy

– The Euler equation

– Exercises

55.1 Overview

In this lecture we introduce a simple “cake eating” problem.

The intertemporal problem is: how much to enjoy today and how much to leave for the future?

Although the topic sounds trivial, this kind of trade-off between current and future utility is at the heart of many savings
and consumption problems.

Once wemaster the ideas in this simple environment, we will apply them to progressively more challenging—and useful—
problems.

The main tool we will use to solve the cake eating problem is dynamic programming.

Readers might find it helpful to review the following lectures before reading this one:

• The shortest paths lecture

• The basic McCall model

• The McCall model with separation

• The McCall model with separation and a continuous wage distribution

In what follows, we require the following imports:

import matplotlib.pyplot as plt
import numpy as np
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55.2 The model

We consider an infinite time horizon 𝑡 = 0, 1, 2, 3..
At 𝑡 = 0 the agent is given a complete cake with size ̄𝑥.
Let 𝑥𝑡 denote the size of the cake at the beginning of each period, so that, in particular, 𝑥0 = ̄𝑥.
We choose how much of the cake to eat in any given period 𝑡.
After choosing to consume 𝑐𝑡 of the cake in period 𝑡 there is

𝑥𝑡+1 = 𝑥𝑡 − 𝑐𝑡

left in period 𝑡 + 1.
Consuming quantity 𝑐 of the cake gives current utility 𝑢(𝑐).
We adopt the CRRA utility function

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾 (𝛾 > 0, 𝛾 ≠ 1) (55.1)

In Python this is

def u(c, γ):

return c**(1 - γ) / (1 - γ)

Future cake consumption utility is discounted according to 𝛽 ∈ (0, 1).
In particular, consumption of 𝑐 units 𝑡 periods hence has present value 𝛽𝑡𝑢(𝑐)
The agent’s problem can be written as

max
{𝑐𝑡}

∞
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (55.2)

subject to

𝑥𝑡+1 = 𝑥𝑡 − 𝑐𝑡 and 0 ≤ 𝑐𝑡 ≤ 𝑥𝑡 (55.3)

for all 𝑡.
A consumption path {𝑐𝑡} satisfying (55.3) where 𝑥0 = ̄𝑥 is called feasible.

In this problem, the following terminology is standard:

• 𝑥𝑡 is called the state variable

• 𝑐𝑡 is called the control variable or the action

• 𝛽 and 𝛾 are parameters
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55.2.1 Trade-off

The key trade-off in the cake-eating problem is this:

• Delaying consumption is costly because of the discount factor.

• But delaying some consumption is also attractive because 𝑢 is concave.

The concavity of 𝑢 implies that the consumer gains value from consumption smoothing, which means spreading consump-
tion out over time.

This is because concavity implies diminishing marginal utility—a progressively smaller gain in utility for each additional
spoonful of cake consumed within one period.

55.2.2 Intuition

The reasoning given above suggests that the discount factor 𝛽 and the curvature parameter 𝛾 will play a key role in
determining the rate of consumption.

Here’s an educated guess as to what impact these parameters will have.

First, higher 𝛽 implies less discounting, and hence the agent is more patient, which should reduce the rate of consumption.

Second, higher 𝛾 implies that marginal utility 𝑢′(𝑐) = 𝑐−𝛾 falls faster with 𝑐.
This suggests more smoothing, and hence a lower rate of consumption.

In summary, we expect the rate of consumption to be decreasing in both parameters.

Let’s see if this is true.

55.3 The value function

The first step of our dynamic programming treatment is to obtain the Bellman equation.

The next step is to use it to calculate the solution.

55.3.1 The Bellman equation

To this end, we let 𝑣(𝑥) be maximum lifetime utility attainable from the current time when 𝑥 units of cake are left.

That is,

𝑣(𝑥) = max
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (55.4)

where the maximization is over all paths {𝑐𝑡} that are feasible from 𝑥0 = 𝑥.
At this point, we do not have an expression for 𝑣, but we can still make inferences about it.
For example, as was the case with the McCall model, the value function will satisfy a version of the Bellman equation.

In the present case, this equation states that 𝑣 satisfies

𝑣(𝑥) = max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)} for any given 𝑥 ≥ 0. (55.5)

The intuition here is essentially the same it was for the McCall model.

Choosing 𝑐 optimally means trading off current vs future rewards.
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Current rewards from choice 𝑐 are just 𝑢(𝑐).
Future rewards given current cake size 𝑥, measured from next period and assuming optimal behavior, are 𝑣(𝑥 − 𝑐).
These are the two terms on the right hand side of (55.5), after suitable discounting.

If 𝑐 is chosen optimally using this trade off strategy, then we obtain maximal lifetime rewards from our current state 𝑥.
Hence, 𝑣(𝑥) equals the right hand side of (55.5), as claimed.

55.3.2 An analytical solution

It has been shown that, with 𝑢 as the CRRA utility function in (55.1), the function

𝑣∗(𝑥𝑡) = (1 − 𝛽1/𝛾)−𝛾 𝑢(𝑥𝑡) (55.6)

solves the Bellman equation and hence is equal to the value function.

You are asked to confirm that this is true in the exercises below.

The solution (55.6) depends heavily on the CRRA utility function.

In fact, if we move away from CRRA utility, usually there is no analytical solution at all.

In other words, beyond CRRA utility, we know that the value function still satisfies the Bellman equation, but we do not
have a way of writing it explicitly, as a function of the state variable and the parameters.

We will deal with that situation numerically when the time comes.

Here is a Python representation of the value function:

def v_star(x, β, γ):

return (1 - β**(1 / γ))**(-γ) * u(x, γ)

And here’s a figure showing the function for fixed parameters:

β, γ = 0.95, 1.2
x_grid = np.linspace(0.1, 5, 100)

fig, ax = plt.subplots()

ax.plot(x_grid, v_star(x_grid, β, γ), label='value function')

ax.set_xlabel('$x$', fontsize=12)
ax.legend(fontsize=12)

plt.show()
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55.4 The optimal policy

Now that we have the value function, it is straightforward to calculate the optimal action at each state.

We should choose consumption to maximize the right hand side of the Bellman equation (55.5).

𝑐∗ = argmax
𝑐

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)}

We can think of this optimal choice as a function of the state 𝑥, in which case we call it the optimal policy.
We denote the optimal policy by 𝜎∗, so that

𝜎∗(𝑥) ∶= argmax
𝑐

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)} for all 𝑥

If we plug the analytical expression (55.6) for the value function into the right hand side and compute the optimum, we
find that

𝜎∗(𝑥) = (1 − 𝛽1/𝛾) 𝑥 (55.7)

Now let’s recall our intuition on the impact of parameters.

We guessed that the consumption rate would be decreasing in both parameters.

This is in fact the case, as can be seen from (55.7).

Here’s some plots that illustrate.
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def c_star(x, β, γ):

return (1 - β ** (1/γ)) * x

Continuing with the values for 𝛽 and 𝛾 used above, the plot is

fig, ax = plt.subplots()
ax.plot(x_grid, c_star(x_grid, β, γ), label='default parameters')
ax.plot(x_grid, c_star(x_grid, β + 0.02, γ), label=r'higher $\beta$')
ax.plot(x_grid, c_star(x_grid, β, γ + 0.2), label=r'higher $\gamma$')
ax.set_ylabel(r'$\sigma(x)$')
ax.set_xlabel('$x$')
ax.legend()

plt.show()

55.5 The Euler equation

In the discussion above we have provided a complete solution to the cake eating problem in the case of CRRA utility.

There is in fact another way to solve for the optimal policy, based on the so-called Euler equation.

Although we already have a complete solution, now is a good time to study the Euler equation.

This is because, for more difficult problems, this equation provides key insights that are hard to obtain by other methods.
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55.5.1 Statement and implications

The Euler equation for the present problem can be stated as

𝑢′(𝑐∗
𝑡 ) = 𝛽𝑢′(𝑐∗

𝑡+1) (55.8)

This is necessary condition for the optimal path.

It says that, along the optimal path, marginal rewards are equalized across time, after appropriate discounting.

This makes sense: optimality is obtained by smoothing consumption up to the point where no marginal gains remain.

We can also state the Euler equation in terms of the policy function.

A feasible consumption policy is a map 𝑥 ↦ 𝜎(𝑥) satisfying 0 ≤ 𝜎(𝑥) ≤ 𝑥.
The last restriction says that we cannot consume more than the remaining quantity of cake.

A feasible consumption policy 𝜎 is said to satisfy the Euler equation if, for all 𝑥 > 0,

𝑢′(𝜎(𝑥)) = 𝛽𝑢′(𝜎(𝑥 − 𝜎(𝑥))) (55.9)

Evidently (55.9) is just the policy equivalent of (55.8).

It turns out that a feasible policy is optimal if and only if it satisfies the Euler equation.

In the exercises, you are asked to verify that the optimal policy (55.7) does indeed satisfy this functional equation.

Note

A functional equation is an equation where the unknown object is a function.

For a proof of sufficiency of the Euler equation in a very general setting, see proposition 2.2 of [Ma et al., 2020].

The following arguments focus on necessity, explaining why an optimal path or policy should satisfy the Euler equation.

55.5.2 Derivation I: a perturbation approach

Let’s write 𝑐 as a shorthand for consumption path {𝑐𝑡}∞
𝑡=0.

The overall cake-eating maximization problem can be written as

max
𝑐∈𝐹

𝑈(𝑐) where 𝑈(𝑐) ∶=
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

and 𝐹 is the set of feasible consumption paths.

We know that differentiable functions have a zero gradient at a maximizer.

So the optimal path 𝑐∗ ∶= {𝑐∗
𝑡 }∞

𝑡=0 must satisfy 𝑈 ′(𝑐∗) = 0.

Note

If you want to know exactly how the derivative 𝑈 ′(𝑐∗) is defined, given that the argument 𝑐∗ is a vector of infinite
length, you can start by learning about Gateaux derivatives. However, such knowledge is not assumed in what follows.
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In other words, the rate of change in 𝑈 must be zero for any infinitesimally small (and feasible) perturbation away from
the optimal path.

So consider a feasible perturbation that reduces consumption at time 𝑡 to 𝑐∗
𝑡 − ℎ and increases it in the next period to

𝑐∗
𝑡+1 + ℎ.
Consumption does not change in any other period.

We call this perturbed path 𝑐ℎ.

By the preceding argument about zero gradients, we have

lim
ℎ→0

𝑈(𝑐ℎ) − 𝑈(𝑐∗)
ℎ = 𝑈 ′(𝑐∗) = 0

Recalling that consumption only changes at 𝑡 and 𝑡 + 1, this becomes

lim
ℎ→0

𝛽𝑡𝑢(𝑐∗
𝑡 − ℎ) + 𝛽𝑡+1𝑢(𝑐∗

𝑡+1 + ℎ) − 𝛽𝑡𝑢(𝑐∗
𝑡 ) − 𝛽𝑡+1𝑢(𝑐∗

𝑡+1)
ℎ = 0

After rearranging, the same expression can be written as

lim
ℎ→0

𝑢(𝑐∗
𝑡 − ℎ) − 𝑢(𝑐∗

𝑡 )
ℎ + 𝛽 lim

ℎ→0
𝑢(𝑐∗

𝑡+1 + ℎ) − 𝑢(𝑐∗
𝑡+1)

ℎ = 0

or, taking the limit,

−𝑢′(𝑐∗
𝑡 ) + 𝛽𝑢′(𝑐∗

𝑡+1) = 0

This is just the Euler equation.

55.5.3 Derivation II: using the Bellman equation

Another way to derive the Euler equation is to use the Bellman equation (55.5).

Taking the derivative on the right hand side of the Bellman equation with respect to 𝑐 and setting it to zero, we get

𝑢′(𝑐) = 𝛽𝑣′(𝑥 − 𝑐) (55.10)

To obtain 𝑣′(𝑥 − 𝑐), we set 𝑔(𝑐, 𝑥) = 𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐), so that, at the optimal choice of consumption,

𝑣(𝑥) = 𝑔(𝑐, 𝑥) (55.11)

Differentiating both sides while acknowledging that the maximizing consumption will depend on 𝑥, we get

𝑣′(𝑥) = 𝜕
𝜕𝑐 𝑔(𝑐, 𝑥) 𝜕𝑐

𝜕𝑥 + 𝜕
𝜕𝑥𝑔(𝑐, 𝑥)

When 𝑔(𝑐, 𝑥) is maximized at 𝑐, we have 𝜕
𝜕𝑐 𝑔(𝑐, 𝑥) = 0.

Hence the derivative simplifies to

𝑣′(𝑥) = 𝜕𝑔(𝑐, 𝑥)
𝜕𝑥 = 𝜕

𝜕𝑥𝛽𝑣(𝑥 − 𝑐) = 𝛽𝑣′(𝑥 − 𝑐) (55.12)

(This argument is an example of the Envelope Theorem.)

But now an application of (55.10) gives

𝑢′(𝑐) = 𝑣′(𝑥) (55.13)

Thus, the derivative of the value function is equal to marginal utility.

Combining this fact with (55.12) recovers the Euler equation.
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55.6 Exercises

Exercise 55.6.1

How does one obtain the expressions for the value function and optimal policy given in (55.6) and (55.7) respectively?

The first step is to make a guess of the functional form for the consumption policy.

So suppose that we do not know the solutions and start with a guess that the optimal policy is linear.

In other words, we conjecture that there exists a positive 𝜃 such that setting 𝑐∗
𝑡 = 𝜃𝑥𝑡 for all 𝑡 produces an optimal

path.

Starting from this conjecture, try to obtain the solutions (55.6) and (55.7).

In doing so, you will need to use the definition of the value function and the Bellman equation.

Solution to Exercise 55.6.1

We start with the conjecture 𝑐∗
𝑡 = 𝜃𝑥𝑡, which leads to a path for the state variable (cake size) given by

𝑥𝑡+1 = 𝑥𝑡(1 − 𝜃)

Then 𝑥𝑡 = 𝑥0(1 − 𝜃)𝑡 and hence

𝑣(𝑥0) =
∞

∑
𝑡=0

𝛽𝑡𝑢(𝜃𝑥𝑡)

=
∞

∑
𝑡=0

𝛽𝑡𝑢(𝜃𝑥0(1 − 𝜃)𝑡)

=
∞

∑
𝑡=0

𝜃1−𝛾𝛽𝑡(1 − 𝜃)𝑡(1−𝛾)𝑢(𝑥0)

= 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 𝑢(𝑥0)

From the Bellman equation, then,

𝑣(𝑥) = max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 ⋅ 𝑢(𝑥 − 𝑐)}

= max
0≤𝑐≤𝑥

{ 𝑐1−𝛾

1 − 𝛾 + 𝛽 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 ⋅ (𝑥 − 𝑐)1−𝛾

1 − 𝛾 }

From the first order condition, we obtain

𝑐−𝛾 + 𝛽 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 ⋅ (𝑥 − 𝑐)−𝛾(−1) = 0

or

𝑐−𝛾 = 𝛽 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 ⋅ (𝑥 − 𝑐)−𝛾

With 𝑐 = 𝜃𝑥 we get

(𝜃𝑥)−𝛾 = 𝛽 𝜃1−𝛾

1 − 𝛽(1 − 𝜃)1−𝛾 ⋅ (𝑥(1 − 𝜃))−𝛾
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Some rearrangement produces

𝜃 = 1 − 𝛽 1
𝛾

This confirms our earlier expression for the optimal policy:

𝑐∗
𝑡 = (1 − 𝛽 1

𝛾 ) 𝑥𝑡

Substituting 𝜃 into the value function above gives

𝑣∗(𝑥𝑡) =
(1 − 𝛽 1

𝛾 )
1−𝛾

1 − 𝛽 (𝛽 1−𝛾
𝛾 )

𝑢(𝑥𝑡)

Rearranging gives

𝑣∗(𝑥𝑡) = (1 − 𝛽 1
𝛾 )

−𝛾
𝑢(𝑥𝑡)

Our claims are now verified.
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CAKE EATING II: NUMERICAL METHODS

Contents

• Cake Eating II: Numerical Methods

– Overview

– Reviewing the Model

– Value Function Iteration

– Time Iteration

– Exercises

56.1 Overview

In this lecture we continue the study of the cake eating problem.

The aim of this lecture is to solve the problem using numerical methods.

At first this might appear unnecessary, since we already obtained the optimal policy analytically.

However, the cake eating problem is too simple to be useful without modifications, and once we start modifying the
problem, numerical methods become essential.

Hence it makes sense to introduce numerical methods now, and test them on this simple problem.

Since we know the analytical solution, this will allow us to assess the accuracy of alternative numerical methods.

We will use the following imports:

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import minimize_scalar, bisect
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56.2 Reviewing the Model

You might like to review the details before we start.

Recall in particular that the Bellman equation is

𝑣(𝑥) = max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)} for all 𝑥 ≥ 0. (56.1)

where 𝑢 is the CRRA utility function.

The analytical solutions for the value function and optimal policy were found to be as follows.

def c_star(x, β, γ):

return (1 - β ** (1/γ)) * x

def v_star(x, β, γ):

return (1 - β**(1 / γ))**(-γ) * (x**(1-γ) / (1-γ))

Our first aim is to obtain these analytical solutions numerically.

56.3 Value Function Iteration

The first approach we will take is value function iteration.

This is a form of successive approximation, and was discussed in our lecture on job search.

The basic idea is:

1. Take an arbitary intial guess of 𝑣.
2. Obtain an update 𝑤 defined by

𝑤(𝑥) = max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)}

3. Stop if 𝑤 is approximately equal to 𝑣, otherwise set 𝑣 = 𝑤 and go back to step 2.

Let’s write this a bit more mathematically.

56.3.1 The Bellman Operator

We introduce the Bellman operator 𝑇 that takes a function v as an argument and returns a new function 𝑇 𝑣 defined by

𝑇 𝑣(𝑥) = max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)}

From 𝑣 we get 𝑇 𝑣, and applying 𝑇 to this yields 𝑇 2𝑣 ∶= 𝑇 (𝑇 𝑣) and so on.
This is called iterating with the Bellman operator from initial guess 𝑣.
As we discuss inmore detail in later lectures, one can use Banach’s contractionmapping theorem to prove that the sequence
of functions 𝑇 𝑛𝑣 converges to the solution to the Bellman equation.
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56.3.2 Fitted Value Function Iteration

Both consumption 𝑐 and the state variable 𝑥 are continuous.

This causes complications when it comes to numerical work.

For example, we need to store each function 𝑇 𝑛𝑣 in order to compute the next iterate 𝑇 𝑛+1𝑣.
But this means we have to store 𝑇 𝑛𝑣(𝑥) at infinitely many 𝑥, which is, in general, impossible.
To circumvent this issue we will use fitted value function iteration, as discussed previously in one of the lectures on job
search.

The process looks like this:

1. Begin with an array of values {𝑣0, … , 𝑣𝐼} representing the values of some initial function 𝑣 on the grid points
{𝑥0, … , 𝑥𝐼}.

2. Build a function ̂𝑣 on the state space ℝ+ by linear interpolation, based on these data points.

3. Obtain and record the value 𝑇 ̂𝑣(𝑥𝑖) on each grid point 𝑥𝑖 by repeatedly solving the maximization problem in the
Bellman equation.

4. Unless some stopping condition is satisfied, set {𝑣0, … , 𝑣𝐼} = {𝑇 ̂𝑣(𝑥0), … , 𝑇 ̂𝑣(𝑥𝐼)} and go to step 2.
In step 2 we’ll use continuous piecewise linear interpolation.

56.3.3 Implementation

The maximize function below is a small helper function that converts a SciPy minimization routine into a maximization
routine.

def maximize(g, a, b, args):
"""
Maximize the function g over the interval [a, b].

We use the fact that the maximizer of g on any interval is
also the minimizer of -g. The tuple args collects any extra
arguments to g.

Returns the maximal value and the maximizer.
"""

objective = lambda x: -g(x, *args)
result = minimize_scalar(objective, bounds=(a, b), method='bounded')
maximizer, maximum = result.x, -result.fun
return maximizer, maximum

We’ll store the parameters 𝛽 and 𝛾 in a class called CakeEating.

The same class will also provide a method called state_action_value that returns the value of a consumption
choice given a particular state and guess of 𝑣.
class CakeEating:

def __init__(self,
β=0.96, # discount factor
γ=1.5, # degree of relative risk aversion
x_grid_min=1e-3, # exclude zero for numerical stability
x_grid_max=2.5, # size of cake

(continues on next page)
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(continued from previous page)

x_grid_size=120):

self.β, self.γ = β, γ

# Set up grid
self.x_grid = np.linspace(x_grid_min, x_grid_max, x_grid_size)

# Utility function
def u(self, c):

γ = self.γ

if γ == 1:
return np.log(c)

else:
return (c ** (1 - γ)) / (1 - γ)

# first derivative of utility function
def u_prime(self, c):

return c ** (-self.γ)

def state_action_value(self, c, x, v_array):
"""
Right hand side of the Bellman equation given x and c.
"""

u, β = self.u, self.β
v = lambda x: np.interp(x, self.x_grid, v_array)

return u(c) + β * v(x - c)

We now define the Bellman operation:

def T(v, ce):
"""
The Bellman operator. Updates the guess of the value function.

* ce is an instance of CakeEating
* v is an array representing a guess of the value function

"""
v_new = np.empty_like(v)

for i, x in enumerate(ce.x_grid):
# Maximize RHS of Bellman equation at state x
v_new[i] = maximize(ce.state_action_value, 1e-10, x, (x, v))[1]

return v_new

After defining the Bellman operator, we are ready to solve the model.

Let’s start by creating a CakeEating instance using the default parameterization.

ce = CakeEating()

Now let’s see the iteration of the value function in action.

1074 Chapter 56. Cake Eating II: Numerical Methods



Intermediate Quantitative Economics with Python

We start from guess 𝑣 given by 𝑣(𝑥) = 𝑢(𝑥) for every 𝑥 grid point.

x_grid = ce.x_grid
v = ce.u(x_grid) # Initial guess
n = 12 # Number of iterations

fig, ax = plt.subplots()

ax.plot(x_grid, v, color=plt.cm.jet(0),
lw=2, alpha=0.6, label='Initial guess')

for i in range(n):
v = T(v, ce) # Apply the Bellman operator
ax.plot(x_grid, v, color=plt.cm.jet(i / n), lw=2, alpha=0.6)

ax.legend()
ax.set_ylabel('value', fontsize=12)
ax.set_xlabel('cake size $x$', fontsize=12)
ax.set_title('Value function iterations')

plt.show()

To do this more systematically, we introduce a wrapper function called compute_value_function that iterates
until some convergence conditions are satisfied.

def compute_value_function(ce,
tol=1e-4,

(continues on next page)
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(continued from previous page)

max_iter=1000,
verbose=True,
print_skip=25):

# Set up loop
v = np.zeros(len(ce.x_grid)) # Initial guess
i = 0
error = tol + 1

while i < max_iter and error > tol:
v_new = T(v, ce)

error = np.max(np.abs(v - v_new))
i += 1

if verbose and i % print_skip == 0:
print(f"Error at iteration {i} is {error}.")

v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_new

Now let’s call it, noting that it takes a little while to run.

v = compute_value_function(ce)

Error at iteration 25 is 23.8003755134813.

Error at iteration 50 is 8.577577195046615.

Error at iteration 75 is 3.091330659691039.

Error at iteration 100 is 1.1141054204751981.

Error at iteration 125 is 0.4015199357729671.

Error at iteration 150 is 0.14470646660561215.

Error at iteration 175 is 0.052151735472762084.

Error at iteration 200 is 0.018795314242879613.

Error at iteration 225 is 0.006773769545588948.

Error at iteration 250 is 0.0024412443051460286.

Error at iteration 275 is 0.0008798164327572522.
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Error at iteration 300 is 0.00031708295392718355.

Error at iteration 325 is 0.00011427565573285392.

Converged in 329 iterations.

Now we can plot and see what the converged value function looks like.

fig, ax = plt.subplots()

ax.plot(x_grid, v, label='Approximate value function')
ax.set_ylabel('$V(x)$', fontsize=12)
ax.set_xlabel('$x$', fontsize=12)
ax.set_title('Value function')
ax.legend()
plt.show()

Next let’s compare it to the analytical solution.

v_analytical = v_star(ce.x_grid, ce.β, ce.γ)

fig, ax = plt.subplots()

ax.plot(x_grid, v_analytical, label='analytical solution')
ax.plot(x_grid, v, label='numerical solution')
ax.set_ylabel('$V(x)$', fontsize=12)

(continues on next page)
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(continued from previous page)

ax.set_xlabel('$x$', fontsize=12)
ax.legend()
ax.set_title('Comparison between analytical and numerical value functions')
plt.show()

The quality of approximation is reasonably good for large 𝑥, but less so near the lower boundary.
The reason is that the utility function and hence value function is very steep near the lower boundary, and hence hard to
approximate.

56.3.4 Policy Function

Let’s see how this plays out in terms of computing the optimal policy.

In the first lecture on cake eating, the optimal consumption policy was shown to be

𝜎∗(𝑥) = (1 − 𝛽1/𝛾) 𝑥

Let’s see if our numerical results lead to something similar.

Our numerical strategy will be to compute

𝜎(𝑥) = arg max
0≤𝑐≤𝑥

{𝑢(𝑐) + 𝛽𝑣(𝑥 − 𝑐)}

on a grid of 𝑥 points and then interpolate.

For 𝑣 we will use the approximation of the value function we obtained above.
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Here’s the function:

def σ(ce, v):
"""
The optimal policy function. Given the value function,
it finds optimal consumption in each state.

* ce is an instance of CakeEating
* v is a value function array

"""
c = np.empty_like(v)

for i in range(len(ce.x_grid)):
x = ce.x_grid[i]
# Maximize RHS of Bellman equation at state x
c[i] = maximize(ce.state_action_value, 1e-10, x, (x, v))[0]

return c

Now let’s pass the approximate value function and compute optimal consumption:

c = σ(ce, v)

Let’s plot this next to the true analytical solution

c_analytical = c_star(ce.x_grid, ce.β, ce.γ)

fig, ax = plt.subplots()

ax.plot(ce.x_grid, c_analytical, label='analytical')
ax.plot(ce.x_grid, c, label='numerical')
ax.set_ylabel(r'$\sigma(x)$')
ax.set_xlabel('$x$')
ax.legend()

plt.show()
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The fit is reasonable but not perfect.

We can improve it by increasing the grid size or reducing the error tolerance in the value function iteration routine.

However, both changes will lead to a longer compute time.

Another possibility is to use an alternative algorithm, which offers the possibility of faster compute time and, at the same
time, more accuracy.

We explore this next.

56.4 Time Iteration

Now let’s look at a different strategy to compute the optimal policy.

Recall that the optimal policy satisfies the Euler equation

𝑢′(𝜎(𝑥)) = 𝛽𝑢′(𝜎(𝑥 − 𝜎(𝑥))) for all 𝑥 > 0 (56.2)

Computationally, we can start with any initial guess of 𝜎0 and now choose 𝑐 to solve

𝑢′(𝑐) = 𝛽𝑢′(𝜎0(𝑥 − 𝑐))

Choosing 𝑐 to satisfy this equation at all 𝑥 > 0 produces a function of 𝑥.
Call this new function 𝜎1, treat it as the new guess and repeat.

This is called time iteration.

As with value function iteration, we can view the update step as action of an operator, this time denoted by 𝐾.
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• In particular, 𝐾𝜎 is the policy updated from 𝜎 using the procedure just described.

• We will use this terminology in the exercises below.

The main advantage of time iteration relative to value function iteration is that it operates in policy space rather than value
function space.

This is helpful because the policy function has less curvature, and hence is easier to approximate.

In the exercises you are asked to implement time iteration and compare it to value function iteration.

You should find that the method is faster and more accurate.

This is due to

1. the curvature issue mentioned just above and

2. the fact that we are using more information — in this case, the first order conditions.

56.5 Exercises

Exercise 56.5.1

Try the following modification of the problem.

Instead of the cake size changing according to 𝑥𝑡+1 = 𝑥𝑡 − 𝑐𝑡, let it change according to

𝑥𝑡+1 = (𝑥𝑡 − 𝑐𝑡)𝛼

where 𝛼 is a parameter satisfying 0 < 𝛼 < 1.
(We will see this kind of update rule when we study optimal growth models.)

Make the required changes to value function iteration code and plot the value and policy functions.

Try to reuse as much code as possible.

Solution to Exercise 56.5.1

We need to create a class to hold our primitives and return the right hand side of the Bellman equation.

We will use inheritance to maximize code reuse.
class OptimalGrowth(CakeEating):

"""
A subclass of CakeEating that adds the parameter α and overrides
the state_action_value method.
"""

def __init__(self,
β=0.96, # discount factor
γ=1.5, # degree of relative risk aversion
α=0.4, # productivity parameter
x_grid_min=1e-3, # exclude zero for numerical stability
x_grid_max=2.5, # size of cake
x_grid_size=120):

self.α = α
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CakeEating.__init__(self, β, γ, x_grid_min, x_grid_max, x_grid_size)

def state_action_value(self, c, x, v_array):
"""
Right hand side of the Bellman equation given x and c.
"""

u, β, α = self.u, self.β, self.α
v = lambda x: np.interp(x, self.x_grid, v_array)

return u(c) + β * v((x - c)**α)

og = OptimalGrowth()

Here’s the computed value function.

v = compute_value_function(og, verbose=False)

fig, ax = plt.subplots()

ax.plot(x_grid, v, lw=2, alpha=0.6)
ax.set_ylabel('value', fontsize=12)
ax.set_xlabel('state $x$', fontsize=12)

plt.show()

Here’s the computed policy, combined with the solution we derived above for the standard cake eating case 𝛼 = 1.
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c_new = σ(og, v)

fig, ax = plt.subplots()

ax.plot(ce.x_grid, c_analytical, label=r'$\alpha=1$ solution')
ax.plot(ce.x_grid, c_new, label=fr'$\alpha={og.α}$ solution')

ax.set_ylabel('consumption', fontsize=12)
ax.set_xlabel('$x$', fontsize=12)

ax.legend(fontsize=12)

plt.show()

Consumption is higher when 𝛼 < 1 because, at least for large 𝑥, the return to savings is lower.

Exercise 56.5.2

Implement time iteration, returning to the original case (i.e., dropping the modification in the exercise above).

Solution to Exercise 56.5.2

Here’s one way to implement time iteration.
def K(σ_array, ce):
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"""
The policy function operator. Given the policy function,
it updates the optimal consumption using Euler equation.

* σ_array is an array of policy function values on the grid
* ce is an instance of CakeEating

"""

u_prime, β, x_grid = ce.u_prime, ce.β, ce.x_grid
σ_new = np.empty_like(σ_array)

σ = lambda x: np.interp(x, x_grid, σ_array)

def euler_diff(c, x):
return u_prime(c) - β * u_prime(σ(x - c))

for i, x in enumerate(x_grid):

# handle small x separately --- helps numerical stability
if x < 1e-12:

σ_new[i] = 0.0

# handle other x
else:

σ_new[i] = bisect(euler_diff, 1e-10, x - 1e-10, x)

return σ_new

def iterate_euler_equation(ce,
max_iter=500,
tol=1e-5,
verbose=True,
print_skip=25):

x_grid = ce.x_grid

σ = np.copy(x_grid) # initial guess

i = 0
error = tol + 1
while i < max_iter and error > tol:

σ_new = K(σ, ce)

error = np.max(np.abs(σ_new - σ))
i += 1

if verbose and i % print_skip == 0:
print(f"Error at iteration {i} is {error}.")

σ = σ_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")
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return σ

ce = CakeEating(x_grid_min=0.0)
c_euler = iterate_euler_equation(ce)

Error at iteration 25 is 0.0036456675931543225.

Error at iteration 50 is 0.0008283185047067848.

Error at iteration 75 is 0.00030791132300957147.

Error at iteration 100 is 0.00013555502390599772.

Error at iteration 125 is 6.417740905302616e-05.

Error at iteration 150 is 3.1438019047758115e-05.

Error at iteration 175 is 1.5658492883291464e-05.

Converged in 192 iterations.

fig, ax = plt.subplots()

ax.plot(ce.x_grid, c_analytical, label='analytical solution')
ax.plot(ce.x_grid, c_euler, label='time iteration solution')

ax.set_ylabel('consumption')
ax.set_xlabel('$x$')
ax.legend(fontsize=12)

plt.show()
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FIFTYSEVEN

OPTIMAL GROWTH I: THE STOCHASTIC OPTIMAL GROWTH MODEL

Contents

• Optimal Growth I: The Stochastic Optimal Growth Model

– Overview

– The Model

– Computation

– Exercises

57.1 Overview

In this lecture, we’re going to study a simple optimal growth model with one agent.

The model is a version of the standard one sector infinite horizon growth model studied in

• [Stokey et al., 1989], chapter 2

• [Ljungqvist and Sargent, 2018], section 3.1

• EDTC, chapter 1

• [Sundaram, 1996], chapter 12

It is an extension of the simple cake eating problem we looked at earlier.

The extension involves

• nonlinear returns to saving, through a production function, and

• stochastic returns, due to shocks to production.

Despite these additions, the model is still relatively simple.

We regard it as a stepping stone to more sophisticated models.

We solve the model using dynamic programming and a range of numerical techniques.

In this first lecture on optimal growth, the solution method will be value function iteration (VFI).

While the code in this first lecture runs slowly, we will use a variety of techniques to drastically improve execution time
over the next few lectures.

Let’s start with some imports:
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import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import interp1d
from scipy.optimize import minimize_scalar

57.2 The Model

Consider an agent who owns an amount 𝑦𝑡 ∈ ℝ+ ∶= [0, ∞) of a consumption good at time 𝑡.
This output can either be consumed or invested.

When the good is invested, it is transformed one-for-one into capital.

The resulting capital stock, denoted here by 𝑘𝑡+1, will then be used for production.

Production is stochastic, in that it also depends on a shock 𝜉𝑡+1 realized at the end of the current period.

Next period output is

𝑦𝑡+1 ∶= 𝑓(𝑘𝑡+1)𝜉𝑡+1

where 𝑓 ∶ ℝ+ → ℝ+ is called the production function.

The resource constraint is

𝑘𝑡+1 + 𝑐𝑡 ≤ 𝑦𝑡 (57.1)

and all variables are required to be nonnegative.

57.2.1 Assumptions and Comments

In what follows,

• The sequence {𝜉𝑡} is assumed to be IID.
• The common distribution of each 𝜉𝑡 will be denoted by 𝜙.
• The production function 𝑓 is assumed to be increasing and continuous.

• Depreciation of capital is not made explicit but can be incorporated into the production function.

While many other treatments of the stochastic growth model use 𝑘𝑡 as the state variable, we will use 𝑦𝑡.

This will allow us to treat a stochastic model while maintaining only one state variable.

We consider alternative states and timing specifications in some of our other lectures.

57.2.2 Optimization

Taking 𝑦0 as given, the agent wishes to maximize

𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] (57.2)

subject to

𝑦𝑡+1 = 𝑓(𝑦𝑡 − 𝑐𝑡)𝜉𝑡+1 and 0 ≤ 𝑐𝑡 ≤ 𝑦𝑡 for all 𝑡 (57.3)

where
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• 𝑢 is a bounded, continuous and strictly increasing utility function and

• 𝛽 ∈ (0, 1) is a discount factor.
In (57.3) we are assuming that the resource constraint (57.1) holds with equality — which is reasonable because 𝑢 is
strictly increasing and no output will be wasted at the optimum.

In summary, the agent’s aim is to select a path 𝑐0, 𝑐1, 𝑐2, … for consumption that is

1. nonnegative,

2. feasible in the sense of (57.1),

3. optimal, in the sense that it maximizes (57.2) relative to all other feasible consumption sequences, and

4. adapted, in the sense that the action 𝑐𝑡 depends only on observable outcomes, not on future outcomes such as 𝜉𝑡+1.

In the present context

• 𝑦𝑡 is called the state variable — it summarizes the “state of the world” at the start of each period.

• 𝑐𝑡 is called the control variable — a value chosen by the agent each period after observing the state.

57.2.3 The Policy Function Approach

One way to think about solving this problem is to look for the best policy function.

A policy function is a map from past and present observables into current action.

We’ll be particularly interested inMarkov policies, which are maps from the current state 𝑦𝑡 into a current action 𝑐𝑡.

For dynamic programming problems such as this one (in fact for any Markov decision process), the optimal policy is
always a Markov policy.

In other words, the current state 𝑦𝑡 provides a sufficient statistic for the history in terms of making an optimal decision
today.

This is quite intuitive, but if you wish you can find proofs in texts such as [Stokey et al., 1989] (section 4.1).

Hereafter we focus on finding the best Markov policy.

In our context, a Markov policy is a function 𝜎 ∶ ℝ+ → ℝ+, with the understanding that states are mapped to actions via

𝑐𝑡 = 𝜎(𝑦𝑡) for all 𝑡

In what follows, we will call 𝜎 a feasible consumption policy if it satisfies

0 ≤ 𝜎(𝑦) ≤ 𝑦 for all 𝑦 ∈ ℝ+ (57.4)

In other words, a feasible consumption policy is a Markov policy that respects the resource constraint.

The set of all feasible consumption policies will be denoted by Σ.
Each 𝜎 ∈ Σ determines a continuous state Markov process {𝑦𝑡} for output via

𝑦𝑡+1 = 𝑓(𝑦𝑡 − 𝜎(𝑦𝑡))𝜉𝑡+1, 𝑦0 given (57.5)

This is the time path for output when we choose and stick with the policy 𝜎.
We insert this process into the objective function to get

𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) ] = 𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝜎(𝑦𝑡)) ] (57.6)
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This is the total expected present value of following policy 𝜎 forever, given initial income 𝑦0.

The aim is to select a policy that makes this number as large as possible.

The next section covers these ideas more formally.

57.2.4 Optimality

The 𝜎 associated with a given policy 𝜎 is the mapping defined by

𝑣𝜎(𝑦) = 𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝜎(𝑦𝑡))] (57.7)

when {𝑦𝑡} is given by (57.5) with 𝑦0 = 𝑦.
In other words, it is the lifetime value of following policy 𝜎 starting at initial condition 𝑦.
The value function is then defined as

𝑣∗(𝑦) ∶= sup
𝜎∈Σ

𝑣𝜎(𝑦) (57.8)

The value function gives the maximal value that can be obtained from state 𝑦, after considering all feasible policies.
A policy 𝜎 ∈ Σ is called optimal if it attains the supremum in (57.8) for all 𝑦 ∈ ℝ+.

57.2.5 The Bellman Equation

With our assumptions on utility and production functions, the value function as defined in (57.8) also satisfies a Bellman
equation.

For this problem, the Bellman equation takes the form

𝑣(𝑦) = max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)} (𝑦 ∈ ℝ+) (57.9)

This is a functional equation in 𝑣.
The term ∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧) can be understood as the expected next period value when

• 𝑣 is used to measure value
• the state is 𝑦
• consumption is set to 𝑐

As shown in EDTC, theorem 10.1.11 and a range of other texts

The value function 𝑣∗ satisfies the Bellman equation

In other words, (57.9) holds when 𝑣 = 𝑣∗.

The intuition is that maximal value from a given state can be obtained by optimally trading off

• current reward from a given action, vs

• expected discounted future value of the state resulting from that action

The Bellman equation is important because it gives us more information about the value function.

It also suggests a way of computing the value function, which we discuss below.
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57.2.6 Greedy Policies

The primary importance of the value function is that we can use it to compute optimal policies.

The details are as follows.

Given a continuous function 𝑣 on ℝ+, we say that 𝜎 ∈ Σ is 𝑣-greedy if 𝜎(𝑦) is a solution to

max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)} (57.10)

for every 𝑦 ∈ ℝ+.

In other words, 𝜎 ∈ Σ is 𝑣-greedy if it optimally trades off current and future rewards when 𝑣 is taken to be the value
function.

In our setting, we have the following key result

• A feasible consumption policy is optimal if and only if it is 𝑣∗-greedy.

The intuition is similar to the intuition for the Bellman equation, which was provided after (57.9).

See, for example, theorem 10.1.11 of EDTC.

Hence, once we have a good approximation to 𝑣∗, we can compute the (approximately) optimal policy by computing the
corresponding greedy policy.

The advantage is that we are now solving a much lower dimensional optimization problem.

57.2.7 The Bellman Operator

How, then, should we compute the value function?

One way is to use the so-called Bellman operator.

(An operator is a map that sends functions into functions.)

The Bellman operator is denoted by 𝑇 and defined by

𝑇 𝑣(𝑦) ∶= max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)} (𝑦 ∈ ℝ+) (57.11)

In other words, 𝑇 sends the function 𝑣 into the new function 𝑇 𝑣 defined by (57.11).
By construction, the set of solutions to the Bellman equation (57.9) exactly coincides with the set of fixed points of 𝑇 .
For example, if 𝑇 𝑣 = 𝑣, then, for any 𝑦 ≥ 0,

𝑣(𝑦) = 𝑇 𝑣(𝑦) = max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣∗(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)}

which says precisely that 𝑣 is a solution to the Bellman equation.
It follows that 𝑣∗ is a fixed point of 𝑇 .
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57.2.8 Review of Theoretical Results

One can also show that 𝑇 is a contraction mapping on the set of continuous bounded functions on ℝ+ under the supremum
distance

𝜌(𝑔, ℎ) = sup
𝑦≥0

|𝑔(𝑦) − ℎ(𝑦)|

See EDTC, lemma 10.1.18.

Hence, it has exactly one fixed point in this set, which we know is equal to the value function.

It follows that

• The value function 𝑣∗ is bounded and continuous.

• Starting from any bounded and continuous 𝑣, the sequence 𝑣, 𝑇 𝑣, 𝑇 2𝑣, … generated by iteratively applying 𝑇
converges uniformly to 𝑣∗.

This iterative method is called value function iteration.

We also know that a feasible policy is optimal if and only if it is 𝑣∗-greedy.

It’s not too hard to show that a 𝑣∗-greedy policy exists (see EDTC, theorem 10.1.11 if you get stuck).

Hence, at least one optimal policy exists.

Our problem now is how to compute it.

57.2.9 Unbounded Utility

The results stated above assume that the utility function is bounded.

In practice economists often work with unbounded utility functions — and so will we.

In the unbounded setting, various optimality theories exist.

Unfortunately, they tend to be case-specific, as opposed to valid for a large range of applications.

Nevertheless, their main conclusions are usually in line with those stated for the bounded case just above (as long as we
drop the word “bounded”).

Consult, for example, section 12.2 of EDTC, [Kamihigashi, 2012] or [Martins-da-Rocha and Vailakis, 2010].

57.3 Computation

Let’s now look at computing the value function and the optimal policy.

Our implementation in this lecture will focus on clarity and flexibility.

Both of these things are helpful, but they do cost us some speed — as you will see when you run the code.

Later we will sacrifice some of this clarity and flexibility in order to accelerate our code with just-in-time (JIT) compi-
lation.

The algorithm we will use is fitted value function iteration, which was described in earlier lectures the McCall model and
cake eating.

The algorithm will be

1. Begin with an array of values {𝑣1, … , 𝑣𝐼} representing the values of some initial function 𝑣 on the grid points
{𝑦1, … , 𝑦𝐼}.
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2. Build a function ̂𝑣 on the state space ℝ+ by linear interpolation, based on these data points.

3. Obtain and record the value 𝑇 ̂𝑣(𝑦𝑖) on each grid point 𝑦𝑖 by repeatedly solving (57.11).

4. Unless some stopping condition is satisfied, set {𝑣1, … , 𝑣𝐼} = {𝑇 ̂𝑣(𝑦1), … , 𝑇 ̂𝑣(𝑦𝐼)} and go to step 2.

57.3.1 Scalar Maximization

To maximize the right hand side of the Bellman equation (57.9), we are going to use the minimize_scalar routine
from SciPy.

Since we are maximizing rather than minimizing, we will use the fact that the maximizer of 𝑔 on the interval [𝑎, 𝑏] is the
minimizer of −𝑔 on the same interval.
To this end, and to keep the interface tidy, we will wrap minimize_scalar in an outer function as follows:

def maximize(g, a, b, args):
"""
Maximize the function g over the interval [a, b].

We use the fact that the maximizer of g on any interval is
also the minimizer of -g. The tuple args collects any extra
arguments to g.

Returns the maximal value and the maximizer.
"""

objective = lambda x: -g(x, *args)
result = minimize_scalar(objective, bounds=(a, b), method='bounded')
maximizer, maximum = result.x, -result.fun
return maximizer, maximum

57.3.2 Optimal Growth Model

We will assume for now that 𝜙 is the distribution of 𝜉 ∶= exp(𝜇 + 𝑠𝜁) where
• 𝜁 is standard normal,
• 𝜇 is a shock location parameter and

• 𝑠 is a shock scale parameter.
We will store this and other primitives of the optimal growth model in a class.

The class, defined below, combines both parameters and a method that realizes the right hand side of the Bellman equation
(57.9).

class OptimalGrowthModel:

def __init__(self,
u, # utility function
f, # production function
β=0.96, # discount factor
μ=0, # shock location parameter
s=0.1, # shock scale parameter
grid_max=4,
grid_size=120,
shock_size=250,

(continues on next page)
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(continued from previous page)

seed=1234):

self.u, self.f, self.β, self.μ, self.s = u, f, β, μ, s

# Set up grid
self.grid = np.linspace(1e-4, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def state_action_value(self, c, y, v_array):
"""
Right hand side of the Bellman equation.
"""

u, f, β, shocks = self.u, self.f, self.β, self.shocks

v = interp1d(self.grid, v_array)

return u(c) + β * np.mean(v(f(y - c) * shocks))

In the second last line we are using linear interpolation.

In the last line, the expectation in (57.11) is computed via Monte Carlo, using the approximation

∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧) ≈ 1
𝑛

𝑛
∑
𝑖=1

𝑣(𝑓(𝑦 − 𝑐)𝜉𝑖)

where {𝜉𝑖}𝑛
𝑖=1 are IID draws from 𝜙.

Monte Carlo is not always the most efficient way to compute integrals numerically but it does have some theoretical
advantages in the present setting.

(For example, it preserves the contraction mapping property of the Bellman operator — see, e.g., [Pál and Stachurski,
2013].)

57.3.3 The Bellman Operator

The next function implements the Bellman operator.

(We could have added it as a method to the OptimalGrowthModel class, but we prefer small classes rather than
monolithic ones for this kind of numerical work.)

def T(v, og):
"""
The Bellman operator. Updates the guess of the value function
and also computes a v-greedy policy.

* og is an instance of OptimalGrowthModel
* v is an array representing a guess of the value function

"""
v_new = np.empty_like(v)
v_greedy = np.empty_like(v)

(continues on next page)
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for i in range(len(grid)):
y = grid[i]

# Maximize RHS of Bellman equation at state y
c_star, v_max = maximize(og.state_action_value, 1e-10, y, (y, v))
v_new[i] = v_max
v_greedy[i] = c_star

return v_greedy, v_new

57.3.4 An Example

Let’s suppose now that

𝑓(𝑘) = 𝑘𝛼 and 𝑢(𝑐) = ln 𝑐
For this particular problem, an exact analytical solution is available (see [Ljungqvist and Sargent, 2018], section 3.1.2),
with

𝑣∗(𝑦) = ln(1 − 𝛼𝛽)
1 − 𝛽 + (𝜇 + 𝛼 ln(𝛼𝛽))

1 − 𝛼 [ 1
1 − 𝛽 − 1

1 − 𝛼𝛽 ] + 1
1 − 𝛼𝛽 ln 𝑦 (57.12)

and optimal consumption policy

𝜎∗(𝑦) = (1 − 𝛼𝛽)𝑦
It is valuable to have these closed-form solutions because it lets us check whether our code works for this particular case.

In Python, the functions above can be expressed as:

def v_star(y, α, β, μ):
"""
True value function
"""
c1 = np.log(1 - α * β) / (1 - β)
c2 = (μ + α * np.log(α * β)) / (1 - α)
c3 = 1 / (1 - β)
c4 = 1 / (1 - α * β)
return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
"""
True optimal policy
"""
return (1 - α * β) * y

Next let’s create an instance of the model with the above primitives and assign it to the variable og.

α = 0.4
def fcd(k):

return k**α

og = OptimalGrowthModel(u=np.log, f=fcd)

Now let’s see what happens when we apply our Bellman operator to the exact solution 𝑣∗ in this case.

In theory, since 𝑣∗ is a fixed point, the resulting function should again be 𝑣∗.

In practice, we expect some small numerical error.
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grid = og.grid

v_init = v_star(grid, α, og.β, og.μ) # Start at the solution
v_greedy, v = T(v_init, og) # Apply T once

fig, ax = plt.subplots()
ax.set_ylim(-35, -24)
ax.plot(grid, v, lw=2, alpha=0.6, label='$Tv^*$')
ax.plot(grid, v_init, lw=2, alpha=0.6, label='$v^*$')
ax.legend()
plt.show()

The two functions are essentially indistinguishable, so we are off to a good start.

Now let’s have a look at iterating with the Bellman operator, starting from an arbitrary initial condition.

The initial condition we’ll start with is, somewhat arbitrarily, 𝑣(𝑦) = 5 ln(𝑦).
v = 5 * np.log(grid) # An initial condition
n = 35

fig, ax = plt.subplots()

ax.plot(grid, v, color=plt.cm.jet(0),
lw=2, alpha=0.6, label='Initial condition')

for i in range(n):
v_greedy, v = T(v, og) # Apply the Bellman operator
ax.plot(grid, v, color=plt.cm.jet(i / n), lw=2, alpha=0.6)

(continues on next page)
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ax.plot(grid, v_star(grid, α, og.β, og.μ), 'k-', lw=2,
alpha=0.8, label='True value function')

ax.legend()
ax.set(ylim=(-40, 10), xlim=(np.min(grid), np.max(grid)))
plt.show()

The figure shows

1. the first 36 functions generated by the fitted value function iteration algorithm, with hotter colors given to higher
iterates

2. the true value function 𝑣∗ drawn in black

The sequence of iterates converges towards 𝑣∗.

We are clearly getting closer.

57.3.5 Iterating to Convergence

We can write a function that iterates until the difference is below a particular tolerance level.

def solve_model(og,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

"""

(continues on next page)
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Solve model by iterating with the Bellman operator.

"""

# Set up loop
v = og.u(og.grid) # Initial condition
i = 0
error = tol + 1

while i < max_iter and error > tol:
v_greedy, v_new = T(v, og)
error = np.max(np.abs(v - v_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_greedy, v_new

Let’s use this function to compute an approximate solution at the defaults.

v_greedy, v_solution = solve_model(og)

Error at iteration 25 is 0.40975776844489786.

Error at iteration 50 is 0.1476753540823772.

Error at iteration 75 is 0.05322171277213883.

Error at iteration 100 is 0.01918093054865011.

Error at iteration 125 is 0.006912744396018411.

Error at iteration 150 is 0.0024913303848137502.

Error at iteration 175 is 0.000897867291303811.

Error at iteration 200 is 0.00032358842396718046.

Error at iteration 225 is 0.0001166202056204213.

Converged in 229 iterations.

Now we check our result by plotting it against the true value:

fig, ax = plt.subplots()

(continues on next page)
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ax.plot(grid, v_solution, lw=2, alpha=0.6,
label='Approximate value function')

ax.plot(grid, v_star(grid, α, og.β, og.μ), lw=2,
alpha=0.6, label='True value function')

ax.legend()
ax.set_ylim(-35, -24)
plt.show()

The figure shows that we are pretty much on the money.

57.3.6 The Policy Function

The policy v_greedy computed above corresponds to an approximate optimal policy.

The next figure compares it to the exact solution, which, as mentioned above, is 𝜎(𝑦) = (1 − 𝛼𝛽)𝑦
fig, ax = plt.subplots()

ax.plot(grid, v_greedy, lw=2,
alpha=0.6, label='approximate policy function')

ax.plot(grid, σ_star(grid, α, og.β), '--',
lw=2, alpha=0.6, label='true policy function')

ax.legend()
plt.show()
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The figure shows that we’ve done a good job in this instance of approximating the true policy.

57.4 Exercises

Exercise 57.4.1

A common choice for utility function in this kind of work is the CRRA specification

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
Maintaining the other defaults, including the Cobb-Douglas production function, solve the optimal growth model with
this utility specification.

Setting 𝛾 = 1.5, compute and plot an estimate of the optimal policy.
Time how long this function takes to run, so you can compare it to faster code developed in the next lecture.

Solution to Exercise 57.4.1

Here we set up the model.
γ = 1.5 # Preference parameter

def u_crra(c):
return (c**(1 - γ) - 1) / (1 - γ)
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og = OptimalGrowthModel(u=u_crra, f=fcd)

Now let’s run it, with a timer.

%%time
v_greedy, v_solution = solve_model(og)

Error at iteration 25 is 0.5528151810417512.

Error at iteration 50 is 0.19923228425591333.

Error at iteration 75 is 0.07180266113800826.

Error at iteration 100 is 0.02587744333580133.

Error at iteration 125 is 0.0093261456189353.

Error at iteration 150 is 0.003361112262005861.

Error at iteration 175 is 0.0012113338242301097.

Error at iteration 200 is 0.000436560733326985.

Error at iteration 225 is 0.00015733505506432266.

Converged in 237 iterations.
CPU times: user 29.8 s, sys: 3.97 ms, total: 29.8 s
Wall time: 29.8 s

Let’s plot the policy function just to see what it looks like:

fig, ax = plt.subplots()

ax.plot(grid, v_greedy, lw=2,
alpha=0.6, label='Approximate optimal policy')

ax.legend()
plt.show()
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Exercise 57.4.2

Time how long it takes to iterate with the Bellman operator 20 times, starting from initial condition 𝑣(𝑦) = 𝑢(𝑦).
Use the model specification in the previous exercise.

(As before, we will compare this number with that for the faster code developed in the next lecture.)

Solution to Exercise 57.4.2

Let’s set up:

og = OptimalGrowthModel(u=u_crra, f=fcd)
v = og.u(og.grid)

Here’s the timing:

%%time

for i in range(20):
v_greedy, v_new = T(v, og)
v = v_new

CPU times: user 2.51 s, sys: 2 μs, total: 2.51 s
Wall time: 2.51 s

1102 Chapter 57. Optimal Growth I: The Stochastic Optimal Growth Model



CHAPTER

FIFTYEIGHT

OPTIMAL GROWTH II: ACCELERATING THE CODE WITH NUMBA

Contents

• Optimal Growth II: Accelerating the Code with Numba
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

58.1 Overview

Previously, we studied a stochastic optimal growth model with one representative agent.

We solved the model using dynamic programming.

In writing our code, we focused on clarity and flexibility.

These are important, but there’s often a trade-off between flexibility and speed.

The reason is that, when code is less flexible, we can exploit structure more easily.

(This is true about algorithms and mathematical problems more generally: more specific problems have more structure,
which, with some thought, can be exploited for better results.)

So, in this lecture, we are going to accept less flexibility while gaining speed, using just-in-time (JIT) compilation to
accelerate our code.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from numba import jit, jit
from quantecon.optimize.scalar_maximization import brent_max

The function brent_max is also designed for embedding in JIT-compiled code.
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These are alternatives to similar functions in SciPy (which, unfortunately, are not JIT-aware).

58.2 The Model

The model is the same as discussed in our previous lecture on optimal growth.

We will start with log utility:

𝑢(𝑐) = ln(𝑐)

We continue to assume that

• 𝑓(𝑘) = 𝑘𝛼

• 𝜙 is the distribution of 𝜉 ∶= exp(𝜇 + 𝑠𝜁) when 𝜁 is standard normal
We will once again use value function iteration to solve the model.

In particular, the algorithm is unchanged, and the only difference is in the implementation itself.

As before, we will be able to compare with the true solutions

def v_star(y, α, β, μ):
"""
True value function
"""
c1 = np.log(1 - α * β) / (1 - β)
c2 = (μ + α * np.log(α * β)) / (1 - α)
c3 = 1 / (1 - β)
c4 = 1 / (1 - α * β)
return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
"""
True optimal policy
"""
return (1 - α * β) * y

58.3 Computation

We will again store the primitives of the optimal growth model in a class.

But now we are going to use Numba’s @jitclass decorator to target our class for JIT compilation.

Because we are going to use Numba to compile our class, we need to specify the data types.

You will see this as a list called opt_growth_data above our class.

Unlike in the previous lecture, we hardwire the production and utility specifications into the class.

This is where we sacrifice flexibility in order to gain more speed.

from numba import float64
from numba.experimental import jitclass

opt_growth_data = [
('α', float64), # Production parameter

(continues on next page)
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(continued from previous page)

('β', float64), # Discount factor
('μ', float64), # Shock location parameter
('s', float64), # Shock scale parameter
('grid', float64[:]), # Grid (array)
('shocks', float64[:]) # Shock draws (array)

]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

def __init__(self,
α=0.4,
β=0.96,
μ=0,
s=0.1,
grid_max=4,
grid_size=120,
shock_size=250,
seed=1234):

self.α, self.β, self.μ, self.s = α, β, μ, s

# Set up grid
self.grid = np.linspace(1e-5, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def f(self, k):
"The production function"
return k**self.α

def u(self, c):
"The utility function"
return np.log(c)

def f_prime(self, k):
"Derivative of f"
return self.α * (k**(self.α - 1))

def u_prime(self, c):
"Derivative of u"
return 1/c

def u_prime_inv(self, c):
"Inverse of u'"
return 1/c

The class includes some methods such as u_prime that we do not need now but will use in later lectures.
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58.3.1 The Bellman Operator

We will use JIT compilation to accelerate the Bellman operator.

First, here’s a function that returns the value of a particular consumption choice c, given state y, as per the Bellman
equation (57.9).

@jit
def state_action_value(c, y, v_array, og):

"""
Right hand side of the Bellman equation.

* c is consumption
* y is income
* og is an instance of OptimalGrowthModel
* v_array represents a guess of the value function on the grid

"""

u, f, β, shocks = og.u, og.f, og.β, og.shocks

v = lambda x: np.interp(x, og.grid, v_array)

return u(c) + β * np.mean(v(f(y - c) * shocks))

Now we can implement the Bellman operator, which maximizes the right hand side of the Bellman equation:

@jit
def T(v, og):

"""
The Bellman operator.

* og is an instance of OptimalGrowthModel
* v is an array representing a guess of the value function

"""

v_new = np.empty_like(v)
v_greedy = np.empty_like(v)

for i in range(len(og.grid)):
y = og.grid[i]

# Maximize RHS of Bellman equation at state y
result = brent_max(state_action_value, 1e-10, y, args=(y, v, og))
v_greedy[i], v_new[i] = result[0], result[1]

return v_greedy, v_new

We use the solve_model function to perform iteration until convergence.

def solve_model(og,
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

"""
Solve model by iterating with the Bellman operator.

(continues on next page)
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(continued from previous page)

"""

# Set up loop
v = og.u(og.grid) # Initial condition
i = 0
error = tol + 1

while i < max_iter and error > tol:
v_greedy, v_new = T(v, og)
error = np.max(np.abs(v - v_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
v = v_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return v_greedy, v_new

Let’s compute the approximate solution at the default parameters.

First we create an instance:

og = OptimalGrowthModel()

Now we call solve_model, using the %%time magic to check how long it takes.

%%time
v_greedy, v_solution = solve_model(og)

Error at iteration 25 is 0.41372668361362486.
Error at iteration 50 is 0.14767653072603082.

Error at iteration 75 is 0.053221715530327174.
Error at iteration 100 is 0.019180931418517844.

Error at iteration 125 is 0.0069127447095276295.
Error at iteration 150 is 0.0024913304978255724.

Error at iteration 175 is 0.0008978673320818586.
Error at iteration 200 is 0.0003235884387500221.

Error at iteration 225 is 0.00011662021095659725.

Converged in 229 iterations.
CPU times: user 4.27 s, sys: 172 ms, total: 4.45 s
Wall time: 4.45 s

You will notice that this is much faster than our original implementation.

Here is a plot of the resulting policy, compared with the true policy:
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fig, ax = plt.subplots()

ax.plot(og.grid, v_greedy, lw=2,
alpha=0.8, label='approximate policy function')

ax.plot(og.grid, σ_star(og.grid, og.α, og.β), 'k--',
lw=2, alpha=0.8, label='true policy function')

ax.legend()
plt.show()

Again, the fit is excellent — this is as expected since we have not changed the algorithm.

The maximal absolute deviation between the two policies is

np.max(np.abs(v_greedy - σ_star(og.grid, og.α, og.β)))

np.float64(0.0010480495434626036)
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58.4 Exercises

Exercise 58.4.1

Time how long it takes to iterate with the Bellman operator 20 times, starting from initial condition 𝑣(𝑦) = 𝑢(𝑦).
Use the default parameterization.

Solution to Exercise 58.4.1

Let’s set up the initial condition.

v = og.u(og.grid)

Here’s the timing:

%%time

for i in range(20):
v_greedy, v_new = T(v, og)
v = v_new

CPU times: user 166 ms, sys: 31 μs, total: 166 ms
Wall time: 166 ms

Compared with our timing for the non-compiled version of value function iteration, the JIT-compiled code is usually
an order of magnitude faster.

Exercise 58.4.2

Modify the optimal growth model to use the CRRA utility specification.

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
Set γ = 1.5 as the default value and maintaining other specifications.

(Note that jitclass currently does not support inheritance, so you will have to copy the class and change the
relevant parameters and methods.)

Compute an estimate of the optimal policy, plot it and compare visually with the same plot from the analogous exercise
in the first optimal growth lecture.

Compare execution time as well.

Solution to Exercise 58.4.2

Here’s our CRRA version of OptimalGrowthModel:
from numba import float64
from numba.experimental import jitclass

opt_growth_data = [
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('α', float64), # Production parameter
('β', float64), # Discount factor
('μ', float64), # Shock location parameter
('γ', float64), # Preference parameter
('s', float64), # Shock scale parameter
('grid', float64[:]), # Grid (array)
('shocks', float64[:]) # Shock draws (array)

]

@jitclass(opt_growth_data)
class OptimalGrowthModel_CRRA:

def __init__(self,
α=0.4,
β=0.96,
μ=0,
s=0.1,
γ=1.5,
grid_max=4,
grid_size=120,
shock_size=250,
seed=1234):

self.α, self.β, self.γ, self.μ, self.s = α, β, γ, μ, s

# Set up grid
self.grid = np.linspace(1e-5, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def f(self, k):
"The production function."
return k**self.α

def u(self, c):
"The utility function."
return c**(1 - self.γ) / (1 - self.γ)

def f_prime(self, k):
"Derivative of f."
return self.α * (k**(self.α - 1))

def u_prime(self, c):
"Derivative of u."
return c**(-self.γ)

def u_prime_inv(c):
return c**(-1 / self.γ)

Let’s create an instance:
og_crra = OptimalGrowthModel_CRRA()

Now we call solve_model, using the %%time magic to check how long it takes.

%%time
v_greedy, v_solution = solve_model(og_crra)
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Error at iteration 25 is 1.6201897527239453.

Error at iteration 50 is 0.459106047057503.
Error at iteration 75 is 0.16542352216310974.

Error at iteration 100 is 0.05961808343499797.

Error at iteration 125 is 0.02148616153202454.
Error at iteration 150 is 0.007743542074422294.

Error at iteration 175 is 0.0027907471408212814.

Error at iteration 200 is 0.0010057761073767324.
Error at iteration 225 is 0.0003624784085332067.

Error at iteration 250 is 0.00013063602807505958.

Converged in 257 iterations.
CPU times: user 3.44 s, sys: 63 ms, total: 3.5 s
Wall time: 3.5 s

Here is a plot of the resulting policy:
fig, ax = plt.subplots()

ax.plot(og.grid, v_greedy, lw=2,
alpha=0.6, label='Approximate value function')

ax.legend(loc='lower right')
plt.show()
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This matches the solution that we obtained in our non-jitted code, in the exercises.

Execution time is an order of magnitude faster.

Exercise 58.4.3

In this exercise we return to the original log utility specification.

Once an optimal consumption policy 𝜎 is given, income follows

𝑦𝑡+1 = 𝑓(𝑦𝑡 − 𝜎(𝑦𝑡))𝜉𝑡+1

The next figure shows a simulation of 100 elements of this sequence for three different discount factors (and hence
three different policies).

In each sequence, the initial condition is 𝑦0 = 0.1.
The discount factors are discount_factors = (0.8, 0.9, 0.98).

We have also dialed down the shocks a bit with s = 0.05.

Otherwise, the parameters and primitives are the same as the log-linear model discussed earlier in the lecture.

Notice that more patient agents typically have higher wealth.

Replicate the figure modulo randomness.

Solution to Exercise 58.4.3

Here’s one solution:
def simulate_og(σ_func, og, y0=0.1, ts_length=100):

'''
Compute a time series given consumption policy σ.
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'''
y = np.empty(ts_length)
ξ = np.random.randn(ts_length-1)
y[0] = y0
for t in range(ts_length-1):

y[t+1] = (y[t] - σ_func(y[t]))**og.α * np.exp(og.μ + og.s * ξ[t])
return y

fig, ax = plt.subplots()

for β in (0.8, 0.9, 0.98):

og = OptimalGrowthModel(β=β, s=0.05)

v_greedy, v_solution = solve_model(og, verbose=False)

# Define an optimal policy function
σ_func = lambda x: np.interp(x, og.grid, v_greedy)
y = simulate_og(σ_func, og)
ax.plot(y, lw=2, alpha=0.6, label=rf'$\beta = {β}$')

ax.legend(loc='lower right')
plt.show()
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• Optimal Growth III: Time Iteration

– Overview
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– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

59.1 Overview

In this lecture, we’ll continue our earlier study of the stochastic optimal growth model.

In that lecture, we solved the associated dynamic programming problem using value function iteration.

The beauty of this technique is its broad applicability.

With numerical problems, however, we can often attain higher efficiency in specific applications by deriving methods that
are carefully tailored to the application at hand.

The stochastic optimal growth model has plenty of structure to exploit for this purpose, especially when we adopt some
concavity and smoothness assumptions over primitives.

We’ll use this structure to obtain an Euler equation based method.

This will be an extension of the time iteration method considered in our elementary lecture on cake eating.

In a subsequent lecture, we’ll see that time iteration can be further adjusted to obtain even more efficiency.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from quantecon.optimize import brentq
from numba import jit
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59.2 The Euler Equation

Our first step is to derive the Euler equation, which is a generalization of the Euler equation we obtained in the lecture on
cake eating.

We take the model set out in the stochastic growth model lecture and add the following assumptions:

1. 𝑢 and 𝑓 are continuously differentiable and strictly concave

2. 𝑓(0) = 0
3. lim𝑐→0 𝑢′(𝑐) = ∞ and lim𝑐→∞ 𝑢′(𝑐) = 0
4. lim𝑘→0 𝑓 ′(𝑘) = ∞ and lim𝑘→∞ 𝑓 ′(𝑘) = 0

The last two conditions are usually called Inada conditions.

Recall the Bellman equation

𝑣∗(𝑦) = max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣∗(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)} for all 𝑦 ∈ ℝ+ (59.1)

Let the optimal consumption policy be denoted by 𝜎∗.

We know that 𝜎∗ is a 𝑣∗-greedy policy so that 𝜎∗(𝑦) is the maximizer in (59.1).
The conditions above imply that

• 𝜎∗ is the unique optimal policy for the stochastic optimal growth model

• the optimal policy is continuous, strictly increasing and also interior, in the sense that 0 < 𝜎∗(𝑦) < 𝑦 for all strictly
positive 𝑦, and

• the value function is strictly concave and continuously differentiable, with

(𝑣∗)′(𝑦) = 𝑢′(𝜎∗(𝑦)) ∶= (𝑢′ ∘ 𝜎∗)(𝑦) (59.2)

The last result is called the envelope condition due to its relationship with the envelope theorem.

To see why (59.2) holds, write the Bellman equation in the equivalent form

𝑣∗(𝑦) = max
0≤𝑘≤𝑦

{𝑢(𝑦 − 𝑘) + 𝛽 ∫ 𝑣∗(𝑓(𝑘)𝑧)𝜙(𝑑𝑧)} ,

Differentiating with respect to 𝑦, and then evaluating at the optimum yields (59.2).

(Section 12.1 of EDTC contains full proofs of these results, and closely related discussions can be found in many other
texts.)

Differentiability of the value function and interiority of the optimal policy imply that optimal consumption satisfies the
first order condition associated with (59.1), which is

𝑢′(𝜎∗(𝑦)) = 𝛽 ∫(𝑣∗)′(𝑓(𝑦 − 𝜎∗(𝑦))𝑧)𝑓 ′(𝑦 − 𝜎∗(𝑦))𝑧𝜙(𝑑𝑧) (59.3)

Combining (59.2) and the first-order condition (59.3) gives the Euler equation

(𝑢′ ∘ 𝜎∗)(𝑦) = 𝛽 ∫(𝑢′ ∘ 𝜎∗)(𝑓(𝑦 − 𝜎∗(𝑦))𝑧)𝑓 ′(𝑦 − 𝜎∗(𝑦))𝑧𝜙(𝑑𝑧) (59.4)

We can think of the Euler equation as a functional equation

(𝑢′ ∘ 𝜎)(𝑦) = 𝛽 ∫(𝑢′ ∘ 𝜎)(𝑓(𝑦 − 𝜎(𝑦))𝑧)𝑓 ′(𝑦 − 𝜎(𝑦))𝑧𝜙(𝑑𝑧) (59.5)

over interior consumption policies 𝜎, one solution of which is the optimal policy 𝜎∗.

Our aim is to solve the functional equation (59.5) and hence obtain 𝜎∗.
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59.2.1 The Coleman-Reffett Operator

Recall the Bellman operator

𝑇 𝑣(𝑦) ∶= max
0≤𝑐≤𝑦

{𝑢(𝑐) + 𝛽 ∫ 𝑣(𝑓(𝑦 − 𝑐)𝑧)𝜙(𝑑𝑧)} (59.6)

Just as we introduced the Bellman operator to solve the Bellman equation, we will now introduce an operator over policies
to help us solve the Euler equation.

This operator 𝐾 will act on the set of all 𝜎 ∈ Σ that are continuous, strictly increasing and interior.

Henceforth we denote this set of policies by 𝒫
1. The operator 𝐾 takes as its argument a 𝜎 ∈ 𝒫 and

2. returns a new function 𝐾𝜎, where 𝐾𝜎(𝑦) is the 𝑐 ∈ (0, 𝑦) that solves.

𝑢′(𝑐) = 𝛽 ∫(𝑢′ ∘ 𝜎)(𝑓(𝑦 − 𝑐)𝑧)𝑓 ′(𝑦 − 𝑐)𝑧𝜙(𝑑𝑧) (59.7)

We call this operator the Coleman-Reffett operator to acknowledge the work of [Coleman, 1990] and [Reffett, 1996].

In essence, 𝐾𝜎 is the consumption policy that the Euler equation tells you to choose today when your future consumption
policy is 𝜎.
The important thing to note about 𝐾 is that, by construction, its fixed points coincide with solutions to the functional
equation (59.5).

In particular, the optimal policy 𝜎∗ is a fixed point.

Indeed, for fixed 𝑦, the value 𝐾𝜎∗(𝑦) is the 𝑐 that solves

𝑢′(𝑐) = 𝛽 ∫(𝑢′ ∘ 𝜎∗)(𝑓(𝑦 − 𝑐)𝑧)𝑓 ′(𝑦 − 𝑐)𝑧𝜙(𝑑𝑧)

In view of the Euler equation, this is exactly 𝜎∗(𝑦).

59.2.2 Is the Coleman-Reffett Operator Well Defined?

In particular, is there always a unique 𝑐 ∈ (0, 𝑦) that solves (59.7)?
The answer is yes, under our assumptions.

For any 𝜎 ∈ 𝒫, the right side of (59.7)
• is continuous and strictly increasing in 𝑐 on (0, 𝑦)
• diverges to +∞ as 𝑐 ↑ 𝑦

The left side of (59.7)

• is continuous and strictly decreasing in 𝑐 on (0, 𝑦)
• diverges to +∞ as 𝑐 ↓ 0

Sketching these curves and using the information above will convince you that they cross exactly once as 𝑐 ranges over
(0, 𝑦).
With a bit more analysis, one can show in addition that 𝐾𝜎 ∈ 𝒫 whenever 𝜎 ∈ 𝒫.
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59.2.3 Comparison with VFI (Theory)

It is possible to prove that there is a tight relationship between iterates of 𝐾 and iterates of the Bellman operator.

Mathematically, the two operators are topologically conjugate.

Loosely speaking, this means that if iterates of one operator converge then so do iterates of the other, and vice versa.

Moreover, there is a sense in which they converge at the same rate, at least in theory.

However, it turns out that the operator 𝐾 is more stable numerically and hence more efficient in the applications we
consider.

Examples are given below.

59.3 Implementation

As in our previous study, we continue to assume that

• 𝑢(𝑐) = ln 𝑐
• 𝑓(𝑘) = 𝑘𝛼

• 𝜙 is the distribution of 𝜉 ∶= exp(𝜇 + 𝑠𝜁) when 𝜁 is standard normal
This will allow us to compare our results to the analytical solutions

def v_star(y, α, β, μ):
"""
True value function
"""
c1 = np.log(1 - α * β) / (1 - β)
c2 = (μ + α * np.log(α * β)) / (1 - α)
c3 = 1 / (1 - β)
c4 = 1 / (1 - α * β)
return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
"""
True optimal policy
"""
return (1 - α * β) * y

As discussed above, our plan is to solve the model using time iteration, which means iterating with the operator 𝐾.

For this we need access to the functions 𝑢′ and 𝑓, 𝑓 ′.

These are available in a class called OptimalGrowthModel that we constructed in an earlier lecture.

from numba import float64
from numba.experimental import jitclass

opt_growth_data = [
('α', float64), # Production parameter
('β', float64), # Discount factor
('μ', float64), # Shock location parameter
('s', float64), # Shock scale parameter
('grid', float64[:]), # Grid (array)
('shocks', float64[:]) # Shock draws (array)

(continues on next page)
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(continued from previous page)

]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

def __init__(self,
α=0.4,
β=0.96,
μ=0,
s=0.1,
grid_max=4,
grid_size=120,
shock_size=250,
seed=1234):

self.α, self.β, self.μ, self.s = α, β, μ, s

# Set up grid
self.grid = np.linspace(1e-5, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def f(self, k):
"The production function"
return k**self.α

def u(self, c):
"The utility function"
return np.log(c)

def f_prime(self, k):
"Derivative of f"
return self.α * (k**(self.α - 1))

def u_prime(self, c):
"Derivative of u"
return 1/c

def u_prime_inv(self, c):
"Inverse of u'"
return 1/c

Now we implement a method called euler_diff, which returns

𝑢′(𝑐) − 𝛽 ∫(𝑢′ ∘ 𝜎)(𝑓(𝑦 − 𝑐)𝑧)𝑓 ′(𝑦 − 𝑐)𝑧𝜙(𝑑𝑧) (59.8)

@jit
def euler_diff(c, σ, y, og):

"""
Set up a function such that the root with respect to c,
given y and σ, is equal to Kσ(y).

(continues on next page)
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(continued from previous page)

"""

β, shocks, grid = og.β, og.shocks, og.grid
f, f_prime, u_prime = og.f, og.f_prime, og.u_prime

# First turn σ into a function via interpolation
σ_func = lambda x: np.interp(x, grid, σ)

# Now set up the function we need to find the root of.
vals = u_prime(σ_func(f(y - c) * shocks)) * f_prime(y - c) * shocks
return u_prime(c) - β * np.mean(vals)

The function euler_diff evaluates integrals by Monte Carlo and approximates functions using linear interpolation.

We will use a root-finding algorithm to solve (59.8) for 𝑐 given state 𝑦 and 𝜎, the current guess of the policy.
Here’s the operator 𝐾, that implements the root-finding step.

@jit
def K(σ, og):

"""
The Coleman-Reffett operator

Here og is an instance of OptimalGrowthModel.
"""

β = og.β
f, f_prime, u_prime = og.f, og.f_prime, og.u_prime
grid, shocks = og.grid, og.shocks

σ_new = np.empty_like(σ)
for i, y in enumerate(grid):

# Solve for optimal c at y
c_star = brentq(euler_diff, 1e-10, y-1e-10, args=(σ, y, og))[0]
σ_new[i] = c_star

return σ_new

59.3.1 Testing

Let’s generate an instance and plot some iterates of 𝐾, starting from 𝜎(𝑦) = 𝑦.
og = OptimalGrowthModel()
grid = og.grid

n = 15
σ = grid.copy() # Set initial condition

fig, ax = plt.subplots()
lb = r'initial condition $\sigma(y) = y$'
ax.plot(grid, σ, color=plt.cm.jet(0), alpha=0.6, label=lb)

for i in range(n):
σ = K(σ, og)
ax.plot(grid, σ, color=plt.cm.jet(i / n), alpha=0.6)

(continues on next page)
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(continued from previous page)

# Update one more time and plot the last iterate in black
σ = K(σ, og)
ax.plot(grid, σ, color='k', alpha=0.8, label='last iterate')

ax.legend()

plt.show()

We see that the iteration process converges quickly to a limit that resembles the solution we obtained in the previous
lecture.

Here is a function called solve_model_time_iter that takes an instance of OptimalGrowthModel and returns
an approximation to the optimal policy, using time iteration.

def solve_model_time_iter(model, # Class with model information
σ, # Initial condition
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

# Set up loop
i = 0
error = tol + 1

while i < max_iter and error > tol:
σ_new = K(σ, model)
error = np.max(np.abs(σ - σ_new))

(continues on next page)
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(continued from previous page)

i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
σ = σ_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return σ_new

Let’s call it:

σ_init = np.copy(og.grid)
σ = solve_model_time_iter(og, σ_init)

Converged in 11 iterations.

Here is a plot of the resulting policy, compared with the true policy:

fig, ax = plt.subplots()

ax.plot(og.grid, σ, lw=2,
alpha=0.8, label='approximate policy function')

ax.plot(og.grid, σ_star(og.grid, og.α, og.β), 'k--',
lw=2, alpha=0.8, label='true policy function')

ax.legend()
plt.show()
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Again, the fit is excellent.

The maximal absolute deviation between the two policies is

np.max(np.abs(σ - σ_star(og.grid, og.α, og.β)))

np.float64(2.532910601971139e-05)

How long does it take to converge?

%%timeit -n 3 -r 1
σ = solve_model_time_iter(og, σ_init, verbose=False)

77.9 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 3 loops each)

Convergence is very fast, even compared to our JIT-compiled value function iteration.

Overall, we find that time iteration provides a very high degree of efficiency and accuracy, at least for this model.

59.4 Exercises

Exercise 59.4.1

Solve the model with CRRA utility

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
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Set γ = 1.5.

Compute and plot the optimal policy.

Solution to Exercise 59.4.1

We use the class OptimalGrowthModel_CRRA from our VFI lecture.
from numba import float64
from numba.experimental import jitclass

opt_growth_data = [
('α', float64), # Production parameter
('β', float64), # Discount factor
('μ', float64), # Shock location parameter
('γ', float64), # Preference parameter
('s', float64), # Shock scale parameter
('grid', float64[:]), # Grid (array)
('shocks', float64[:]) # Shock draws (array)

]

@jitclass(opt_growth_data)
class OptimalGrowthModel_CRRA:

def __init__(self,
α=0.4,
β=0.96,
μ=0,
s=0.1,
γ=1.5,
grid_max=4,
grid_size=120,
shock_size=250,
seed=1234):

self.α, self.β, self.γ, self.μ, self.s = α, β, γ, μ, s

# Set up grid
self.grid = np.linspace(1e-5, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def f(self, k):
"The production function."
return k**self.α

def u(self, c):
"The utility function."
return c**(1 - self.γ) / (1 - self.γ)

def f_prime(self, k):
"Derivative of f."
return self.α * (k**(self.α - 1))
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def u_prime(self, c):
"Derivative of u."
return c**(-self.γ)

def u_prime_inv(c):
return c**(-1 / self.γ)

Let’s create an instance:
og_crra = OptimalGrowthModel_CRRA()

Now we solve and plot the policy:

%%time
σ = solve_model_time_iter(og_crra, σ_init)

fig, ax = plt.subplots()

ax.plot(og.grid, σ, lw=2,
alpha=0.8, label='approximate policy function')

ax.legend()
plt.show()

Converged in 13 iterations.

CPU times: user 1.45 s, sys: 55.9 ms, total: 1.51 s
Wall time: 1.51 s
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SIXTY

OPTIMAL GROWTH IV: THE ENDOGENOUS GRID METHOD

Contents

• Optimal Growth IV: The Endogenous Grid Method

– Overview

– Key Idea

– Implementation

60.1 Overview

Previously, we solved the stochastic optimal growth model using

1. value function iteration

2. Euler equation based time iteration

We found time iteration to be significantly more accurate and efficient.

In this lecture, we’ll look at a clever twist on time iteration called the endogenous grid method (EGM).

EGM is a numerical method for implementing policy iteration invented by Chris Carroll.

The original reference is [Carroll, 2006].

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import numpy as np
from numba import jit
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60.2 Key Idea

Let’s start by reminding ourselves of the theory and then see how the numerics fit in.

60.2.1 Theory

Take the model set out in the time iteration lecture, following the same terminology and notation.

The Euler equation is

(𝑢′ ∘ 𝜎∗)(𝑦) = 𝛽 ∫(𝑢′ ∘ 𝜎∗)(𝑓(𝑦 − 𝜎∗(𝑦))𝑧)𝑓 ′(𝑦 − 𝜎∗(𝑦))𝑧𝜙(𝑑𝑧) (60.1)

As we saw, the Coleman-Reffett operator is a nonlinear operator 𝐾 engineered so that 𝜎∗ is a fixed point of 𝐾.

It takes as its argument a continuous strictly increasing consumption policy 𝜎 ∈ Σ.
It returns a new function 𝐾𝜎, where (𝐾𝜎)(𝑦) is the 𝑐 ∈ (0, ∞) that solves

𝑢′(𝑐) = 𝛽 ∫(𝑢′ ∘ 𝜎)(𝑓(𝑦 − 𝑐)𝑧)𝑓 ′(𝑦 − 𝑐)𝑧𝜙(𝑑𝑧) (60.2)

60.2.2 Exogenous Grid

As discussed in the lecture on time iteration, to implement the method on a computer, we need a numerical approximation.

In particular, we represent a policy function by a set of values on a finite grid.

The function itself is reconstructed from this representation when necessary, using interpolation or some other method.

Previously, to obtain a finite representation of an updated consumption policy, we

• fixed a grid of income points {𝑦𝑖}
• calculated the consumption value 𝑐𝑖 corresponding to each 𝑦𝑖 using (60.2) and a root-finding routine

Each 𝑐𝑖 is then interpreted as the value of the function 𝐾𝜎 at 𝑦𝑖.

Thus, with the points {𝑦𝑖, 𝑐𝑖} in hand, we can reconstruct 𝐾𝜎 via approximation.

Iteration then continues…

60.2.3 Endogenous Grid

The method discussed above requires a root-finding routine to find the 𝑐𝑖 corresponding to a given income value 𝑦𝑖.

Root-finding is costly because it typically involves a significant number of function evaluations.

As pointed out by Carroll [Carroll, 2006], we can avoid this if 𝑦𝑖 is chosen endogenously.

The only assumption required is that 𝑢′ is invertible on (0, ∞).
Let (𝑢′)−1 be the inverse function of 𝑢′.

The idea is this:

• First, we fix an exogenous grid {𝑘𝑖} for capital (𝑘 = 𝑦 − 𝑐).
• Then we obtain 𝑐𝑖 via
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𝑐𝑖 = (𝑢′)−1 {𝛽 ∫(𝑢′ ∘ 𝜎)(𝑓(𝑘𝑖)𝑧) 𝑓 ′(𝑘𝑖) 𝑧 𝜙(𝑑𝑧)} (60.3)

• Finally, for each 𝑐𝑖 we set 𝑦𝑖 = 𝑐𝑖 + 𝑘𝑖.

It is clear that each (𝑦𝑖, 𝑐𝑖) pair constructed in this manner satisfies (60.2).
With the points {𝑦𝑖, 𝑐𝑖} in hand, we can reconstruct 𝐾𝜎 via approximation as before.

The name EGM comes from the fact that the grid {𝑦𝑖} is determined endogenously.

60.3 Implementation

As before, we will start with a simple setting where

• 𝑢(𝑐) = ln 𝑐,
• production is Cobb-Douglas, and

• the shocks are lognormal.

This will allow us to make comparisons with the analytical solutions

def v_star(y, α, β, μ):
"""
True value function
"""
c1 = np.log(1 - α * β) / (1 - β)
c2 = (μ + α * np.log(α * β)) / (1 - α)
c3 = 1 / (1 - β)
c4 = 1 / (1 - α * β)
return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
"""
True optimal policy
"""
return (1 - α * β) * y

We reuse the OptimalGrowthModel class

from numba import float64
from numba.experimental import jitclass

opt_growth_data = [
('α', float64), # Production parameter
('β', float64), # Discount factor
('μ', float64), # Shock location parameter
('s', float64), # Shock scale parameter
('grid', float64[:]), # Grid (array)
('shocks', float64[:]) # Shock draws (array)

]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

def __init__(self,
α=0.4,
β=0.96,

(continues on next page)
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(continued from previous page)

μ=0,
s=0.1,
grid_max=4,
grid_size=120,
shock_size=250,
seed=1234):

self.α, self.β, self.μ, self.s = α, β, μ, s

# Set up grid
self.grid = np.linspace(1e-5, grid_max, grid_size)

# Store shocks (with a seed, so results are reproducible)
np.random.seed(seed)
self.shocks = np.exp(μ + s * np.random.randn(shock_size))

def f(self, k):
"The production function"
return k**self.α

def u(self, c):
"The utility function"
return np.log(c)

def f_prime(self, k):
"Derivative of f"
return self.α * (k**(self.α - 1))

def u_prime(self, c):
"Derivative of u"
return 1/c

def u_prime_inv(self, c):
"Inverse of u'"
return 1/c

60.3.1 The Operator

Here’s an implementation of 𝐾 using EGM as described above.

@jit
def K(σ_array, og):

"""
The Coleman-Reffett operator using EGM

"""

# Simplify names
f, β = og.f, og.β
f_prime, u_prime = og.f_prime, og.u_prime
u_prime_inv = og.u_prime_inv
grid, shocks = og.grid, og.shocks

(continues on next page)
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# Determine endogenous grid
y = grid + σ_array # y_i = k_i + c_i

# Linear interpolation of policy using endogenous grid
σ = lambda x: np.interp(x, y, σ_array)

# Allocate memory for new consumption array
c = np.empty_like(grid)

# Solve for updated consumption value
for i, k in enumerate(grid):

vals = u_prime(σ(f(k) * shocks)) * f_prime(k) * shocks
c[i] = u_prime_inv(β * np.mean(vals))

return c

Note the lack of any root-finding algorithm.

60.3.2 Testing

First we create an instance.

og = OptimalGrowthModel()
grid = og.grid

Here’s our solver routine:

def solve_model_time_iter(model, # Class with model information
σ, # Initial condition
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

# Set up loop
i = 0
error = tol + 1

while i < max_iter and error > tol:
σ_new = K(σ, model)
error = np.max(np.abs(σ - σ_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
σ = σ_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return σ_new

Let’s call it:
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σ_init = np.copy(grid)
σ = solve_model_time_iter(og, σ_init)

Converged in 12 iterations.

Here is a plot of the resulting policy, compared with the true policy:

y = grid + σ # y_i = k_i + c_i

fig, ax = plt.subplots()

ax.plot(y, σ, lw=2,
alpha=0.8, label='approximate policy function')

ax.plot(y, σ_star(y, og.α, og.β), 'k--',
lw=2, alpha=0.8, label='true policy function')

ax.legend()
plt.show()

The maximal absolute deviation between the two policies is

np.max(np.abs(σ - σ_star(y, og.α, og.β)))

np.float64(1.5302749144296968e-05)

How long does it take to converge?
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%%timeit -n 3 -r 1
σ = solve_model_time_iter(og, σ_init, verbose=False)

12.2 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 3 loops each)

Relative to time iteration, which as already found to be highly efficient, EGM has managed to shave off still more run
time without compromising accuracy.

This is due to the lack of a numerical root-finding step.

We can now solve the optimal growth model at given parameters extremely fast.
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

61.1 Overview

In this lecture, we study an optimal savings problem for an infinitely lived consumer—the “common ancestor” described
in [Ljungqvist and Sargent, 2018], section 1.3.

This is an essential sub-problem for many representative macroeconomic models

• [Aiyagari, 1994]

• [Huggett, 1993]

• etc.

It is related to the decision problem in the stochastic optimal growth model and yet differs in important ways.

For example, the choice problem for the agent includes an additive income term that leads to an occasionally binding
constraint.

Moreover, in this and the following lectures, we will inject more realistic features such as correlated shocks.

To solve the model we will use Euler equation based time iteration, which proved to be fast and accurate in our investi-
gation of the stochastic optimal growth model.

Time iteration is globally convergent under mild assumptions, even when utility is unbounded (both above and below).

We’ll need the following imports:
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import matplotlib.pyplot as plt
import numpy as np
from quantecon.optimize import brentq
from numba import jit, float64
from numba.experimental import jitclass
from quantecon import MarkovChain

61.1.1 References

Our presentation is a simplified version of [Ma et al., 2020].

Other references include [Deaton, 1991], [Den Haan, 2010], [Kuhn, 2013], [Rabault, 2002], [Reiter, 2009] and [Schecht-
man and Escudero, 1977].

61.2 The Optimal Savings Problem

Let’s write down the model and then discuss how to solve it.

61.2.1 Set-Up

Consider a household that chooses a state-contingent consumption plan {𝑐𝑡}𝑡≥0 to maximize

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to

𝑎𝑡+1 ≤ 𝑅(𝑎𝑡 − 𝑐𝑡) + 𝑌𝑡+1, 𝑐𝑡 ≥ 0, 𝑎𝑡 ≥ 0 𝑡 = 0, 1, … (61.1)

Here

• 𝛽 ∈ (0, 1) is the discount factor
• 𝑎𝑡 is asset holdings at time 𝑡, with borrowing constraint 𝑎𝑡 ≥ 0
• 𝑐𝑡 is consumption

• 𝑌𝑡 is non-capital income (wages, unemployment compensation, etc.)

• 𝑅 ∶= 1 + 𝑟, where 𝑟 > 0 is the interest rate on savings
The timing here is as follows:

1. At the start of period 𝑡, the household chooses consumption 𝑐𝑡.

2. Labor is supplied by the household throughout the period and labor income 𝑌𝑡+1 is received at the end of period 𝑡.
3. Financial income 𝑅(𝑎𝑡 − 𝑐𝑡) is received at the end of period 𝑡.
4. Time shifts to 𝑡 + 1 and the process repeats.

Non-capital income 𝑌𝑡 is given by 𝑌𝑡 = 𝑦(𝑍𝑡), where {𝑍𝑡} is an exogeneous state process.
As is common in the literature, we take {𝑍𝑡} to be a finite state Markov chain taking values in Z with Markov matrix 𝑃 .

We further assume that

1. 𝛽𝑅 < 1
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2. 𝑢 is smooth, strictly increasing and strictly concave with lim𝑐→0 𝑢′(𝑐) = ∞ and lim𝑐→∞ 𝑢′(𝑐) = 0
The asset space is ℝ+ and the state is the pair (𝑎, 𝑧) ∈ S ∶= ℝ+ × Z.
A feasible consumption path from (𝑎, 𝑧) ∈ S is a consumption sequence {𝑐𝑡} such that {𝑐𝑡} and its induced asset path
{𝑎𝑡} satisfy

1. (𝑎0, 𝑧0) = (𝑎, 𝑧)
2. the feasibility constraints in (61.1), and

3. measurability, which means that 𝑐𝑡 is a function of random outcomes up to date 𝑡 but not after.
The meaning of the third point is just that consumption at time 𝑡 cannot be a function of outcomes are yet to be observed.
In fact, for this problem, consumption can be chosen optimally by taking it to be contingent only on the current state.

Optimality is defined below.

61.2.2 Value Function and Euler Equation

The value function 𝑉 ∶ S → ℝ is defined by

𝑉 (𝑎, 𝑧) ∶= max 𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)} (61.2)

where the maximization is overall feasible consumption paths from (𝑎, 𝑧).
An optimal consumption path from (𝑎, 𝑧) is a feasible consumption path from (𝑎, 𝑧) that attains the supremum in (61.2).

To pin down such paths we can use a version of the Euler equation, which in the present setting is

𝑢′(𝑐𝑡) ≥ 𝛽𝑅 𝔼𝑡𝑢′(𝑐𝑡+1) (61.3)

and

𝑐𝑡 < 𝑎𝑡 ⟹ 𝑢′(𝑐𝑡) = 𝛽𝑅 𝔼𝑡𝑢′(𝑐𝑡+1) (61.4)

When 𝑐𝑡 = 𝑎𝑡 we obviously have 𝑢′(𝑐𝑡) = 𝑢′(𝑎𝑡),
When 𝑐𝑡 hits the upper bound 𝑎𝑡, the strict inequality 𝑢′(𝑐𝑡) > 𝛽𝑅 𝔼𝑡𝑢′(𝑐𝑡+1) can occur because 𝑐𝑡 cannot increase
sufficiently to attain equality.

(The lower boundary case 𝑐𝑡 = 0 never arises at the optimum because 𝑢′(0) = ∞.)

With some thought, one can show that (61.3) and (61.4) are equivalent to

𝑢′(𝑐𝑡) = max {𝛽𝑅 𝔼𝑡𝑢′(𝑐𝑡+1) , 𝑢′(𝑎𝑡)} (61.5)

61.2.3 Optimality Results

As shown in [Ma et al., 2020],

1. For each (𝑎, 𝑧) ∈ S, a unique optimal consumption path from (𝑎, 𝑧) exists
2. This path is the unique feasible path from (𝑎, 𝑧) satisfying the Euler equality (61.5) and the transversality condition
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lim
𝑡→∞

𝛽𝑡 𝔼 [𝑢′(𝑐𝑡)𝑎𝑡+1] = 0 (61.6)

Moreover, there exists an optimal consumption function 𝜎∗ ∶ S → ℝ+ such that the path from (𝑎, 𝑧) generated by
(𝑎0, 𝑧0) = (𝑎, 𝑧), 𝑐𝑡 = 𝜎∗(𝑎𝑡, 𝑍𝑡) and 𝑎𝑡+1 = 𝑅(𝑎𝑡 − 𝑐𝑡) + 𝑌𝑡+1

satisfies both (61.5) and (61.6), and hence is the unique optimal path from (𝑎, 𝑧).
Thus, to solve the optimization problem, we need to compute the policy 𝜎∗.

61.3 Computation

There are two standard ways to solve for 𝜎∗

1. time iteration using the Euler equality and

2. value function iteration.

Our investigation of the cake eating problem and stochastic optimal growth model suggests that time iteration will be
faster and more accurate.

This is the approach that we apply below.

61.3.1 Time Iteration

We can rewrite (61.5) to make it a statement about functions rather than random variables.

In particular, consider the functional equation

(𝑢′ ∘ 𝜎)(𝑎, 𝑧) = max{𝛽𝑅 𝔼𝑧(𝑢′ ∘ 𝜎)[𝑅(𝑎 − 𝜎(𝑎, 𝑧)) + ̂𝑌 , ̂𝑍] , 𝑢′(𝑎)} (61.7)

where

• (𝑢′ ∘ 𝜎)(𝑠) ∶= 𝑢′(𝜎(𝑠)).
• 𝔼𝑧 conditions on current state 𝑧 and 𝑋̂ indicates next period value of random variable 𝑋 and

• 𝜎 is the unknown function.

We need a suitable class of candidate solutions for the optimal consumption policy.

The right way to pick such a class is to consider what properties the solution is likely to have, in order to restrict the search
space and ensure that iteration is well behaved.

To this end, let 𝒞 be the space of continuous functions 𝜎 ∶ S → ℝ such that 𝜎 is increasing in the first argument, 0 <
𝜎(𝑎, 𝑧) ≤ 𝑎 for all (𝑎, 𝑧) ∈ S, and

sup
(𝑎,𝑧)∈S

|(𝑢′ ∘ 𝜎)(𝑎, 𝑧) − 𝑢′(𝑎)| < ∞ (61.8)

This will be our candidate class.

In addition, let 𝐾 ∶ 𝒞 → 𝒞 be defined as follows.

For given 𝜎 ∈ 𝒞, the value 𝐾𝜎(𝑎, 𝑧) is the unique 𝑐 ∈ [0, 𝑎] that solves
𝑢′(𝑐) = max{𝛽𝑅 𝔼𝑧(𝑢′ ∘ 𝜎) [𝑅(𝑎 − 𝑐) + ̂𝑌 , ̂𝑍] , 𝑢′(𝑎)} (61.9)

We refer to 𝐾 as the Coleman–Reffett operator.

The operator 𝐾 is constructed so that fixed points of 𝐾 coincide with solutions to the functional equation (61.7).

It is shown in [Ma et al., 2020] that the unique optimal policy can be computed by picking any 𝜎 ∈ 𝒞 and iterating with
the operator 𝐾 defined in (61.9).
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61.3.2 Some Technical Details

The proof of the last statement is somewhat technical but here is a quick summary:

It is shown in [Ma et al., 2020] that 𝐾 is a contraction mapping on 𝒞 under the metric

𝜌(𝑐, 𝑑) ∶= ‖ 𝑢′ ∘ 𝜎1 − 𝑢′ ∘ 𝜎2 ‖ ∶= sup
𝑠∈𝑆

| 𝑢′(𝜎1(𝑠)) − 𝑢′(𝜎2(𝑠)) | (𝜎1, 𝜎2 ∈ 𝒞)

which evaluates the maximal difference in terms of marginal utility.

(The benefit of this measure of distance is that, while elements of 𝒞 are not generally bounded, 𝜌 is always finite under
our assumptions.)

It is also shown that the metric 𝜌 is complete on 𝒞.
In consequence, 𝐾 has a unique fixed point 𝜎∗ ∈ 𝒞 and 𝐾𝑛𝑐 → 𝜎∗ as 𝑛 → ∞ for any 𝜎 ∈ 𝒞.
By the definition of 𝐾, the fixed points of 𝐾 in 𝒞 coincide with the solutions to (61.7) in 𝒞.
As a consequence, the path {𝑐𝑡} generated from (𝑎0, 𝑧0) ∈ 𝑆 using policy function 𝜎∗ is the unique optimal path from
(𝑎0, 𝑧0) ∈ 𝑆.

61.4 Implementation

We use the CRRA utility specification

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
The exogeneous state process {𝑍𝑡} defaults to a two-state Markov chain with state space {0, 1} and transition matrix 𝑃 .

Here we build a class called IFP that stores the model primitives.

ifp_data = [
('R', float64), # Interest rate 1 + r
('β', float64), # Discount factor
('γ', float64), # Preference parameter
('P', float64[:, :]), # Markov matrix for binary Z_t
('y', float64[:]), # Income is Y_t = y[Z_t]
('asset_grid', float64[:]) # Grid (array)

]

@jitclass(ifp_data)
class IFP:

def __init__(self,
r=0.01,
β=0.96,
γ=1.5,
P=((0.6, 0.4),

(0.05, 0.95)),
y=(0.0, 2.0),
grid_max=16,
grid_size=50):

self.R = 1 + r
self.β, self.γ = β, γ
self.P, self.y = np.array(P), np.array(y)

(continues on next page)
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(continued from previous page)

self.asset_grid = np.linspace(0, grid_max, grid_size)

# Recall that we need R β < 1 for convergence.
assert self.R * self.β < 1, "Stability condition violated."

def u_prime(self, c):
return c**(-self.γ)

Next we provide a function to compute the difference

𝑢′(𝑐) − max{𝛽𝑅 𝔼𝑧(𝑢′ ∘ 𝜎) [𝑅(𝑎 − 𝑐) + ̂𝑌 , ̂𝑍] , 𝑢′(𝑎)} (61.10)

@jit
def euler_diff(c, a, z, σ_vals, ifp):

"""
The difference between the left- and right-hand side
of the Euler Equation, given current policy σ.

* c is the consumption choice
* (a, z) is the state, with z in {0, 1}
* σ_vals is a policy represented as a matrix.
* ifp is an instance of IFP

"""

# Simplify names
R, P, y, β, γ = ifp.R, ifp.P, ifp.y, ifp.β, ifp.γ
asset_grid, u_prime = ifp.asset_grid, ifp.u_prime
n = len(P)

# Convert policy into a function by linear interpolation
def σ(a, z):

return np.interp(a, asset_grid, σ_vals[:, z])

# Calculate the expectation conditional on current z
expect = 0.0
for z_hat in range(n):

expect += u_prime(σ(R * (a - c) + y[z_hat], z_hat)) * P[z, z_hat]

return u_prime(c) - max(β * R * expect, u_prime(a))

Note that we use linear interpolation along the asset grid to approximate the policy function.

The next step is to obtain the root of the Euler difference.

@jit
def K(σ, ifp):

"""
The operator K.

"""
σ_new = np.empty_like(σ)
for i, a in enumerate(ifp.asset_grid):

for z in (0, 1):
result = brentq(euler_diff, 1e-8, a, args=(a, z, σ, ifp))
σ_new[i, z] = result.root

(continues on next page)
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(continued from previous page)

return σ_new

With the operator 𝐾 in hand, we can choose an initial condition and start to iterate.

The following function iterates to convergence and returns the approximate optimal policy.

def solve_model_time_iter(model, # Class with model information
σ, # Initial condition
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

# Set up loop
i = 0
error = tol + 1

while i < max_iter and error > tol:
σ_new = K(σ, model)
error = np.max(np.abs(σ - σ_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
σ = σ_new

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return σ_new

Let’s carry this out using the default parameters of the IFP class:

ifp = IFP()

# Set up initial consumption policy of consuming all assets at all z
z_size = len(ifp.P)
a_grid = ifp.asset_grid
a_size = len(a_grid)
σ_init = np.repeat(a_grid.reshape(a_size, 1), z_size, axis=1)

σ_star = solve_model_time_iter(ifp, σ_init)

Error at iteration 25 is 0.011629589188244083.
Error at iteration 50 is 0.0003857183099458261.

Converged in 60 iterations.

Here’s a plot of the resulting policy for each exogeneous state 𝑧.
fig, ax = plt.subplots()
for z in range(z_size):

label = rf'$\sigma^*(\cdot, {z})$'
ax.plot(a_grid, σ_star[:, z], label=label)

ax.set(xlabel='assets', ylabel='consumption')
(continues on next page)
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(continued from previous page)

ax.legend()
plt.show()

The following exercises walk you through several applications where policy functions are computed.

61.4.1 A Sanity Check

One way to check our results is to

• set labor income to zero in each state and

• set the gross interest rate 𝑅 to unity.

In this case, our income fluctuation problem is just a cake eating problem.

We know that, in this case, the value function and optimal consumption policy are given by

def c_star(x, β, γ):

return (1 - β ** (1/γ)) * x

def v_star(x, β, γ):

return (1 - β**(1 / γ))**(-γ) * (x**(1-γ) / (1-γ))

Let’s see if we match up:

1142 Chapter 61. The Income Fluctuation Problem I: Basic Model



Intermediate Quantitative Economics with Python

ifp_cake_eating = IFP(r=0.0, y=(0.0, 0.0))

σ_star = solve_model_time_iter(ifp_cake_eating, σ_init)

fig, ax = plt.subplots()
ax.plot(a_grid, σ_star[:, 0], label='numerical')
ax.plot(a_grid, c_star(a_grid, ifp.β, ifp.γ), '--', label='analytical')

ax.set(xlabel='assets', ylabel='consumption')
ax.legend()

plt.show()

Error at iteration 25 is 0.02333227263054538.
Error at iteration 50 is 0.005301238424249455.
Error at iteration 75 is 0.0019706324625650695.
Error at iteration 100 is 0.0008675521337955794.
Error at iteration 125 is 0.00041073542212261005.
Error at iteration 150 is 0.00020120334010526042.
Error at iteration 175 is 0.00010021430795070785.

Converged in 176 iterations.

Success!
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61.5 Exercises

Exercise 61.5.1

Let’s consider how the interest rate affects consumption.

Reproduce the following figure, which shows (approximately) optimal consumption policies for different interest rates

• Other than r, all parameters are at their default values.

• r steps through np.linspace(0, 0.04, 4).

• Consumption is plotted against assets for income shock fixed at the smallest value.

The figure shows that higher interest rates boost savings and hence suppress consumption.

Solution to Exercise 61.5.1

Here’s one solution:

r_vals = np.linspace(0, 0.04, 4)

fig, ax = plt.subplots()
for r_val in r_vals:

ifp = IFP(r=r_val)
σ_star = solve_model_time_iter(ifp, σ_init, verbose=False)
ax.plot(ifp.asset_grid, σ_star[:, 0], label=f'$r = {r_val:.3f}$')

ax.set(xlabel='asset level', ylabel='consumption (low income)')
ax.legend()
plt.show()
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Exercise 61.5.2

Now let’s consider the long run asset levels held by households under the default parameters.

The following figure is a 45 degree diagram showing the law of motion for assets when consumption is optimal

ifp = IFP()

σ_star = solve_model_time_iter(ifp, σ_init, verbose=False)
a = ifp.asset_grid
R, y = ifp.R, ifp.y

fig, ax = plt.subplots()
for z, lb in zip((0, 1), ('low income', 'high income')):

ax.plot(a, R * (a - σ_star[:, z]) + y[z] , label=lb)

ax.plot(a, a, 'k--')
ax.set(xlabel='current assets', ylabel='next period assets')

ax.legend()
plt.show()
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The unbroken lines show the update function for assets at each 𝑧, which is

𝑎 ↦ 𝑅(𝑎 − 𝜎∗(𝑎, 𝑧)) + 𝑦(𝑧)

The dashed line is the 45 degree line.

We can see from the figure that the dynamics will be stable — assets do not diverge even in the highest state.

In fact there is a unique stationary distribution of assets that we can calculate by simulation

• Can be proved via theorem 2 of [Hopenhayn and Prescott, 1992].

• It represents the long run dispersion of assets across households when households have idiosyncratic shocks.

Ergodicity is valid here, so stationary probabilities can be calculated by averaging over a single long time series.

Hence to approximate the stationary distribution we can simulate a long time series for assets and histogram it.

Your task is to generate such a histogram.

• Use a single time series {𝑎𝑡} of length 500,000.
• Given the length of this time series, the initial condition (𝑎0, 𝑧0) will not matter.
• You might find it helpful to use the MarkovChain class from quantecon.

Solution to Exercise 61.5.2

First we write a function to compute a long asset series.
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def compute_asset_series(ifp, T=500_000, seed=1234):
"""
Simulates a time series of length T for assets, given optimal
savings behavior.

ifp is an instance of IFP
"""
P, y, R = ifp.P, ifp.y, ifp.R # Simplify names

# Solve for the optimal policy
σ_star = solve_model_time_iter(ifp, σ_init, verbose=False)
σ = lambda a, z: np.interp(a, ifp.asset_grid, σ_star[:, z])

# Simulate the exogeneous state process
mc = MarkovChain(P)
z_seq = mc.simulate(T, random_state=seed)

# Simulate the asset path
a = np.zeros(T+1)
for t in range(T):

z = z_seq[t]
a[t+1] = R * (a[t] - σ(a[t], z)) + y[z]

return a

Now we call the function, generate the series and then histogram it:

ifp = IFP()
a = compute_asset_series(ifp)

fig, ax = plt.subplots()
ax.hist(a, bins=20, alpha=0.5, density=True)
ax.set(xlabel='assets')
plt.show()
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The shape of the asset distribution is unrealistic.

Here it is left skewed when in reality it has a long right tail.

In a subsequent lecture we will rectify this by adding more realistic features to the model.

Exercise 61.5.3

Following on from exercises 1 and 2, let’s look at how savings and aggregate asset holdings vary with the interest rate

Note

[Ljungqvist and Sargent, 2018] section 18.6 can be consulted for more background on the topic treated in this
exercise.

For a given parameterization of the model, the mean of the stationary distribution of assets can be interpreted as
aggregate capital in an economy with a unit mass of ex-ante identical households facing idiosyncratic shocks.

Your task is to investigate how this measure of aggregate capital varies with the interest rate.

Following tradition, put the price (i.e., interest rate) on the vertical axis.

On the horizontal axis put aggregate capital, computed as the mean of the stationary distribution given the interest
rate.
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Solution to Exercise 61.5.3

Here’s one solution

M = 25
r_vals = np.linspace(0, 0.02, M)
fig, ax = plt.subplots()

asset_mean = []
for r in r_vals:

print(f'Solving model at r = {r}')
ifp = IFP(r=r)
mean = np.mean(compute_asset_series(ifp, T=250_000))
asset_mean.append(mean)

ax.plot(asset_mean, r_vals)

ax.set(xlabel='capital', ylabel='interest rate')

plt.show()

Solving model at r = 0.0

Solving model at r = 0.0008333333333333334

Solving model at r = 0.0016666666666666668

Solving model at r = 0.0025

Solving model at r = 0.0033333333333333335

Solving model at r = 0.004166666666666667

Solving model at r = 0.005

Solving model at r = 0.005833333333333334

Solving model at r = 0.006666666666666667

Solving model at r = 0.007500000000000001

Solving model at r = 0.008333333333333333

Solving model at r = 0.009166666666666667

Solving model at r = 0.01

Solving model at r = 0.010833333333333334

Solving model at r = 0.011666666666666667

Solving model at r = 0.0125

Solving model at r = 0.013333333333333334

Solving model at r = 0.014166666666666668

Solving model at r = 0.015000000000000001

Solving model at r = 0.015833333333333335
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Solving model at r = 0.016666666666666666

Solving model at r = 0.0175

Solving model at r = 0.018333333333333333

Solving model at r = 0.01916666666666667

Solving model at r = 0.02

As expected, aggregate savings increases with the interest rate.
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Contents

• The Income Fluctuation Problem II: Stochastic Returns on Assets

– Overview

– The Savings Problem

– Solution Algorithm

– Implementation

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

62.1 Overview

In this lecture, we continue our study of the income fluctuation problem.

While the interest rate was previously taken to be fixed, we now allow returns on assets to be state-dependent.

This matches the fact that most households with a positive level of assets face some capital income risk.

It has been argued that modeling capital income risk is essential for understanding the joint distribution of income and
wealth (see, e.g., [Benhabib et al., 2015] or [Stachurski and Toda, 2019]).

Theoretical properties of the household savings model presented here are analyzed in detail in [Ma et al., 2020].

In terms of computation, we use a combination of time iteration and the endogenous grid method to solve the model
quickly and accurately.

We require the following imports:

import matplotlib.pyplot as plt
import numpy as np
from numba import jit, float64
from numba.experimental import jitclass
from quantecon import MarkovChain
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62.2 The Savings Problem

In this section we review the household problem and optimality results.

62.2.1 Set Up

A household chooses a consumption-asset path {(𝑐𝑡, 𝑎𝑡)} to maximize

𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)} (62.1)

subject to

𝑎𝑡+1 = 𝑅𝑡+1(𝑎𝑡 − 𝑐𝑡) + 𝑌𝑡+1 and 0 ≤ 𝑐𝑡 ≤ 𝑎𝑡, (62.2)

with initial condition (𝑎0, 𝑍0) = (𝑎, 𝑧) treated as given.
Note that {𝑅𝑡}𝑡≥1, the gross rate of return on wealth, is allowed to be stochastic.

The sequence {𝑌𝑡}𝑡≥1 is non-financial income.

The stochastic components of the problem obey

𝑅𝑡 = 𝑅(𝑍𝑡, 𝜁𝑡) and 𝑌𝑡 = 𝑌 (𝑍𝑡, 𝜂𝑡), (62.3)

where

• the maps 𝑅 and 𝑌 are time-invariant nonnegative functions,

• the innovation processes {𝜁𝑡} and {𝜂𝑡} are IID and independent of each other, and

• {𝑍𝑡}𝑡≥0 is an irreducible time-homogeneous Markov chain on a finite set Z

Let 𝑃 represent the Markov matrix for the chain {𝑍𝑡}𝑡≥0.

Our assumptions on preferences are the same as our previous lecture on the income fluctuation problem.

As before, 𝔼𝑧𝑋̂ means expectation of next period value 𝑋̂ given current value 𝑍 = 𝑧.

62.2.2 Assumptions

We need restrictions to ensure that the objective (62.1) is finite and the solution methods described below converge.

We also need to ensure that the present discounted value of wealth does not grow too quickly.

When {𝑅𝑡} was constant we required that 𝛽𝑅 < 1.
Now it is stochastic, we require that

𝛽𝐺𝑅 < 1, where 𝐺𝑅 ∶= lim
𝑛→∞

(𝔼
𝑛

∏
𝑡=1

𝑅𝑡)
1/𝑛

(62.4)

Notice that, when {𝑅𝑡} takes some constant value 𝑅, this reduces to the previous restriction 𝛽𝑅 < 1
The value 𝐺𝑅 can be thought of as the long run (geometric) average gross rate of return.

More intuition behind (62.4) is provided in [Ma et al., 2020].

Discussion on how to check it is given below.
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Finally, we impose some routine technical restrictions on non-financial income.

𝔼 𝑌𝑡 < ∞ and 𝔼 𝑢′(𝑌𝑡) < ∞
One relatively simple setting where all these restrictions are satisfied is the IID and CRRA environment of [Benhabib et
al., 2015].

62.2.3 Optimality

Let the class of candidate consumption policies 𝒞 be defined as before.

In [Ma et al., 2020] it is shown that, under the stated assumptions,

• any 𝜎 ∈ 𝒞 satisfying the Euler equation is an optimal policy and

• exactly one such policy exists in 𝒞.
In the present setting, the Euler equation takes the form

(𝑢′ ∘ 𝜎)(𝑎, 𝑧) = max{𝛽 𝔼𝑧 𝑅̂ (𝑢′ ∘ 𝜎)[𝑅̂(𝑎 − 𝜎(𝑎, 𝑧)) + ̂𝑌 , ̂𝑍], 𝑢′(𝑎)} (62.5)

(Intuition and derivation are similar to our earlier lecture on the income fluctuation problem.)

We again solve the Euler equation using time iteration, iterating with a Coleman–Reffett operator 𝐾 defined to match the
Euler equation (62.5).

62.3 Solution Algorithm

62.3.1 A Time Iteration Operator

Our definition of the candidate class 𝜎 ∈ 𝒞 of consumption policies is the same as in our earlier lecture on the income
fluctuation problem.

For fixed 𝜎 ∈ 𝒞 and (𝑎, 𝑧) ∈ S, the value 𝐾𝜎(𝑎, 𝑧) of the function 𝐾𝜎 at (𝑎, 𝑧) is defined as the 𝜉 ∈ (0, 𝑎] that solves
𝑢′(𝜉) = max{𝛽 𝔼𝑧 𝑅̂ (𝑢′ ∘ 𝜎)[𝑅̂(𝑎 − 𝜉) + ̂𝑌 , ̂𝑍], 𝑢′(𝑎)} (62.6)

The idea behind𝐾 is that, as can be seen from the definitions, 𝜎 ∈ 𝒞 satisfies the Euler equation if and only if𝐾𝜎(𝑎, 𝑧) =
𝜎(𝑎, 𝑧) for all (𝑎, 𝑧) ∈ S.

This means that fixed points of 𝐾 in 𝒞 and optimal consumption policies exactly coincide (see [Ma et al., 2020] for more
details).

62.3.2 Convergence Properties

As before, we pair 𝒞 with the distance

𝜌(𝑐, 𝑑) ∶= sup
(𝑎,𝑧)∈S

|(𝑢′ ∘ 𝑐) (𝑎, 𝑧) − (𝑢′ ∘ 𝑑) (𝑎, 𝑧)| ,

It can be shown that

1. (𝒞, 𝜌) is a complete metric space,
2. there exists an integer 𝑛 such that 𝐾𝑛 is a contraction mapping on (𝒞, 𝜌), and
3. The unique fixed point of 𝐾 in 𝒞 is the unique optimal policy in 𝒞.

We now have a clear path to successfully approximating the optimal policy: choose some 𝜎 ∈ 𝒞 and then iterate with 𝐾
until convergence (as measured by the distance 𝜌).
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62.3.3 Using an Endogenous Grid

In the study of that model we found that it was possible to further accelerate time iteration via the endogenous grid method.

We will use the same method here.

The methodology is the same as it was for the optimal growth model, with the minor exception that we need to remember
that consumption is not always interior.

In particular, optimal consumption can be equal to assets when the level of assets is low.

Finding Optimal Consumption

The endogenous grid method (EGM) calls for us to take a grid of savings values 𝑠𝑖, where each such 𝑠 is interpreted as
𝑠 = 𝑎 − 𝑐.
For the lowest grid point we take 𝑠0 = 0.
For the corresponding 𝑎0, 𝑐0 pair we have 𝑎0 = 𝑐0.

This happens close to the origin, where assets are low and the household consumes all that it can.

Although there are many solutions, the one we take is 𝑎0 = 𝑐0 = 0, which pins down the policy at the origin, aiding
interpolation.

For 𝑠 > 0, we have, by definition, 𝑐 < 𝑎, and hence consumption is interior.
Hence the max component of (62.5) drops out, and we solve for

𝑐𝑖 = (𝑢′)−1 {𝛽 𝔼𝑧𝑅̂(𝑢′ ∘ 𝜎) [𝑅̂𝑠𝑖 + ̂𝑌 , ̂𝑍]} (62.7)

at each 𝑠𝑖.

Iterating

Once we have the pairs {𝑠𝑖, 𝑐𝑖}, the endogenous asset grid is obtained by 𝑎𝑖 = 𝑐𝑖 + 𝑠𝑖.

Also, we held 𝑧 ∈ Z in the discussion above so we can pair it with 𝑎𝑖.

An approximation of the policy (𝑎, 𝑧) ↦ 𝜎(𝑎, 𝑧) can be obtained by interpolating {𝑎𝑖, 𝑐𝑖} at each 𝑧.
In what follows, we use linear interpolation.

62.3.4 Testing the Assumptions

Convergence of time iteration is dependent on the condition 𝛽𝐺𝑅 < 1 being satisfied.
One can check this using the fact that 𝐺𝑅 is equal to the spectral radius of the matrix 𝐿 defined by

𝐿(𝑧, ̂𝑧) ∶= 𝑃(𝑧, ̂𝑧) ∫ 𝑅( ̂𝑧, 𝑥)𝜙(𝑥)𝑑𝑥

This identity is proved in [Ma et al., 2020], where 𝜙 is the density of the innovation 𝜁𝑡 to returns on assets.

(Remember that Z is a finite set, so this expression defines a matrix.)

Checking the condition is even easier when {𝑅𝑡} is IID.
In that case, it is clear from the definition of 𝐺𝑅 that 𝐺𝑅 is just 𝔼𝑅𝑡.

We test the condition 𝛽𝔼𝑅𝑡 < 1 in the code below.
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62.4 Implementation

We will assume that 𝑅𝑡 = exp(𝑎𝑟𝜁𝑡 + 𝑏𝑟) where 𝑎𝑟, 𝑏𝑟 are constants and {𝜁𝑡} is IID standard normal.

We allow labor income to be correlated, with

𝑌𝑡 = exp(𝑎𝑦𝜂𝑡 + 𝑍𝑡𝑏𝑦)

where {𝜂𝑡} is also IID standard normal and {𝑍𝑡} is a Markov chain taking values in {0, 1}.
ifp_data = [

('γ', float64), # utility parameter
('β', float64), # discount factor
('P', float64[:, :]), # transition probs for z_t
('a_r', float64), # scale parameter for R_t
('b_r', float64), # additive parameter for R_t
('a_y', float64), # scale parameter for Y_t
('b_y', float64), # additive parameter for Y_t
('s_grid', float64[:]), # Grid over savings
('η_draws', float64[:]), # Draws of innovation η for MC
('ζ_draws', float64[:]) # Draws of innovation ζ for MC

]

@jitclass(ifp_data)
class IFP:

"""
A class that stores primitives for the income fluctuation
problem.
"""

def __init__(self,
γ=1.5,
β=0.96,
P=np.array([(0.9, 0.1),

(0.1, 0.9)]),
a_r=0.1,
b_r=0.0,
a_y=0.2,
b_y=0.5,
shock_draw_size=50,
grid_max=10,
grid_size=100,
seed=1234):

np.random.seed(seed) # arbitrary seed

self.P, self.γ, self.β = P, γ, β
self.a_r, self.b_r, self.a_y, self.b_y = a_r, b_r, a_y, b_y
self.η_draws = np.random.randn(shock_draw_size)
self.ζ_draws = np.random.randn(shock_draw_size)
self.s_grid = np.linspace(0, grid_max, grid_size)

# Test stability assuming {R_t} is IID and adopts the lognormal
# specification given below. The test is then β E R_t < 1.
ER = np.exp(b_r + a_r**2 / 2)
assert β * ER < 1, "Stability condition failed."

(continues on next page)
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(continued from previous page)

# Marginal utility
def u_prime(self, c):

return c**(-self.γ)

# Inverse of marginal utility
def u_prime_inv(self, c):

return c**(-1/self.γ)

def R(self, z, ζ):
return np.exp(self.a_r * ζ + self.b_r)

def Y(self, z, η):
return np.exp(self.a_y * η + (z * self.b_y))

Here’s the Coleman-Reffett operator based on EGM:

@jit
def K(a_in, σ_in, ifp):

"""
The Coleman--Reffett operator for the income fluctuation problem,
using the endogenous grid method.

* ifp is an instance of IFP
* a_in[i, z] is an asset grid
* σ_in[i, z] is consumption at a_in[i, z]

"""

# Simplify names
u_prime, u_prime_inv = ifp.u_prime, ifp.u_prime_inv
R, Y, P, β = ifp.R, ifp.Y, ifp.P, ifp.β
s_grid, η_draws, ζ_draws = ifp.s_grid, ifp.η_draws, ifp.ζ_draws
n = len(P)

# Create consumption function by linear interpolation
σ = lambda a, z: np.interp(a, a_in[:, z], σ_in[:, z])

# Allocate memory
σ_out = np.empty_like(σ_in)

# Obtain c_i at each s_i, z, store in σ_out[i, z], computing
# the expectation term by Monte Carlo
for i, s in enumerate(s_grid):

for z in range(n):
# Compute expectation
Ez = 0.0
for z_hat in range(n):

for η in ifp.η_draws:
for ζ in ifp.ζ_draws:

R_hat = R(z_hat, ζ)
Y_hat = Y(z_hat, η)
U = u_prime(σ(R_hat * s + Y_hat, z_hat))
Ez += R_hat * U * P[z, z_hat]

Ez = Ez / (len(η_draws) * len(ζ_draws))
σ_out[i, z] = u_prime_inv(β * Ez)

# Calculate endogenous asset grid
a_out = np.empty_like(σ_out)

(continues on next page)
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(continued from previous page)

for z in range(n):
a_out[:, z] = s_grid + σ_out[:, z]

# Fixing a consumption-asset pair at (0, 0) improves interpolation
σ_out[0, :] = 0
a_out[0, :] = 0

return a_out, σ_out

The next function solves for an approximation of the optimal consumption policy via time iteration.

def solve_model_time_iter(model, # Class with model information
a_vec, # Initial condition for assets
σ_vec, # Initial condition for consumption
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

# Set up loop
i = 0
error = tol + 1

while i < max_iter and error > tol:
a_new, σ_new = K(a_vec, σ_vec, model)
error = np.max(np.abs(σ_vec - σ_new))
i += 1
if verbose and i % print_skip == 0:

print(f"Error at iteration {i} is {error}.")
a_vec, σ_vec = np.copy(a_new), np.copy(σ_new)

if error > tol:
print("Failed to converge!")

elif verbose:
print(f"\nConverged in {i} iterations.")

return a_new, σ_new

Now we are ready to create an instance at the default parameters.

ifp = IFP()

Next we set up an initial condition, which corresponds to consuming all assets.

# Initial guess of σ = consume all assets
k = len(ifp.s_grid)
n = len(ifp.P)
σ_init = np.empty((k, n))
for z in range(n):

σ_init[:, z] = ifp.s_grid
a_init = np.copy(σ_init)

Let’s generate an approximation solution.

a_star, σ_star = solve_model_time_iter(ifp, a_init, σ_init, print_skip=5)
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Error at iteration 5 is 0.5081944529506552.

Error at iteration 10 is 0.1057246950930697.

Error at iteration 15 is 0.03658262202883744.

Error at iteration 20 is 0.013936729965906114.
Error at iteration 25 is 0.00529216526971199.

Error at iteration 30 is 0.0019748126990770665.

Error at iteration 35 is 0.0007219210463285108.

Error at iteration 40 is 0.0002590544496094971.

Error at iteration 45 is 9.163966595471251e-05.

Converged in 45 iterations.

Here’s a plot of the resulting consumption policy.

fig, ax = plt.subplots()
for z in range(len(ifp.P)):

ax.plot(a_star[:, z], σ_star[:, z], label=f"consumption when $z={z}$")

plt.legend()
plt.show()
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Notice that we consume all assets in the lower range of the asset space.

This is because we anticipate income 𝑌𝑡+1 tomorrow, which makes the need to save less urgent.

Can you explain why consuming all assets ends earlier (for lower values of assets) when 𝑧 = 0?

62.4.1 Law of Motion

Let’s try to get some idea of what will happen to assets over the long run under this consumption policy.

As with our earlier lecture on the income fluctuation problem, we begin by producing a 45 degree diagram showing the
law of motion for assets

# Good and bad state mean labor income
Y_mean = [np.mean(ifp.Y(z, ifp.η_draws)) for z in (0, 1)]
# Mean returns
R_mean = np.mean(ifp.R(z, ifp.ζ_draws))

a = a_star
fig, ax = plt.subplots()
for z, lb in zip((0, 1), ('bad state', 'good state')):

ax.plot(a[:, z], R_mean * (a[:, z] - σ_star[:, z]) + Y_mean[z] , label=lb)

ax.plot(a[:, 0], a[:, 0], 'k--')
ax.set(xlabel='current assets', ylabel='next period assets')

ax.legend()
plt.show()
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The unbroken lines represent, for each 𝑧, an average update function for assets, given by

𝑎 ↦ 𝑅̄(𝑎 − 𝜎∗(𝑎, 𝑧)) + ̄𝑌 (𝑧)

Here

• 𝑅̄ = 𝔼𝑅𝑡, which is mean returns and

• ̄𝑌 (𝑧) = 𝔼𝑧𝑌 (𝑧, 𝜂𝑡), which is mean labor income in state 𝑧.
The dashed line is the 45 degree line.

We can see from the figure that the dynamics will be stable — assets do not diverge even in the highest state.

62.5 Exercises

Exercise 62.5.1

Let’s repeat our earlier exercise on the long-run cross sectional distribution of assets.

In that exercise, we used a relatively simple income fluctuation model.

In the solution, we found the shape of the asset distribution to be unrealistic.

In particular, we failed to match the long right tail of the wealth distribution.

Your task is to try again, repeating the exercise, but now with our more sophisticated model.

Use the default parameters.

Solution to Exercise 62.5.1

First we write a function to compute a long asset series.

Because we want to JIT-compile the function, we code the solution in a way that breaks some rules on good program-
ming style.

For example, we will pass in the solutions a_star, σ_star along with ifp, even though it would be more natural
to just pass in ifp and then solve inside the function.

The reason we do this is that solve_model_time_iter is not JIT-compiled.
@jit
def compute_asset_series(ifp, a_star, σ_star, z_seq, T=500_000):

"""
Simulates a time series of length T for assets, given optimal
savings behavior.

* ifp is an instance of IFP
* a_star is the endogenous grid solution
* σ_star is optimal consumption on the grid
* z_seq is a time path for {Z_t}

"""

# Create consumption function by linear interpolation
σ = lambda a, z: np.interp(a, a_star[:, z], σ_star[:, z])
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# Simulate the asset path
a = np.zeros(T+1)
for t in range(T):

z = z_seq[t]
ζ, η = np.random.randn(), np.random.randn()
R = ifp.R(z, ζ)
Y = ifp.Y(z, η)
a[t+1] = R * (a[t] - σ(a[t], z)) + Y

return a

Now we call the function, generate the series and then histogram it, using the solutions computed above.

T = 1_000_000
mc = MarkovChain(ifp.P)
z_seq = mc.simulate(T, random_state=1234)

a = compute_asset_series(ifp, a_star, σ_star, z_seq, T=T)

fig, ax = plt.subplots()
ax.hist(a, bins=40, alpha=0.5, density=True)
ax.set(xlabel='assets')
plt.show()

Now we have managed to successfully replicate the long right tail of the wealth distribution.

Here’s another view of this using a horizontal violin plot.

fig, ax = plt.subplots()
ax.violinplot(a, vert=False, showmedians=True)
ax.set(xlabel='assets')
plt.show()
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– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

63.1 Overview

Linear quadratic (LQ) control refers to a class of dynamic optimization problems that have found applications in almost
every scientific field.

This lecture provides an introduction to LQ control and its economic applications.

As we will see, LQ systems have a simple structure that makes them an excellent workhorse for a wide variety of economic
problems.

Moreover, while the linear-quadratic structure is restrictive, it is in fact far more flexible than it may appear initially.

These themes appear repeatedly below.

Mathematically, LQ control problems are closely related to the Kalman filter

• Recursive formulations of linear-quadratic control problems and Kalman filtering problems both involve matrix
Riccati equations.

• Classical formulations of linear control and linear filtering problems make use of similar matrix decompositions
(see for example this lecture and this lecture).
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In reading what follows, it will be useful to have some familiarity with

• matrix manipulations

• vectors of random variables

• dynamic programming and the Bellman equation (see for example this lecture and this lecture)

For additional reading on LQ control, see, for example,

• [Ljungqvist and Sargent, 2018], chapter 5

• [Hansen and Sargent, 2008], chapter 4

• [Hernandez-Lerma and Lasserre, 1996], section 3.5

In order to focus on computation, we leave longer proofs to these sources (while trying to provide as much intuition as
possible).

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
from quantecon import LQ

63.2 Introduction

The “linear” part of LQ is a linear law of motion for the state, while the “quadratic” part refers to preferences.

Let’s begin with the former, move on to the latter, and then put them together into an optimization problem.

63.2.1 The Law of Motion

Let 𝑥𝑡 be a vector describing the state of some economic system.

Suppose that 𝑥𝑡 follows a linear law of motion given by

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 = 0, 1, 2, … (63.1)

Here

• 𝑢𝑡 is a “control” vector, incorporating choices available to a decision-maker confronting the current state 𝑥𝑡

• {𝑤𝑡} is an uncorrelated zero mean shock process satisfying 𝔼𝑤𝑡𝑤′
𝑡 = 𝐼 , where the right-hand side is the identity

matrix

Regarding the dimensions

• 𝑥𝑡 is 𝑛 × 1, 𝐴 is 𝑛 × 𝑛
• 𝑢𝑡 is 𝑘 × 1, 𝐵 is 𝑛 × 𝑘
• 𝑤𝑡 is 𝑗 × 1, 𝐶 is 𝑛 × 𝑗
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Example 1

Consider a household budget constraint given by

𝑎𝑡+1 + 𝑐𝑡 = (1 + 𝑟)𝑎𝑡 + 𝑦𝑡

Here 𝑎𝑡 is assets, 𝑟 is a fixed interest rate, 𝑐𝑡 is current consumption, and 𝑦𝑡 is current non-financial income.

If we suppose that {𝑦𝑡} is serially uncorrelated and 𝑁(0, 𝜎2), then, taking {𝑤𝑡} to be standard normal, we can write the
system as

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝜎𝑤𝑡+1

This is clearly a special case of (63.1), with assets being the state and consumption being the control.

Example 2

One unrealistic feature of the previous model is that non-financial income has a zero mean and is often negative.

This can easily be overcome by adding a sufficiently large mean.

Hence in this example, we take 𝑦𝑡 = 𝜎𝑤𝑡+1 + 𝜇 for some positive real number 𝜇.
Another alteration that’s useful to introduce (we’ll see why soon) is to change the control variable from consumption to
the deviation of consumption from some “ideal” quantity ̄𝑐.
(Most parameterizations will be such that ̄𝑐 is large relative to the amount of consumption that is attainable in each period,
and hence the household wants to increase consumption.)

For this reason, we now take our control to be 𝑢𝑡 ∶= 𝑐𝑡 − ̄𝑐.
In terms of these variables, the budget constraint 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡 becomes

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑢𝑡 − ̄𝑐 + 𝜎𝑤𝑡+1 + 𝜇 (63.2)

How can we write this new system in the form of equation (63.1)?

If, as in the previous example, we take 𝑎𝑡 as the state, then we run into a problem: the law of motion contains some
constant terms on the right-hand side.

This means that we are dealing with an affine function, not a linear one (recall this discussion).

Fortunately, we can easily circumvent this problem by adding an extra state variable.

In particular, if we write

( 𝑎𝑡+1
1 ) = ( 1 + 𝑟 − ̄𝑐 + 𝜇

0 1 ) ( 𝑎𝑡
1 ) + ( −1

0 ) 𝑢𝑡 + ( 𝜎
0 ) 𝑤𝑡+1 (63.3)

then the first row is equivalent to (63.2).

Moreover, the model is now linear and can be written in the form of (63.1) by setting

𝑥𝑡 ∶= ( 𝑎𝑡
1 ) , 𝐴 ∶= ( 1 + 𝑟 − ̄𝑐 + 𝜇

0 1 ) , 𝐵 ∶= ( −1
0 ) , 𝐶 ∶= ( 𝜎

0 ) (63.4)

In effect, we’ve bought ourselves linearity by adding another state.
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63.2.2 Preferences

In the LQ model, the aim is to minimize flow of losses, where time-𝑡 loss is given by the quadratic expression

𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 (63.5)

Here

• 𝑅 is assumed to be 𝑛 × 𝑛, symmetric and nonnegative definite.
• 𝑄 is assumed to be 𝑘 × 𝑘, symmetric and positive definite.

Note

In fact, for many economic problems, the definiteness conditions on 𝑅 and 𝑄 can be relaxed. It is sufficient that
certain submatrices of 𝑅 and 𝑄 be nonnegative definite. See [Hansen and Sargent, 2008] for details.

Example 1

A very simple example that satisfies these assumptions is to take 𝑅 and 𝑄 to be identity matrices so that current loss is

𝑥′
𝑡𝐼𝑥𝑡 + 𝑢′

𝑡𝐼𝑢𝑡 = ‖𝑥𝑡‖2 + ‖𝑢𝑡‖2

Thus, for both the state and the control, loss is measured as squared distance from the origin.

(In fact, the general case (63.5) can also be understood in this way, but with 𝑅 and 𝑄 identifying other – non-Euclidean
– notions of “distance” from the zero vector.)

Intuitively, we can often think of the state 𝑥𝑡 as representing deviation from a target, such as

• deviation of inflation from some target level

• deviation of a firm’s capital stock from some desired quantity

The aim is to put the state close to the target, while using controls parsimoniously.

Example 2

In the household problem studied above, setting 𝑅 = 0 and 𝑄 = 1 yields preferences

𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 = 𝑢2
𝑡 = (𝑐𝑡 − ̄𝑐)2

Under this specification, the household’s current loss is the squared deviation of consumption from the ideal level ̄𝑐.

63.3 Optimality – Finite Horizon

Let’s now be precise about the optimization problem we wish to consider, and look at how to solve it.
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63.3.1 The Objective

We will begin with the finite horizon case, with terminal time 𝑇 ∈ ℕ.
In this case, the aim is to choose a sequence of controls {𝑢0, … , 𝑢𝑇 −1} to minimize the objective

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡) + 𝛽𝑇 𝑥′
𝑇 𝑅𝑓𝑥𝑇 } (63.6)

subject to the law of motion (63.1) and initial state 𝑥0.

The new objects introduced here are 𝛽 and the matrix 𝑅𝑓 .

The scalar 𝛽 is the discount factor, while 𝑥′𝑅𝑓𝑥 gives terminal loss associated with state 𝑥.
Comments:

• We assume 𝑅𝑓 to be 𝑛 × 𝑛, symmetric and nonnegative definite.
• We allow 𝛽 = 1, and hence include the undiscounted case.
• 𝑥0 may itself be random, in which case we require it to be independent of the shock sequence 𝑤1, … , 𝑤𝑇 .

63.3.2 Information

There’s one constraint we’ve neglected to mention so far, which is that the decision-maker who solves this LQ problem
knows only the present and the past, not the future.

To clarify this point, consider the sequence of controls {𝑢0, … , 𝑢𝑇 −1}.
When choosing these controls, the decision-maker is permitted to take into account the effects of the shocks {𝑤1, … , 𝑤𝑇 }
on the system.

However, it is typically assumed — and will be assumed here — that the time-𝑡 control 𝑢𝑡 can be made with knowledge
of past and present shocks only.

The fancy measure-theoretic way of saying this is that 𝑢𝑡 must be measurable with respect to the 𝜎-algebra generated by
𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡.

This is in fact equivalent to stating that 𝑢𝑡 can be written in the form 𝑢𝑡 = 𝑔𝑡(𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡) for some Borel
measurable function 𝑔𝑡.

(Just about every function that’s useful for applications is Borel measurable, so, for the purposes of intuition, you can read
that last phrase as “for some function 𝑔𝑡”)

Now note that 𝑥𝑡 will ultimately depend on the realizations of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡.

In fact, it turns out that 𝑥𝑡 summarizes all the information about these historical shocks that the decision-maker needs to
set controls optimally.

More precisely, it can be shown that any optimal control 𝑢𝑡 can always be written as a function of the current state alone.

Hence in what follows we restrict attention to control policies (i.e., functions) of the form 𝑢𝑡 = 𝑔𝑡(𝑥𝑡).
Actually, the preceding discussion applies to all standard dynamic programming problems.

What’s special about the LQ case is that – as we shall soon see — the optimal 𝑢𝑡 turns out to be a linear function of 𝑥𝑡.
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63.3.3 Solution

To solve the finite horizon LQ problem we can use a dynamic programming strategy based on backward induction that
is conceptually similar to the approach adopted in this lecture.

For reasons that will soon become clear, we first introduce the notation 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥.
Now consider the problem of the decision-maker in the second to last period.

In particular, let the time be 𝑇 − 1, and suppose that the state is 𝑥𝑇 −1.

The decision-maker must trade-off current and (discounted) final losses, and hence solves

min
𝑢

{𝑥′
𝑇 −1𝑅𝑥𝑇 −1 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 (𝐴𝑥𝑇 −1 + 𝐵𝑢 + 𝐶𝑤𝑇 )}

At this stage, it is convenient to define the function

𝐽𝑇 −1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 (𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )} (63.7)

The function 𝐽𝑇 −1 will be called the 𝑇 −1 value function, and 𝐽𝑇 −1(𝑥) can be thought of as representing total “loss-to-go”
from state 𝑥 at time 𝑇 − 1 when the decision-maker behaves optimally.
Now let’s step back to 𝑇 − 2.
For a decision-maker at𝑇 −2, the value 𝐽𝑇 −1(𝑥) plays a role analogous to that played by the terminal loss 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥
for the decision-maker at 𝑇 − 1.
That is, 𝐽𝑇 −1(𝑥) summarizes the future loss associated with moving to state 𝑥.
The decision-maker chooses her control 𝑢 to trade off current loss against future loss, where

• the next period state is 𝑥𝑇 −1 = 𝐴𝑥𝑇 −2 + 𝐵𝑢 + 𝐶𝑤𝑇 −1, and hence depends on the choice of current control.

• the “cost” of landing in state 𝑥𝑇 −1 is 𝐽𝑇 −1(𝑥𝑇 −1).
Her problem is therefore

min
𝑢

{𝑥′
𝑇 −2𝑅𝑥𝑇 −2 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 −1(𝐴𝑥𝑇 −2 + 𝐵𝑢 + 𝐶𝑤𝑇 −1)}

Letting

𝐽𝑇 −2(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑇 −1(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 −1)}

the pattern for backward induction is now clear.

In particular, we define a sequence of value functions {𝐽0, … , 𝐽𝑇 } via

𝐽𝑡−1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼𝐽𝑡(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑡)} and 𝐽𝑇 (𝑥) = 𝑥′𝑅𝑓𝑥

The first equality is the Bellman equation from dynamic programming theory specialized to the finite horizon LQ problem.

Now that we have {𝐽0, … , 𝐽𝑇 }, we can obtain the optimal controls.
As a first step, let’s find out what the value functions look like.

It turns out that every 𝐽𝑡 has the form 𝐽𝑡(𝑥) = 𝑥′𝑃𝑡𝑥 + 𝑑𝑡 where 𝑃𝑡 is a 𝑛 × 𝑛 matrix and 𝑑𝑡 is a constant.

We can show this by induction, starting from 𝑃𝑇 ∶= 𝑅𝑓 and 𝑑𝑇 = 0.
Using this notation, (63.7) becomes

𝐽𝑇 −1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝔼(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )′𝑃𝑇 (𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑇 )} (63.8)

To obtain the minimizer, we can take the derivative of the r.h.s. with respect to 𝑢 and set it equal to zero.
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Applying the relevant rules of matrix calculus, this gives

𝑢 = −(𝑄 + 𝛽𝐵′𝑃𝑇 𝐵)−1𝛽𝐵′𝑃𝑇 𝐴𝑥 (63.9)

Plugging this back into (63.8) and rearranging yields

𝐽𝑇 −1(𝑥) = 𝑥′𝑃𝑇 −1𝑥 + 𝑑𝑇 −1

where

𝑃𝑇 −1 = 𝑅 − 𝛽2𝐴′𝑃𝑇 𝐵(𝑄 + 𝛽𝐵′𝑃𝑇 𝐵)−1𝐵′𝑃𝑇 𝐴 + 𝛽𝐴′𝑃𝑇 𝐴 (63.10)

and

𝑑𝑇 −1 ∶= 𝛽 trace(𝐶′𝑃𝑇 𝐶) (63.11)

(The algebra is a good exercise — we’ll leave it up to you.)

If we continue working backwards in this manner, it soon becomes clear that 𝐽𝑡(𝑥) = 𝑥′𝑃𝑡𝑥 + 𝑑𝑡 as claimed, where
{𝑃𝑡} and {𝑑𝑡} satisfy the recursions

𝑃𝑡−1 = 𝑅 − 𝛽2𝐴′𝑃𝑡𝐵(𝑄 + 𝛽𝐵′𝑃𝑡𝐵)−1𝐵′𝑃𝑡𝐴 + 𝛽𝐴′𝑃𝑡𝐴 with 𝑃𝑇 = 𝑅𝑓 (63.12)

and

𝑑𝑡−1 = 𝛽(𝑑𝑡 + trace(𝐶′𝑃𝑡𝐶)) with 𝑑𝑇 = 0 (63.13)

Recalling (63.9), the minimizers from these backward steps are

𝑢𝑡 = −𝐹𝑡𝑥𝑡 where 𝐹𝑡 ∶= (𝑄 + 𝛽𝐵′𝑃𝑡+1𝐵)−1𝛽𝐵′𝑃𝑡+1𝐴 (63.14)

These are the linear optimal control policies we discussed above.

In particular, the sequence of controls given by (63.14) and (63.1) solves our finite horizon LQ problem.

Rephrasing this more precisely, the sequence 𝑢0, … , 𝑢𝑇 −1 given by

𝑢𝑡 = −𝐹𝑡𝑥𝑡 with 𝑥𝑡+1 = (𝐴 − 𝐵𝐹𝑡)𝑥𝑡 + 𝐶𝑤𝑡+1 (63.15)

for 𝑡 = 0, … , 𝑇 − 1 attains the minimum of (63.6) subject to our constraints.

63.4 Implementation

We will use code from lqcontrol.py in QuantEcon.py to solve finite and infinite horizon linear quadratic control problems.

In the module, the various updating, simulation and fixed point methods are wrapped in a class called LQ, which includes

• Instance data:

– The required parameters 𝑄, 𝑅, 𝐴, 𝐵 and optional parameters 𝐶, 𝛽, 𝑇 , 𝑅𝑓 , 𝑁 specifying a given LQ model

∗ set 𝑇 and 𝑅𝑓 to None in the infinite horizon case

∗ set C = None (or zero) in the deterministic case

– the value function and policy data

∗ 𝑑𝑡, 𝑃𝑡, 𝐹𝑡 in the finite horizon case
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∗ 𝑑, 𝑃 , 𝐹 in the infinite horizon case

• Methods:

– update_values— shifts 𝑑𝑡, 𝑃𝑡, 𝐹𝑡 to their 𝑡 − 1 values via (63.12), (63.13) and (63.14)
– stationary_values— computes 𝑃 , 𝑑, 𝐹 in the infinite horizon case

– compute_sequence —- simulates the dynamics of 𝑥𝑡, 𝑢𝑡, 𝑤𝑡 given 𝑥0 and assuming standard normal
shocks

63.4.1 An Application

Early Keynesian models assumed that households have a constant marginal propensity to consume from current income.

Data contradicted the constancy of the marginal propensity to consume.

In response, Milton Friedman, Franco Modigliani and others built models based on a consumer’s preference for an in-
tertemporally smooth consumption stream.

(See, for example, [Friedman, 1956] or [Modigliani and Brumberg, 1954].)

One property of those models is that households purchase and sell financial assets to make consumption streams smoother
than income streams.

The household savings problem outlined above captures these ideas.

The optimization problem for the household is to choose a consumption sequence in order to minimize

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑐𝑡 − ̄𝑐)2 + 𝛽𝑇 𝑞𝑎2
𝑇 } (63.16)

subject to the sequence of budget constraints 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡, 𝑡 ≥ 0.
Here 𝑞 is a large positive constant, the role of which is to induce the consumer to target zero debt at the end of her life.
(Without such a constraint, the optimal choice is to choose 𝑐𝑡 = ̄𝑐 in each period, letting assets adjust accordingly.)
As before we set 𝑦𝑡 = 𝜎𝑤𝑡+1 + 𝜇 and 𝑢𝑡 ∶= 𝑐𝑡 − ̄𝑐, after which the constraint can be written as in (63.2).
We saw how this constraint could be manipulated into the LQ formulation 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1 by setting
𝑥𝑡 = (𝑎𝑡 1)′ and using the definitions in (63.4).

To match with this state and control, the objective function (63.16) can be written in the form of (63.6) by choosing

𝑄 ∶= 1, 𝑅 ∶= ( 0 0
0 0 ) , and 𝑅𝑓 ∶= ( 𝑞 0

0 0 )

Now that the problem is expressed in LQ form, we can proceed to the solution by applying (63.12) and (63.14).

After generating shocks 𝑤1, … , 𝑤𝑇 , the dynamics for assets and consumption can be simulated via (63.15).

The following figure was computed using 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 2, 𝜇 = 1, 𝜎 = 0.25, 𝑇 = 45 and 𝑞 = 106.

The shocks {𝑤𝑡} were taken to be IID and standard normal.

# Model parameters
r = 0.05
β = 1/(1 + r)
T = 45
c_bar = 2
σ = 0.25

(continues on next page)
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(continued from previous page)

μ = 1
q = 1e6

# Formulate as an LQ problem
Q = 1
R = np.zeros((2, 2))
Rf = np.zeros((2, 2))
Rf[0, 0] = q
A = [[1 + r, -c_bar + μ],

[0, 1]]
B = [[-1],

[ 0]]
C = [[σ],

[0]]

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=β, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

# Convert back to assets, consumption and income
assets = xp[0, :] # a_t
c = up.flatten() + c_bar # c_t
income = σ * wp[0, 1:] + μ # y_t

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)

axes[1].plot(list(range(1, T+1)), np.cumsum(income - μ), 'r-',
label="cumulative unanticipated income", **p_args)

axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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The top panel shows the time path of consumption 𝑐𝑡 and income 𝑦𝑡 in the simulation.

As anticipated by the discussion on consumption smoothing, the time path of consumption is much smoother than that
for income.

(But note that consumption becomesmore irregular towards the end of life, when the zero final asset requirement impinges
more on consumption choices.)

The second panel in the figure shows that the time path of assets 𝑎𝑡 is closely correlated with cumulative unanticipated
income, where the latter is defined as

𝑧𝑡 ∶=
𝑡

∑
𝑗=0

𝜎𝑤𝑡

A key message is that unanticipated windfall gains are saved rather than consumed, while unanticipated negative shocks
are met by reducing assets.

(Again, this relationship breaks down towards the end of life due to the zero final asset requirement.)

These results are relatively robust to changes in parameters.

For example, let’s increase 𝛽 from 1/(1 + 𝑟) ≈ 0.952 to 0.96 while keeping other parameters fixed.
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This consumer is slightly more patient than the last one, and hence puts relatively more weight on later consumption
values.

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=0.96, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

# Convert back to assets, consumption and income
assets = xp[0, :] # a_t
c = up.flatten() + c_bar # c_t
income = σ * wp[0, 1:] + μ # y_t

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)

axes[1].plot(list(range(1, T+1)), np.cumsum(income - μ), 'r-',
label="cumulative unanticipated income", **p_args)

axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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We now have a slowly rising consumption stream and a hump-shaped build-up of assets in the middle periods to fund
rising consumption.

However, the essential features are the same: consumption is smooth relative to income, and assets are strongly positively
correlated with cumulative unanticipated income.

63.5 Extensions and Comments

Let’s now consider a number of standard extensions to the LQ problem treated above.
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63.5.1 Time-Varying Parameters

In some settings, it can be desirable to allow 𝐴, 𝐵, 𝐶, 𝑅 and 𝑄 to depend on 𝑡.
For the sake of simplicity, we’ve chosen not to treat this extension in our implementation given below.

However, the loss of generality is not as large as you might first imagine.

In fact, we can tackle many models with time-varying parameters by suitable choice of state variables.

One illustration is given below.

For further examples and a more systematic treatment, see [Hansen and Sargent, 2013], section 2.4.

63.5.2 Adding a Cross-Product Term

In some LQ problems, preferences include a cross-product term 𝑢′
𝑡𝑁𝑥𝑡, so that the objective function becomes

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡) + 𝛽𝑇 𝑥′

𝑇 𝑅𝑓𝑥𝑇 } (63.17)

Our results extend to this case in a straightforward way.

The sequence {𝑃𝑡} from (63.12) becomes

𝑃𝑡−1 = 𝑅 − (𝛽𝐵′𝑃𝑡𝐴 + 𝑁)′(𝑄 + 𝛽𝐵′𝑃𝑡𝐵)−1(𝛽𝐵′𝑃𝑡𝐴 + 𝑁) + 𝛽𝐴′𝑃𝑡𝐴 with 𝑃𝑇 = 𝑅𝑓 (63.18)

The policies in (63.14) are modified to

𝑢𝑡 = −𝐹𝑡𝑥𝑡 where 𝐹𝑡 ∶= (𝑄 + 𝛽𝐵′𝑃𝑡+1𝐵)−1(𝛽𝐵′𝑃𝑡+1𝐴 + 𝑁) (63.19)

The sequence {𝑑𝑡} is unchanged from (63.13).

We leave interested readers to confirm these results (the calculations are long but not overly difficult).

63.5.3 Infinite Horizon

Finally, we consider the infinite horizon case, with cross-product term, unchanged dynamics and objective function given
by

𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡)} (63.20)

In the infinite horizon case, optimal policies can depend on time only if time itself is a component of the state vector 𝑥𝑡.

In other words, there exists a fixed matrix 𝐹 such that 𝑢𝑡 = −𝐹𝑥𝑡 for all 𝑡.
That decision rules are constant over time is intuitive — after all, the decision-maker faces the same infinite horizon at
every stage, with only the current state changing.

Not surprisingly, 𝑃 and 𝑑 are also constant.

The stationary matrix 𝑃 is the solution to the discrete-time algebraic Riccati equation.

𝑃 = 𝑅 − (𝛽𝐵′𝑃𝐴 + 𝑁)′(𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑁) + 𝛽𝐴′𝑃𝐴 (63.21)
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Equation (63.21) is also called the LQ Bellman equation, and the map that sends a given 𝑃 into the right-hand side of
(63.21) is called the LQ Bellman operator.

The stationary optimal policy for this model is

𝑢 = −𝐹𝑥 where 𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑁) (63.22)

The sequence {𝑑𝑡} from (63.13) is replaced by the constant value

𝑑 ∶= trace(𝐶′𝑃𝐶) 𝛽
1 − 𝛽 (63.23)

The state evolves according to the time-homogeneous process 𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1.

An example infinite horizon problem is treated below.

63.5.4 Certainty Equivalence

Linear quadratic control problems of the class discussed above have the property of certainty equivalence.

By this, we mean that the optimal policy 𝐹 is not affected by the parameters in 𝐶, which specify the shock process.

This can be confirmed by inspecting (63.22) or (63.19).

It follows that we can ignore uncertainty when solving for optimal behavior, and plug it back in when examining optimal
state dynamics.

63.6 Further Applications

63.6.1 Application 1: Age-Dependent Income Process

Previously we studied a permanent income model that generated consumption smoothing.

One unrealistic feature of that model is the assumption that the mean of the random income process does not depend on
the consumer’s age.

Amore realistic income profile is one that rises in early working life, peaks towards the middle and maybe declines toward
the end of working life and falls more during retirement.

In this section, we will model this rise and fall as a symmetric inverted “U” using a polynomial in age.

As before, the consumer seeks to minimize

𝔼 {
𝑇 −1
∑
𝑡=0

𝛽𝑡(𝑐𝑡 − ̄𝑐)2 + 𝛽𝑇 𝑞𝑎2
𝑇 } (63.24)

subject to 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡, 𝑡 ≥ 0.
For income we now take 𝑦𝑡 = 𝑝(𝑡) + 𝜎𝑤𝑡+1 where 𝑝(𝑡) ∶= 𝑚0 + 𝑚1𝑡 + 𝑚2𝑡2.

(In the next section we employ some tricks to implement a more sophisticated model.)

The coefficients 𝑚0, 𝑚1, 𝑚2 are chosen such that 𝑝(0) = 0, 𝑝(𝑇 /2) = 𝜇, and 𝑝(𝑇 ) = 0.
You can confirm that the specification 𝑚0 = 0, 𝑚1 = 𝑇 𝜇/(𝑇 /2)2, 𝑚2 = −𝜇/(𝑇 /2)2 satisfies these constraints.

To put this into an LQ setting, consider the budget constraint, which becomes

𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑢𝑡 − ̄𝑐 + 𝑚1𝑡 + 𝑚2𝑡2 + 𝜎𝑤𝑡+1 (63.25)
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The fact that 𝑎𝑡+1 is a linear function of (𝑎𝑡, 1, 𝑡, 𝑡2) suggests taking these four variables as the state vector 𝑥𝑡.

Once a good choice of state and control (recall 𝑢𝑡 = 𝑐𝑡 − ̄𝑐) has been made, the remaining specifications fall into place
relatively easily.

Thus, for the dynamics we set

𝑥𝑡 ∶=
⎛⎜⎜⎜
⎝

𝑎𝑡
1
𝑡
𝑡2

⎞⎟⎟⎟
⎠

, 𝐴 ∶=
⎛⎜⎜⎜
⎝

1 + 𝑟 − ̄𝑐 𝑚1 𝑚2
0 1 0 0
0 1 1 0
0 1 2 1

⎞⎟⎟⎟
⎠

, 𝐵 ∶=
⎛⎜⎜⎜
⎝

−1
0
0
0

⎞⎟⎟⎟
⎠

, 𝐶 ∶=
⎛⎜⎜⎜
⎝

𝜎
0
0
0

⎞⎟⎟⎟
⎠

(63.26)

If you expand the expression 𝑥𝑡+1 = 𝐴𝑥𝑡 +𝐵𝑢𝑡 +𝐶𝑤𝑡+1 using this specification, you will find that assets follow (63.25)
as desired and that the other state variables also update appropriately.

To implement preference specification (63.24) we take

𝑄 ∶= 1, 𝑅 ∶=
⎛⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟
⎠

and 𝑅𝑓 ∶=
⎛⎜⎜⎜
⎝

𝑞 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟
⎠

(63.27)

The next figure shows a simulation of consumption and assets computed using the compute_sequence method of
lqcontrol.py with initial assets set to zero.

Once again, smooth consumption is a dominant feature of the sample paths.

The asset path exhibits dynamics consistent with standard life cycle theory.

Exercise 63.7.1 gives the full set of parameters used here and asks you to replicate the figure.

63.6.2 Application 2: A Permanent Income Model with Retirement

In the previous application, we generated income dynamics with an inverted U shape using polynomials and placed them
in an LQ framework.

It is arguably the case that this income process still contains unrealistic features.

A more common earning profile is where

1. income grows over working life, fluctuating around an increasing trend, with growth flattening off in later years

2. retirement follows, with lower but relatively stable (non-financial) income

Letting 𝐾 be the retirement date, we can express these income dynamics by

𝑦𝑡 = {𝑝(𝑡) + 𝜎𝑤𝑡+1 if 𝑡 ≤ 𝐾
𝑠 otherwise

(63.28)

Here

• 𝑝(𝑡) ∶= 𝑚1𝑡 + 𝑚2𝑡2 with the coefficients 𝑚1, 𝑚2 chosen such that 𝑝(𝐾) = 𝜇 and 𝑝(0) = 𝑝(2𝐾) = 0
• 𝑠 is retirement income

We suppose that preferences are unchanged and given by (63.16).

The budget constraint is also unchanged and given by 𝑎𝑡+1 = (1 + 𝑟)𝑎𝑡 − 𝑐𝑡 + 𝑦𝑡.

Our aim is to solve this problem and simulate paths using the LQ techniques described in this lecture.

In fact, this is a nontrivial problem, as the kink in the dynamics (63.28) at 𝐾 makes it very difficult to express the law of
motion as a fixed-coefficient linear system.
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However, we can still use our LQ methods here by suitably linking two-component LQ problems.

These two LQ problems describe the consumer’s behavior during her working life (lq_working) and retirement
(lq_retired).

(This is possible because, in the two separate periods of life, the respective income processes [polynomial trend and
constant] each fit the LQ framework.)

The basic idea is that although the whole problem is not a single time-invariant LQ problem, it is still a dynamic pro-
gramming problem, and hence we can use appropriate Bellman equations at every stage.

Based on this logic, we can

1. solve lq_retired by the usual backward induction procedure, iterating back to the start of retirement.

2. take the start-of-retirement value function generated by this process, and use it as the terminal condition 𝑅𝑓 to
feed into the lq_working specification.

3. solve lq_working by backward induction from this choice of 𝑅𝑓 , iterating back to the start of working life.

This process gives the entire life-time sequence of value functions and optimal policies.

The next figure shows one simulation based on this procedure.
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The full set of parameters used in the simulation is discussed in Exercise 63.7.2, where you are asked to replicate the
figure.

Once again, the dominant feature observable in the simulation is consumption smoothing.

The asset path fits well with standard life cycle theory, with dissaving early in life followed by later saving.

Assets peak at retirement and subsequently decline.

63.6.3 Application 3: Monopoly with Adjustment Costs

Consider a monopolist facing stochastic inverse demand function

𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡 + 𝑑𝑡

Here 𝑞𝑡 is output, and the demand shock 𝑑𝑡 follows

𝑑𝑡+1 = 𝜌𝑑𝑡 + 𝜎𝑤𝑡+1

where {𝑤𝑡} is IID and standard normal.

The monopolist maximizes the expected discounted sum of present and future profits

𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝜋𝑡} where 𝜋𝑡 ∶= 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 (63.29)

Here

• 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 represents adjustment costs

• 𝑐 is average cost of production
This can be formulated as an LQ problem and then solved and simulated, but first let’s study the problem and try to get
some intuition.

One way to start thinking about the problem is to consider what would happen if 𝛾 = 0.
Without adjustment costs there is no intertemporal trade-off, so the monopolist will choose output to maximize current
profit in each period.

It’s not difficult to show that profit-maximizing output is

̄𝑞𝑡 ∶= 𝑎0 − 𝑐 + 𝑑𝑡
2𝑎1

In light of this discussion, what we might expect for general 𝛾 is that

• if 𝛾 is close to zero, then 𝑞𝑡 will track the time path of ̄𝑞𝑡 relatively closely.

• if 𝛾 is larger, then 𝑞𝑡 will be smoother than ̄𝑞𝑡, as the monopolist seeks to avoid adjustment costs.

This intuition turns out to be correct.

The following figures show simulations produced by solving the corresponding LQ problem.

The only difference in parameters across the figures is the size of 𝛾
To produce these figures we converted the monopolist problem into an LQ problem.

The key to this conversion is to choose the right state — which can be a bit of an art.

Here we take 𝑥𝑡 = ( ̄𝑞𝑡 𝑞𝑡 1)′, while the control is chosen as 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡.

We also manipulated the profit function slightly.
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In (63.29), current profits are 𝜋𝑡 ∶= 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2.

Let’s now replace 𝜋𝑡 in (63.29) with ̂𝜋𝑡 ∶= 𝜋𝑡 − 𝑎1 ̄𝑞2
𝑡 .

This makes no difference to the solution, since 𝑎1 ̄𝑞2
𝑡 does not depend on the controls.

(In fact, we are just adding a constant term to (63.29), and optimizers are not affected by constant terms.)

The reason for making this substitution is that, as you will be able to verify, ̂𝜋𝑡 reduces to the simple quadratic

̂𝜋𝑡 = −𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 − 𝛾𝑢2
𝑡

After negation to convert to a minimization problem, the objective becomes

min𝔼
∞

∑
𝑡=0

𝛽𝑡 {𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 + 𝛾𝑢2
𝑡 } (63.30)

It’s now relatively straightforward to find 𝑅 and 𝑄 such that (63.30) can be written as (63.20).

Furthermore, the matrices 𝐴, 𝐵 and 𝐶 from (63.1) can be found by writing down the dynamics of each element of the
state.

Exercise 63.7.3 asks you to complete this process, and reproduce the preceding figures.

63.7 Exercises

Exercise 63.7.1

Replicate the figure with polynomial income shown above.

The parameters are 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 1.5, 𝜇 = 2, 𝜎 = 0.15, 𝑇 = 50 and 𝑞 = 104.

Solution to Exercise 63.7.1

Here’s one solution.

We use some fancy plot commands to get a certain style — feel free to use simpler ones.

The model is an LQ permanent income / life-cycle model with hump-shaped income

𝑦𝑡 = 𝑚1𝑡 + 𝑚2𝑡2 + 𝜎𝑤𝑡+1

where {𝑤𝑡} is IID 𝑁(0, 1) and the coefficients 𝑚1 and 𝑚2 are chosen so that 𝑝(𝑡) = 𝑚1𝑡 + 𝑚2𝑡2 has an inverted U
shape with

• 𝑝(0) = 0, 𝑝(𝑇 /2) = 𝜇, and
• 𝑝(𝑇 ) = 0

# Model parameters
r = 0.05
β = 1/(1 + r)
T = 50
c_bar = 1.5
σ = 0.15
μ = 2
q = 1e4
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m1 = T * (μ/(T/2)**2)
m2 = -(μ/(T/2)**2)

# Formulate as an LQ problem
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, -c_bar, m1, m2],

[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 1, 2, 1]]

B = [[-1],
[ 0],
[ 0],
[ 0]]

C = [[σ],
[0],
[0],
[0]]

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=β, T=T, Rf=Rf)
x0 = (0, 1, 0, 0)
xp, up, wp = lq.compute_sequence(x0)

# Convert results back to assets, consumption and income
ap = xp[0, :] # Assets
c = up.flatten() + c_bar # Consumption
time = np.arange(1, T+1)
income = σ * wp[0, 1:] + m1 * time + m2 * time**2 # Income

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)

axes[1].plot(range(T+1), ap.flatten(), 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')

for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()
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Exercise 63.7.2

Replicate the figure on work and retirement shown above.

The parameters are 𝑟 = 0.05, 𝛽 = 1/(1 + 𝑟), ̄𝑐 = 4, 𝜇 = 4, 𝜎 = 0.35, 𝐾 = 40, 𝑇 = 60, 𝑠 = 1 and 𝑞 = 104.

To understand the overall procedure, carefully read the section containing that figure.
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Hint

First, in order to make our approach work, we must ensure that both LQ problems have the same state variables
and control.
As with previous applications, the control can be set to 𝑢𝑡 = 𝑐𝑡 − ̄𝑐.
For lq_working, 𝑥𝑡, 𝐴, 𝐵, 𝐶 can be chosen as in (63.26).

• Recall that 𝑚1, 𝑚2 are chosen so that 𝑝(𝐾) = 𝜇 and 𝑝(2𝐾) = 0.
For lq_retired, use the same definition of 𝑥𝑡 and 𝑢𝑡, but modify 𝐴, 𝐵, 𝐶 to correspond to constant income
𝑦𝑡 = 𝑠.
For lq_retired, set preferences as in (63.27).
For lq_working, preferences are the same, except that 𝑅𝑓 should be replaced by the final value function that
emerges from iterating lq_retired back to the start of retirement.
With some careful footwork, the simulation can be generated by patching together the simulations from these two
separate models.

Solution to Exercise 63.7.2

This is a permanent income / life-cycle model with polynomial growth in income over working life followed by a fixed
retirement income.

The model is solved by combining two LQ programming problems as described in the lecture.
# Model parameters
r = 0.05
β = 1/(1 + r)
T = 60
K = 40
c_bar = 4
σ = 0.35
μ = 4
q = 1e4
s = 1
m1 = 2 * μ/K
m2 = -μ/K**2

# Formulate LQ problem 1 (retirement)
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, s - c_bar, 0, 0],

[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 1, 2, 1]]

B = [[-1],
[ 0],
[ 0],
[ 0]]

C = [[0],
[0],
[0],
[0]]

# Initialize LQ instance for retired agent
lq_retired = LQ(Q, R, A, B, C, beta=β, T=T-K, Rf=Rf)
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# Iterate back to start of retirement, record final value function
for i in range(T-K):

lq_retired.update_values()
Rf2 = lq_retired.P

# Formulate LQ problem 2 (working life)
R = np.zeros((4, 4))
A = [[1 + r, -c_bar, m1, m2],

[0, 1, 0, 0],
[0, 1, 1, 0],
[0, 1, 2, 1]]

B = [[-1],
[ 0],
[ 0],
[ 0]]

C = [[σ],
[0],
[0],
[0]]

# Set up working life LQ instance with terminal Rf from lq_retired
lq_working = LQ(Q, R, A, B, C, beta=β, T=K, Rf=Rf2)

# Simulate working state / control paths
x0 = (0, 1, 0, 0)
xp_w, up_w, wp_w = lq_working.compute_sequence(x0)
# Simulate retirement paths (note the initial condition)
xp_r, up_r, wp_r = lq_retired.compute_sequence(xp_w[:, K])

# Convert results back to assets, consumption and income
xp = np.column_stack((xp_w, xp_r[:, 1:]))
assets = xp[0, :] # Assets

up = np.column_stack((up_w, up_r))
c = up.flatten() + c_bar # Consumption

time = np.arange(1, K+1)
income_w = σ * wp_w[0, 1:K+1] + m1 * time + m2 * time**2 # Income
income_r = np.full(T-K, s)
income = np.concatenate((income_w, income_r))

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income",
**p_args)

axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)

axes[1].plot(range(T+1), assets, 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')
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for ax in axes:
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=2, **legend_args)

plt.show()

Exercise 63.7.3

Reproduce the figures from the monopolist application given above.

For parameters, use 𝑎0 = 5, 𝑎1 = 0.5, 𝜎 = 0.15, 𝜌 = 0.9, 𝛽 = 0.95 and 𝑐 = 2, while 𝛾 varies between 1 and 50
(see figures).

Solution to Exercise 63.7.3

The first task is to find the matrices 𝐴, 𝐵, 𝐶, 𝑄, 𝑅 that define the LQ problem.
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Recall that 𝑥𝑡 = ( ̄𝑞𝑡 𝑞𝑡 1)′, while 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡.

Letting 𝑚0 ∶= (𝑎0 − 𝑐)/2𝑎1 and 𝑚1 ∶= 1/2𝑎1, we can write ̄𝑞𝑡 = 𝑚0 + 𝑚1𝑑𝑡, and then, with some manipulation

̄𝑞𝑡+1 = 𝑚0(1 − 𝜌) + 𝜌 ̄𝑞𝑡 + 𝑚1𝜎𝑤𝑡+1

By our definition of 𝑢𝑡, the dynamics of 𝑞𝑡 are 𝑞𝑡+1 = 𝑞𝑡 + 𝑢𝑡.

Using these facts you should be able to build the correct 𝐴, 𝐵, 𝐶 matrices (and then check them against those found
in the solution code below).

Suitable 𝑅, 𝑄 matrices can be found by inspecting the objective function, which we repeat here for convenience:

min𝔼 {
∞

∑
𝑡=0

𝛽𝑡𝑎1(𝑞𝑡 − ̄𝑞𝑡)2 + 𝛾𝑢2
𝑡 }

Our solution code is
# Model parameters
a0 = 5
a1 = 0.5
σ = 0.15
ρ = 0.9
γ = 1
β = 0.95
c = 2
T = 120

# Useful constants
m0 = (a0-c)/(2 * a1)
m1 = 1/(2 * a1)

# Formulate LQ problem
Q = γ
R = [[ a1, -a1, 0],

[-a1, a1, 0],
[ 0, 0, 0]]

A = [[ρ, 0, m0 * (1 - ρ)],
[0, 1, 0],
[0, 0, 1]]

B = [[0],
[1],
[0]]

C = [[m1 * σ],
[ 0],
[ 0]]

lq = LQ(Q, R, A, B, C=C, beta=β)

# Simulate state / control paths
x0 = (m0, 2, 1)
xp, up, wp = lq.compute_sequence(x0, ts_length=150)
q_bar = xp[0, :]
q = xp[1, :]

# Plot simulation results
fig, ax = plt.subplots(figsize=(10, 6.5))
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# Some fancy plotting stuff -- simplify if you prefer
bbox = (0., 1.01, 1., .101)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.6}

time = range(len(q))
ax.set(xlabel='Time', xlim=(0, max(time)))
ax.plot(time, q_bar, 'k-', lw=2, alpha=0.6, label=r'$\bar q_t$')
ax.plot(time, q, 'b-', lw=2, alpha=0.6, label='$q_t$')
ax.legend(ncol=2, **legend_args)
s = fr'dynamics with $\gamma = {γ}$'
ax.text(max(time) * 0.6, 1 * q_bar.max(), s, fontsize=14)
plt.show()
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CHAPTER

SIXTYFOUR

LAGRANGIAN FOR LQ CONTROL

!pip install quantecon

import numpy as np
from quantecon import LQ
from scipy.linalg import schur

64.1 Overview

This is a sequel to this lecture linear quadratic dynamic programming

It can also be regarded as presenting invariant subspace techniques that extend ones that we encountered earlier in this
lecture stability in linear rational expectations models

Wepresent a Lagrangian formulation of an infinite horizon linear quadratic undiscounted dynamic programming problem.

Such a problem is also sometimes called an optimal linear regulator problem.

A Lagrangian formulation

• carries insights about connections between stability and optimality

• is the basis for fast algorithms for solving Riccati equations

• opens the way to constructing solutions of dynamic systems that don’t come directly from an intertemporal opti-
mization problem

A key tool in this lecture is the concept of an 𝑛 × 𝑛 symplectic matrix.

A symplectic matrix has eigenvalues that occur in reciprocal pairs, meaning that if 𝜆𝑖 ∈ (−1, 1) is an eigenvalue, then
so is 𝜆−1

𝑖 .

This reciprocal pairs property of the eigenvalues of a matrix is a tell-tale sign that the matrix describes the joint dynamics
of a system of equations describing the states and costates that constitute first-order necessary conditions for solving an
undiscounted linear-quadratic infinite-horizon optimization problem.

The symplectic matrix that will interest us describes the first-order dynamics of state and co-state vectors of an optimally
controlled system.

In focusing on eigenvalues and eigenvectors of this matrix, we capitalize on an analysis of invariant subspaces.

These invariant subspace formulations of LQ dynamic programming problems provide a bridge between recursive (i.e.,
dynamic programming) formulations and classical formulations of linear control and linear filtering problems that make
use of related matrix decompositions (see for example this lecture and this lecture).

While most of this lecture focuses on undiscounted problems, later sections describe handy ways of transforming dis-
counted problems to undiscounted ones.
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The techniques in this lecture will prove useful when we study Stackelberg and Ramsey problem in this lecture.

64.2 Undiscounted LQ DP Problem

The problem is to choose a sequence of controls {𝑢𝑡}∞
𝑡=0 to maximize the criterion

−
∞

∑
𝑡=0

{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡}

subject to 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, where 𝑥0 is a given initial state vector.

Here 𝑥𝑡 is an (𝑛 × 1) vector of state variables, 𝑢𝑡 is a (𝑘 × 1) vector of controls, 𝑅 is a positive semidefinite symmetric
matrix, 𝑄 is a positive definite symmetric matrix, 𝐴 is an (𝑛 × 𝑛) matrix, and 𝐵 is an (𝑛 × 𝑘) matrix.
The optimal value function turns out to be quadratic, 𝑉 (𝑥) = −𝑥′𝑃𝑥, where 𝑃 is a positive semidefinite symmetric
matrix.

Using the transition law to eliminate next period’s state, the Bellman equation becomes

−𝑥′𝑃𝑥 = max
𝑢

{−𝑥′𝑅𝑥 − 𝑢′𝑄𝑢 − (𝐴𝑥 + 𝐵𝑢)′𝑃(𝐴𝑥 + 𝐵𝑢)} (64.1)

The first-order necessary conditions for the maximum problem on the right side of equation (64.1) are

Note

We use the following rules for differentiating quadratic and bilinear matrix forms: 𝜕𝑥′𝐴𝑥
𝜕𝑥 = (𝐴 + 𝐴′)𝑥; 𝜕𝑦′𝐵𝑧

𝜕𝑦 =
𝐵𝑧, 𝜕𝑦′𝐵𝑧

𝜕𝑧 = 𝐵′𝑦.

(𝑄 + 𝐵′𝑃𝐵)𝑢 = −𝐵′𝑃𝐴𝑥,

which implies that an optimal decision rule for 𝑢 is

𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥

or

𝑢 = −𝐹𝑥,

where

𝐹 = (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴.

Substituting 𝑢 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴𝑥 into the right side of equation (64.1) and rearranging gives

𝑃 = 𝑅 + 𝐴′𝑃𝐴 − 𝐴′𝑃𝐵(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴. (64.2)

Equation (64.2) is called an algebraic matrix Riccati equation.

There are multiple solutions of equation (64.2).

But only one of them is positive definite.

The positive define solution is associated with the maximum of our problem.
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It expresses the matrix 𝑃 as an implicit function of the matrices 𝑅, 𝑄, 𝐴, 𝐵.

Notice that the gradient of the value function is

𝜕𝑉 (𝑥)
𝜕𝑥 = −2𝑃𝑥 (64.3)

We shall use fact (64.3) later.

64.3 Lagrangian

For the undiscounted optimal linear regulator problem, form the Lagrangian

𝐿 = −
∞

∑
𝑡=0

{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝜇′
𝑡+1[𝐴𝑥𝑡 + 𝐵𝑢𝑡 − 𝑥𝑡+1]} (64.4)

where 2𝜇𝑡+1 is a vector of Lagrange multipliers on the time 𝑡 transition law 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.

(We put the 2 in front of 𝜇𝑡+1 to make things match up nicely with equation (64.3).)

First-order conditions for maximization with respect to {𝑢𝑡, 𝑥𝑡+1}∞
𝑡=0 are

2𝑄𝑢𝑡 + 2𝐵′𝜇𝑡+1 = 0 , 𝑡 ≥ 0
𝜇𝑡 = 𝑅𝑥𝑡 + 𝐴′𝜇𝑡+1 , 𝑡 ≥ 1. (64.5)

Define 𝜇0 to be a vector of shadow prices of 𝑥0 and apply an envelope condition to (64.4) to deduce that

𝜇0 = 𝑅𝑥0 + 𝐴′𝜇1,
which is a time 𝑡 = 0 counterpart to the second equation of system (64.5).

An important fact is that

𝜇𝑡+1 = 𝑃𝑥𝑡+1 (64.6)

where 𝑃 is a positive define matrix that solves the algebraic Riccati equation (64.2).

Thus, from equations (64.3) and (64.6), −2𝜇𝑡 is the gradient of the value function with respect to 𝑥𝑡.

The Lagrange multiplier vector 𝜇𝑡 is often called the costate vector that corresponds to the state vector 𝑥𝑡.

It is useful to proceed with the following steps:

• solve the first equation of (64.5) for 𝑢𝑡 in terms of 𝜇𝑡+1.

• substitute the result into the law of motion 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.

• arrange the resulting equation and the second equation of (64.5) into the form

𝐿 [𝑥𝑡+1
𝜇𝑡+1

] = 𝑁 [𝑥𝑡
𝜇𝑡

] , 𝑡 ≥ 0, (64.7)

where

𝐿 = [𝐼 𝐵𝑄−1𝐵′

0 𝐴′ ] , 𝑁 = [ 𝐴 0
−𝑅 𝐼] .

When 𝐿 is of full rank (i.e., when 𝐴 is of full rank), we can write system (64.7) as

[𝑥𝑡+1
𝜇𝑡+1

] = 𝑀 [𝑥𝑡
𝜇𝑡

] (64.8)

where

𝑀 ≡ 𝐿−1𝑁 = [𝐴 + 𝐵𝑄−1𝐵′𝐴′−1𝑅 −𝐵𝑄−1𝐵′𝐴′−1

−𝐴′−1𝑅 𝐴′−1 ] . (64.9)
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64.4 State-Costate Dynamics

We seek to solve the difference equation system (64.8) for a sequence {𝑥𝑡}∞
𝑡=0 that satisfies

• an initial condition for 𝑥0

• a terminal condition lim𝑡→+∞ 𝑥𝑡 = 0
This terminal condition reflects our desire for a stable solution, one that does not diverge as 𝑡 → ∞.

We inherit our wish for stability of the {𝑥𝑡} sequence from a desire to maximize

−
∞

∑
𝑡=0

[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡],

which requires that 𝑥′
𝑡𝑅𝑥𝑡 converge to zero as 𝑡 → +∞.

64.5 Reciprocal Pairs Property

To proceed, we study properties of the (2𝑛 × 2𝑛) matrix 𝑀 defined in (64.9).

It helps to introduce a (2𝑛 × 2𝑛) matrix

𝐽 = [ 0 −𝐼𝑛
𝐼𝑛 0 ] .

The rank of 𝐽 is 2𝑛.
Definition: A matrix 𝑀 is called symplectic if

𝑀𝐽𝑀 ′ = 𝐽. (64.10)

Salient properties of symplectic matrices that are readily verified include:

• If 𝑀 is symplectic, then 𝑀2 is symplectic

• The determinant of a symplectic, then det(𝑀) = 1
It can be verified directly that 𝑀 in equation (64.9) is symplectic.

It follows from equation (64.10) and from the fact 𝐽−1 = 𝐽 ′ = −𝐽 that for any symplectic matrix 𝑀 ,

𝑀 ′ = 𝐽−1𝑀−1𝐽. (64.11)

Equation (64.11) states that 𝑀 ′ is related to the inverse of 𝑀 by a similarity transformation.

For square matrices, recall that

• similar matrices share eigenvalues

• eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix

• a matrix and its transpose share eigenvalues

It then follows from equation (64.11) that the eigenvalues of 𝑀 occur in reciprocal pairs: if 𝜆 is an eigenvalue of 𝑀 , so
is 𝜆−1.

Write equation (64.8) as

𝑦𝑡+1 = 𝑀𝑦𝑡 (64.12)
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where 𝑦𝑡 = [𝑥𝑡
𝜇𝑡

].

Consider a triangularization of 𝑀

𝑉 −1𝑀𝑉 = [𝑊11 𝑊12
0 𝑊22

] (64.13)

where

• each block on the right side is (𝑛 × 𝑛)
• 𝑉 is nonsingular

• all eigenvalues of 𝑊22 exceed 1 in modulus
• all eigenvalues of 𝑊11 are less than 1 in modulus

64.6 Schur decomposition

The Schur decomposition and the eigenvalue decomposition are two decompositions of the form (64.13).

Write equation (64.12) as

𝑦𝑡+1 = 𝑉 𝑊𝑉 −1𝑦𝑡. (64.14)

A solution of equation (64.14) for arbitrary initial condition 𝑦0 is evidently

𝑦𝑡 = 𝑉 [𝑊 𝑡
11 𝑊12,𝑡

0 𝑊 𝑡
22

] 𝑉 −1𝑦0 (64.15)

where 𝑊12,𝑡 = 𝑊12 for 𝑡 = 1 and for 𝑡 ≥ 2 obeys the recursion

𝑊12,𝑡 = 𝑊 𝑡−1
11 𝑊12,𝑡−1 + 𝑊12,𝑡−1𝑊 𝑡−1

22

and where 𝑊 𝑡
𝑖𝑖 is 𝑊𝑖𝑖 raised to the 𝑡th power.

Write equation (64.15) as

[𝑦∗
1𝑡

𝑦∗
2𝑡

] = [𝑊 𝑡
11 𝑊12,𝑡

0 𝑊 𝑡
22

] [𝑦∗
10

𝑦∗
20

]

where 𝑦∗
𝑡 = 𝑉 −1𝑦𝑡, and in particular where

𝑦∗
2𝑡 = 𝑉 21𝑥𝑡 + 𝑉 22𝜇𝑡, (64.16)

and where 𝑉 𝑖𝑗 denotes the (𝑖, 𝑗) piece of the partitioned 𝑉 −1 matrix.

Because 𝑊22 is an unstable matrix, 𝑦∗
𝑡 will diverge unless 𝑦∗

20 = 0.
Let 𝑉 𝑖𝑗 denote the (𝑖, 𝑗) piece of the partitioned 𝑉 −1 matrix.

To attain stability, we must impose 𝑦∗
20 = 0, which from equation (64.16) implies

𝑉 21𝑥0 + 𝑉 22𝜇0 = 0

or

𝜇0 = −(𝑉 22)−1𝑉 21𝑥0.
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This equation replicates itself over time in the sense that it implies

𝜇𝑡 = −(𝑉 22)−1𝑉 21𝑥𝑡.

But notice that because (𝑉 21 𝑉 22) is the second row block of the inverse of 𝑉 , it follows that

(𝑉 21 𝑉 22) [𝑉11
𝑉21

] = 0

which implies

𝑉 21𝑉11 + 𝑉 22𝑉21 = 0.

Therefore,

−(𝑉 22)−1𝑉 21 = 𝑉21𝑉 −1
11 .

So we can write

𝜇0 = 𝑉21𝑉 −1
11 𝑥0

and

𝜇𝑡 = 𝑉21𝑉 −1
11 𝑥𝑡.

However, we know that 𝜇𝑡 = 𝑃𝑥𝑡, where 𝑃 occurs in the matrix that solves the Riccati equation.

Thus, the preceding argument establishes that

𝑃 = 𝑉21𝑉 −1
11 . (64.17)

Remarkably, formula (64.17) provides us with a computationally efficient way of computing the positive definite matrix
𝑃 that solves the algebraic Riccati equation (64.2) that emerges from dynamic programming.

This same method can be applied to compute the solution of any system of the form (64.8) if a solution exists, even if
eigenvalues of 𝑀 fail to occur in reciprocal pairs.

The method will typically work so long as the eigenvalues of 𝑀 split half inside and half outside the unit circle.

Systems in which eigenvalues (properly adjusted for discounting) fail to occur in reciprocal pairs arise when the system
being solved is an equilibrium of a model in which there are distortions that prevent there being any optimum problem
that the equilibrium solves. See [Ljungqvist and Sargent, 2018], ch 12.

64.7 Application

Here we demonstrate the computation with an example which is the deterministic version of an example borrowed from
this quantecon lecture.

# Model parameters
r = 0.05
c_bar = 2
μ = 1

# Formulate as an LQ problem
Q = np.array([[1]])
R = np.zeros((2, 2))

(continues on next page)
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(continued from previous page)

A = [[1 + r, -c_bar + μ],
[0, 1]]

B = [[-1],
[0]]

# Construct an LQ instance
lq = LQ(Q, R, A, B)

Given matrices 𝐴, 𝐵, 𝑄, 𝑅, we can then compute 𝐿, 𝑁 , and 𝑀 = 𝐿−1𝑁 .

def construct_LNM(A, B, Q, R):

n, k = lq.n, lq.k

# construct L and N
L = np.zeros((2*n, 2*n))
L[:n, :n] = np.eye(n)
L[:n, n:] = B @ np.linalg.inv(Q) @ B.T
L[n:, n:] = A.T

N = np.zeros((2*n, 2*n))
N[:n, :n] = A
N[n:, :n] = -R
N[n:, n:] = np.eye(n)

# compute M
M = np.linalg.inv(L) @ N

return L, N, M

L, N, M = construct_LNM(lq.A, lq.B, lq.Q, lq.R)

M

array([[ 1.05 , -1. , -0.95238095, 0. ],
[ 0. , 1. , 0. , 0. ],
[ 0. , 0. , 0.95238095, 0. ],
[ 0. , 0. , 0.95238095, 1. ]])

Let’s verify that 𝑀 is symplectic.

n = lq.n
J = np.zeros((2*n, 2*n))
J[n:, :n] = np.eye(n)
J[:n, n:] = -np.eye(n)

M @ J @ M.T - J

array([[-1.32169408e-17, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

(continues on next page)
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(continued from previous page)

0.00000000e+00]])

We can compute the eigenvalues of 𝑀 using np.linalg.eigvals, arranged in ascending order.

eigvals = sorted(np.linalg.eigvals(M))
eigvals

[np.float64(0.9523809523809523),
np.float64(1.0),
np.float64(1.0),
np.float64(1.05)]

When we apply Schur decomposition such that 𝑀 = 𝑉 𝑊𝑉 −1, we want

• the upper left block of 𝑊 , 𝑊11, to have all of its eigenvalues less than 1 in modulus, and

• the lower right block 𝑊22 to have eigenvalues that exceed 1 in modulus.

To get what we want, let’s define a sorting function that tells scipy.schur to sort the corresponding eigenvalues with
modulus smaller than 1 to the upper left.

stable_eigvals = eigvals[:n]

def sort_fun(x):
"Sort the eigenvalues with modules smaller than 1 to the top-left."

if x in stable_eigvals:
stable_eigvals.pop(stable_eigvals.index(x))
return True

else:
return False

W, V, _ = schur(M, sort=sort_fun)

W

array([[ 1. , -0.02316402, -1.00085948, -0.95000594],
[ 0. , 0.95238095, -0.00237501, -0.95325452],
[ 0. , 0. , 1.05 , 0.02432222],
[ 0. , 0. , 0. , 1. ]])

V

array([[ 0.99875234, 0.00121459, -0.04992284, 0. ],
[ 0.04993762, -0.02429188, 0.99845688, 0. ],
[ 0. , 0.04992284, 0.00121459, 0.99875234],
[ 0. , -0.99845688, -0.02429188, 0.04993762]])

We can check the modulus of eigenvalues of 𝑊11 and 𝑊22.

Since they are both triangular matrices, eigenvalues are the diagonal elements.

# W11
np.diag(W[:n, :n])
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array([1. , 0.95238095])

# W22
np.diag(W[n:, n:])

array([1.05, 1. ])

The following functions wrap 𝑀 matrix construction, Schur decomposition, and stability-imposing computation of 𝑃 .

def stable_solution(M, verbose=True):
"""
Given a system of linear difference equations

y' = |a b| y
x' = |c d| x

which is potentially unstable, find the solution
by imposing stability.

Parameter
---------
M : np.ndarray(float)

The matrix represents the linear difference equations system.
"""
n = M.shape[0] // 2
stable_eigvals = list(sorted(np.linalg.eigvals(M))[:n])

def sort_fun(x):
"Sort the eigenvalues with modules smaller than 1 to the top-left."

if x in stable_eigvals:
stable_eigvals.pop(stable_eigvals.index(x))
return True

else:
return False

W, V, _ = schur(M, sort=sort_fun)
if verbose:

print('eigenvalues:\n')
print(' W11: {}'.format(np.diag(W[:n, :n])))
print(' W22: {}'.format(np.diag(W[n:, n:])))

# compute V21 V11^{-1}
P = V[n:, :n] @ np.linalg.inv(V[:n, :n])

return W, V, P

def stationary_P(lq, verbose=True):
"""
Computes the matrix :math:`P` that represent the value function

V(x) = x' P x

in the infinite horizon case. Computation is via imposing stability
on the solution path and using Schur decomposition.

Parameters
(continues on next page)
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(continued from previous page)

----------
lq : qe.LQ

QuantEcon class for analyzing linear quadratic optimal control
problems of infinite horizon form.

Returns
-------
P : array_like(float)

P matrix in the value function representation.
"""

Q = lq.Q
R = lq.R
A = lq.A * lq.beta ** (1/2)
B = lq.B * lq.beta ** (1/2)

n, k = lq.n, lq.k

L, N, M = construct_LNM(A, B, Q, R)
W, V, P = stable_solution(M, verbose=verbose)

return P

# compute P
stationary_P(lq)

eigenvalues:

W11: [1. 0.95238095]
W22: [1.05 1. ]

array([[ 0.1025, -2.05 ],
[-2.05 , 41. ]])

Note that the matrix 𝑃 computed in this way is close to what we get from the routine in quantecon that solves an algebraic
Riccati equation by iterating to convergence on a Riccati difference equation.

The small difference comes from computational errors and will decrease as we increase themaximum number of iterations
or decrease the tolerance for convergence.

lq.stationary_values()

(array([[ 0.1025, -2.05 ],
[-2.05 , 41.01 ]]),

array([[-0.09761905, 1.95238095]]),
0)

Using a Schur decomposition is much more efficient.

%%timeit
stationary_P(lq, verbose=False)

120 μs ± 59.8 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
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%%timeit
lq.stationary_values()

1.87 ms ± 754 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

64.8 Other Applications

The preceding approach to imposing stability on a system of potentially unstable linear difference equations is not limited
to linear quadratic dynamic optimization problems.

For example, the same method is used in our Stability in Linear Rational Expectations Models lecture.

Let’s try to solve the model described in that lecture by applying the stable_solution function defined in this lecture
above.

def construct_H(ρ, λ, δ):
"contruct matrix H given parameters."

H = np.empty((2, 2))
H[0, :] = ρ,δ
H[1, :] = - (1 - λ) / λ, 1 / λ

return H

H = construct_H(ρ=.9, λ=.5, δ=0)

W, V, P = stable_solution(H)
P

eigenvalues:

W11: [0.9]
W22: [2.]

array([[0.90909091]])

64.9 Discounted Problems

64.9.1 Transforming States and Controls to Eliminate Discounting

A pair of useful transformations allows us to convert a discounted problem into an undiscounted one.

Thus, suppose that we have a discounted problem with objective

−
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡}

and that the state transition equation is again 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.

Define the transformed state and control variables

• ̂𝑥𝑡 = 𝛽 𝑡
2 𝑥𝑡
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• 𝑢̂𝑡 = 𝛽 𝑡
2 𝑢𝑡

and the transformed transition equation matrices

• ̂𝐴 = 𝛽 1
2 𝐴

• 𝐵̂ = 𝛽 1
2 𝐵

so that the adjusted state and control variables obey the transition law

̂𝑥𝑡+1 = ̂𝐴 ̂𝑥𝑡 + 𝐵̂𝑢̂𝑡.

Then a discounted optimal control problem defined by 𝐴, 𝐵, 𝑅, 𝑄, 𝛽 having optimal policy characterized by 𝑃 , 𝐹 is
associated with an equivalent undiscounted problem defined by ̂𝐴, 𝐵̂, 𝑄, 𝑅 having optimal policy characterized by ̂𝐹 , ̂𝑃
that satisfy the following equations:

̂𝐹 = (𝑄 + 𝐵′ ̂𝑃𝐵)−1𝐵̂′𝑃 ̂𝐴

and

̂𝑃 = 𝑅 + ̂𝐴′𝑃 ̂𝐴 − ̂𝐴′𝑃𝐵̂(𝑄 + 𝐵′ ̂𝑃 𝐵̂)−1𝐵̂′𝑃 ̂𝐴

It follows immediately from the definitions of ̂𝐴, 𝐵̂ that ̂𝐹 = 𝐹 and ̂𝑃 = 𝑃 .

By exploiting these transformations, we can solve a discounted problem by solving an associated undiscounted problem.

In particular, we can first transform a discounted LQ problem to an undiscounted one and then solve that discounted
optimal regulator problem using the Lagrangian and invariant subspace methods described above.

For example, when 𝛽 = 1
1+𝑟 , we can solve for 𝑃 with ̂𝐴 = 𝛽1/2𝐴 and 𝐵̂ = 𝛽1/2𝐵.

These settings are adopted by default in the function stationary_P defined above.

β = 1 / (1 + r)
lq.beta = β

stationary_P(lq)

eigenvalues:

W11: [0.97590007 0.97590007]
W22: [1.02469508 1.02469508]

array([[ 0.0525, -1.05 ],
[-1.05 , 21. ]])

We can verify that the solution agrees with one that comes from applying the routine LQ.stationary_values in
the quantecon package.

lq.stationary_values()

(array([[ 0.0525, -1.05 ],
[-1.05 , 21. ]]),

array([[-0.05, 1. ]]),
np.float64(0.0))
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64.9.2 Lagrangian for Discounted Problem

For several purposes, it is useful explicitly briefly to describe a Lagrangian for a discounted problem.

Thus, for the discounted optimal linear regulator problem, form the Lagrangian

𝐿 = −
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝛽𝜇′
𝑡+1[𝐴𝑥𝑡 + 𝐵𝑢𝑡 − 𝑥𝑡+1]} (64.18)

where 2𝜇𝑡+1 is a vector of Lagrange multipliers on the state vector 𝑥𝑡+1.

First-order conditions for maximization with respect to {𝑢𝑡, 𝑥𝑡+1}∞
𝑡=0 are

2𝑄𝑢𝑡 + 2𝛽𝐵′𝜇𝑡+1 = 0 , 𝑡 ≥ 0
𝜇𝑡 = 𝑅𝑥𝑡 + 𝛽𝐴′𝜇𝑡+1 , 𝑡 ≥ 1. (64.19)

Define 2𝜇0 to be the vector of shadow prices of 𝑥0 and apply an envelope condition to (64.18) to deduce that

𝜇0 = 𝑅𝑥0 + 𝛽𝐴′𝜇1,

which is a time 𝑡 = 0 counterpart to the second equation of system (64.19).

Proceeding as we did above with the undiscounted system (64.5), we can rearrange the first-order conditions into the
system

[𝐼 𝛽𝐵𝑄−1𝐵′

0 𝛽𝐴′ ] [𝑥𝑡+1
𝜇𝑡+1

] = [ 𝐴 0
−𝑅 𝐼] [𝑥𝑡

𝜇𝑡
] (64.20)

which in the special case that 𝛽 = 1 agrees with equation (64.5), as expected.
By staring at system (64.20), we can infer identities that shed light on the structure of optimal linear regulator problems,
some of which will be useful in this lecture when we apply and extend the methods of this lecture to study Stackelberg
and Ramsey problems.

First, note that the first block of equation system (64.20) asserts that when 𝜇𝑡+1 = 𝑃𝑥𝑡+1, then

(𝐼 + 𝛽𝑄−1𝐵′𝑃𝐵𝑃)𝑥𝑡+1 = 𝐴𝑥𝑡,

which can be rearranged to sbe

𝑥𝑡+1 = (𝐼 + 𝛽𝐵𝑄−1𝐵′𝑃)−1𝐴𝑥𝑡.

This expression for the optimal closed loop dynamics of the state must agree with an alternative expression that we had
derived with dynamic programming, namely,

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡.

But using

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴 (64.21)

it follows that

𝐴 − 𝐵𝐹 = (𝐼 − 𝛽𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃)𝐴.

Thus, our two expressions for the closed loop dynamics agree if and only if

(𝐼 + 𝛽𝐵𝑄−1𝐵′𝑃)−1 = (𝐼 − 𝛽𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃). (64.22)

Matrix equation (64.22) can be verified by applying a partitioned inverse formula.
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Note

Just use the formula (𝑎−𝑏𝑑−1𝑐)−1 = 𝑎−1+𝑎−1𝑏(𝑑−𝑐𝑎−1𝑏)−1𝑐𝑎−1 for appropriate choices of the matrices 𝑎, 𝑏, 𝑐, 𝑑.

Next, note that for any fixed 𝐹 for which eigenvalues of𝐴−𝐵𝐹 are less than 1
𝛽 in modulus, the value function associated

with using this rule forever is −𝑥0 ̃𝑃 𝑥0 where ̃𝑃 obeys the following matrix equation:

̃𝑃 = (𝑅 + 𝐹 ′𝑄𝐹) + 𝛽(𝐴 − 𝐵𝐹)′𝑃(𝐴 − 𝐵𝐹). (64.23)

Evidently, ̃𝑃 = 𝑃 only when 𝐹 obeys formula (64.21).

Next, note that the second equation of system (64.20) implies the “forward looking” equation for the Lagrange multiplier

𝜇𝑡 = 𝑅𝑥𝑡 + 𝛽𝐴′𝜇𝑡+1

whose solution is

𝜇𝑡 = 𝑃𝑥𝑡,

where

𝑃 = 𝑅 + 𝛽𝐴′𝑃(𝐴 − 𝐵𝐹) (64.24)

where we must require that 𝐹 obeys equation (64.21).

Equations (64.23) and (64.24) provide different perspectives on the optimal value function.
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SIXTYFIVE

ELIMINATING CROSS PRODUCTS

65.1 Overview

This lecture describes formulas for eliminating

• cross products between states and control in linear-quadratic dynamic programming problems

• covariances between state and measurement noises in Kalman filtering problems

For a linear-quadratic dynamic programming problem, the idea involves these steps

• transform states and controls in a way that leads to an equivalent problem with no cross-products between trans-
formed states and controls

• solve the transformed problem using standard formulas for problems with no cross-products between states and
controls presented in this lecture Linear Control: Foundations

• transform the optimal decision rule for the altered problem into the optimal decision rule for the original problem
with cross-products between states and controls

65.2 Undiscounted Dynamic Programming Problem

Here is a nonstochastic undiscounted LQ dynamic programming with cross products between states and controls in the
objective function.

The problem is defined by the 5-tuple of matrices (𝐴, 𝐵, 𝑅, 𝑄, 𝐻) where 𝑅 and 𝑄 are positive definite symmetric
matrices and 𝐴 ∼ 𝑚 × 𝑚, 𝐵 ∼ 𝑚 × 𝑘, 𝑄 ∼ 𝑘 × 𝑘, 𝑅 ∼ 𝑚 × 𝑚 and 𝐻 ∼ 𝑘 × 𝑚.

The problem is to choose {𝑥𝑡+1, 𝑢𝑡}∞
𝑡=0 to maximize

−
∞

∑
𝑡=0

(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢𝑡𝐻𝑥𝑡)

subject to the linear constraints

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, 𝑡 ≥ 0

where 𝑥0 is a given initial condition.

The solution to this undiscounted infinite-horizon problem is a time-invariant feedback rule

𝑢𝑡 = −𝐹𝑥𝑡
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where

𝐹 = −(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and 𝑃 ∼ 𝑚 × 𝑚 is a positive definite solution of the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝐴′𝑃𝐴 − (𝐴′𝑃𝐵 + 𝐻′)(𝑄 + 𝐵′𝑃𝐵)−1(𝐵′𝑃𝐴 + 𝐻).

It can be verified that an equivalent problem without cross-products between states and controls is defined by a 4-tuple
of matrices : (𝐴∗, 𝐵, 𝑅∗, 𝑄).
That the omitted matrix 𝐻 = 0 indicates that there are no cross products between states and controls in the equivalent
problem.

The matrices (𝐴∗, 𝐵, 𝑅∗, 𝑄) defining the equivalent problem and the value function, policy function matrices 𝑃 , 𝐹 ∗ that
solve it are related to the matrices (𝐴, 𝐵, 𝑅, 𝑄, 𝐻) defining the original problem and the value function, policy function
matrices 𝑃 , 𝐹 that solve the original problem by

𝐴∗ = 𝐴 − 𝐵𝑄−1𝐻,
𝑅∗ = 𝑅 − 𝐻′𝑄−1𝐻,
𝑃 = 𝑅∗ + 𝐴∗′𝑃𝐴 − (𝐴∗′𝑃𝐵)(𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴∗,

𝐹 ∗ = (𝑄 + 𝐵′𝑃𝐵)−1𝐵′𝑃𝐴∗,
𝐹 = 𝐹 ∗ + 𝑄−1𝐻.

65.3 Kalman Filter

The duality that prevails between a linear-quadratic optimal control and a Kalman filtering problemmeans that there is an
analogous transformation that allows us to transform a Kalman filtering problemwith non-zero covariance matrix between
between shocks to states and shocks to measurements to an equivalent Kalman filtering problem with zero covariance
between shocks to states and measurments.

Let’s look at the appropriate transformations.

First, let’s recall the Kalman filter with covariance between noises to states and measurements.

The hidden Markov model is

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑤𝑡+1,
𝑧𝑡+1 = 𝐷𝑥𝑡 + 𝐹𝑤𝑡+1,

where 𝐴 ∼ 𝑚 × 𝑚, 𝐵 ∼ 𝑚 × 𝑝 and 𝐷 ∼ 𝑘 × 𝑚, 𝐹 ∼ 𝑘 × 𝑝, and 𝑤𝑡+1 is the time 𝑡 + 1 component of a sequence of
i.i.d. 𝑝 × 1 normally distibuted random vectors with mean vector zero and covariance matrix equal to a 𝑝 × 𝑝 identity
matrix.

Thus, 𝑥𝑡 is 𝑚 × 1 and 𝑧𝑡 is 𝑘 × 1.
The Kalman filtering formulas are

𝐾(Σ𝑡) = (𝐴Σ𝑡𝐷′ + 𝐵𝐹 ′)(𝐷Σ𝑡𝐷′ + 𝐹𝐹 ′)−1,
Σ𝑡+1 = 𝐴Σ𝑡𝐴′ + 𝐵𝐵′ − (𝐴Σ𝑡𝐷′ + 𝐵𝐹 ′)(𝐷Σ𝑡𝐷′ + 𝐹𝐹 ′)−1(𝐷Σ𝑡𝐴′ + 𝐹𝐵′).

(eq:Kalman102)

Define tranformed matrices

𝐴∗ = 𝐴 − 𝐵𝐹 ′(𝐹𝐹 ′)−1𝐷,
𝐵∗𝐵∗′ = 𝐵𝐵′ − 𝐵𝐹 ′(𝐹𝐹 ′)−1𝐹𝐵′.
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65.3.1 Algorithm

A consequence of formulas {eq}`eq:Kalman102} is that we can use the following algorithm to solve Kalman filtering
problems that involve non zero covariances between state and signal noises.

First, compute Σ, 𝐾∗ using the ordinary Kalman filtering formula with 𝐵𝐹 ′ = 0, i.e., with zero covariance matrix
between random shocks to states and random shocks to measurements.

That is, compute 𝐾∗ and Σ that satisfy

𝐾∗ = (𝐴∗Σ𝐷′)(𝐷Σ𝐷′ + 𝐹𝐹 ′)−1

Σ = 𝐴∗Σ𝐴∗′ + 𝐵∗𝐵∗′ − (𝐴∗Σ𝐷′)(𝐷Σ𝐷′ + 𝐹𝐹 ′)−1(𝐷Σ𝐴∗′).

The Kalman gain for the original problem with non-zero covariance between shocks to states and measurements is then

𝐾 = 𝐾∗ + 𝐵𝐹 ′(𝐹𝐹 ′)−1,

The state reconstruction covariance matrix Σ for the original problem equals the state reconstrution covariance matrix
for the transformed problem.

65.4 Duality table

Here is a handy table to remember how the Kalman filter and dynamic program are related.

Dynamic Program Kalman Filter

𝐴 𝐴′

𝐵 𝐷′

𝐻 𝐹𝐵′

𝑄 𝐹𝐹 ′

𝑅 𝐵𝐵′

𝐹 𝐾′

𝑃 Σ
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CHAPTER

SIXTYSIX

THE PERMANENT INCOME MODEL

Contents

• The Permanent Income Model

– Overview

– The Savings Problem

– Alternative Representations

– Two Classic Examples

– Further Reading

– Appendix: The Euler Equation

66.1 Overview

This lecture describes a rational expectations version of the famous permanent income model of Milton Friedman [Fried-
man, 1956].

Robert Hall cast Friedman’s model within a linear-quadratic setting [Hall, 1978].

Like Hall, we formulate an infinite-horizon linear-quadratic savings problem.

We use the model as a vehicle for illustrating

• alternative formulations of the state of a dynamic system

• the idea of cointegration

• impulse response functions

• the idea that changes in consumption are useful as predictors of movements in income

Background readings on the linear-quadratic-Gaussian permanent income model are Hall’s [Hall, 1978] and chapter 2 of
[Ljungqvist and Sargent, 2018].

Let’s start with some imports

import matplotlib.pyplot as plt
import numpy as np
import random
from numba import jit
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66.2 The Savings Problem

In this section, we state and solve the savings and consumption problem faced by the consumer.

66.2.1 Preliminaries

We use a class of stochastic processes called martingales.

A discrete-time martingale is a stochastic process (i.e., a sequence of random variables) {𝑋𝑡} with finite mean at each 𝑡
and satisfying

𝔼𝑡[𝑋𝑡+1] = 𝑋𝑡, 𝑡 = 0, 1, 2, …

Here 𝔼𝑡 ∶= 𝔼[⋅ | ℱ𝑡] is a conditional mathematical expectation conditional on the time 𝑡 information set ℱ𝑡.

The latter is just a collection of random variables that the modeler declares to be visible at 𝑡.
• When not explicitly defined, it is usually understood that ℱ𝑡 = {𝑋𝑡, 𝑋𝑡−1, … , 𝑋0}.

Martingales have the feature that the history of past outcomes provides no predictive power for changes between current
and future outcomes.

For example, the current wealth of a gambler engaged in a “fair game” has this property.

One common class of martingales is the family of random walks.

A random walk is a stochastic process {𝑋𝑡} that satisfies

𝑋𝑡+1 = 𝑋𝑡 + 𝑤𝑡+1

for some IID zero mean innovation sequence {𝑤𝑡}.
Evidently, 𝑋𝑡 can also be expressed as

𝑋𝑡 =
𝑡

∑
𝑗=1

𝑤𝑗 + 𝑋0

Not every martingale arises as a random walk (see, for example, Wald’s martingale).

66.2.2 The Decision Problem

A consumer has preferences over consumption streams that are ordered by the utility functional

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] (66.1)

where

• 𝔼𝑡 is the mathematical expectation conditioned on the consumer’s time 𝑡 information
• 𝑐𝑡 is time 𝑡 consumption
• 𝑢 is a strictly concave one-period utility function

• 𝛽 ∈ (0, 1) is a discount factor
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The consumer maximizes (66.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞
𝑡=0 subject to the sequence of

budget constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡 𝑡 ≥ 0 (66.2)

Here

• 𝑦𝑡 is an exogenous endowment process.

• 𝑟 > 0 is a time-invariant risk-free net interest rate.
• 𝑏𝑡 is one-period risk-free debt maturing at 𝑡.

The consumer also faces initial conditions 𝑏0 and 𝑦0, which can be fixed or random.

66.2.3 Assumptions

For the remainder of this lecture, we follow Friedman and Hall in assuming that (1 + 𝑟)−1 = 𝛽.
Regarding the endowment process, we assume it has the state-space representation

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑈𝑧𝑡

(66.3)

where

• {𝑤𝑡} is an IID vector process with 𝔼𝑤𝑡 = 0 and 𝔼𝑤𝑡𝑤′
𝑡 = 𝐼 .

• The spectral radius of 𝐴 satisfies 𝜌(𝐴) < √1/𝛽.
• 𝑈 is a selection vector that pins down 𝑦𝑡 as a particular linear combination of components of 𝑧𝑡.

The restriction on 𝜌(𝐴) prevents income from growing so fast that discounted geometric sums of some quadratic forms
to be described below become infinite.

Regarding preferences, we assume the quadratic utility function

𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2

where 𝛾 is a bliss level of consumption.

Note

Along with this quadratic utility specification, we allow consumption to be negative. However, by choosing parameters
appropriately, we can make the probability that the model generates negative consumption paths over finite time
horizons as low as desired.

Finally, we impose the no Ponzi scheme condition

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 ] < ∞ (66.4)

This condition rules out an always-borrow scheme that would allow the consumer to enjoy bliss consumption forever.
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66.2.4 First-Order Conditions

First-order conditions for maximizing (66.1) subject to (66.2) are

𝔼𝑡[𝑢′(𝑐𝑡+1)] = 𝑢′(𝑐𝑡), 𝑡 = 0, 1, … (66.5)

These optimality conditions are also known as Euler equations.

If you’re not sure where they come from, you can find a proof sketch in the appendix.

With our quadratic preference specification, (66.5) has the striking implication that consumption follows a martingale:

𝔼𝑡[𝑐𝑡+1] = 𝑐𝑡 (66.6)

(In fact, quadratic preferences are necessary for this conclusion1.)

One way to interpret (66.6) is that consumption will change only when “new information” about permanent income is
revealed.

These ideas will be clarified below.

66.2.5 The Optimal Decision Rule

Now let’s deduce the optimal decision rule2.

Note

One way to solve the consumer’s problem is to apply dynamic programming as in this lecture. We do this later. But first
we use an alternative approach that is revealing and shows the work that dynamic programming does for us behind
the scenes.

In doing so, we need to combine

1. the optimality condition (66.6)

2. the period-by-period budget constraint (66.2), and

3. the boundary condition (66.4)

To accomplish this, observe first that (66.4) implies lim𝑡→∞ 𝛽 𝑡
2 𝑏𝑡+1 = 0.

Using this restriction on the debt path and solving (66.2) forward yields

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗) (66.7)

Take conditional expectations on both sides of (66.7) and use the martingale property of consumption and the law of
iterated expectations to deduce

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑐𝑡
1 − 𝛽 (66.8)

1 A linear marginal utility is essential for deriving (66.6) from (66.5). Suppose instead that we had imposed the following more standard assumptions
on the utility function: 𝑢′(𝑐) > 0, 𝑢″(𝑐) < 0, 𝑢‴(𝑐) > 0 and required that 𝑐 ≥ 0. The Euler equation remains (66.5). But the fact that 𝑢‴ < 0
implies via Jensen’s inequality that 𝔼𝑡[𝑢′(𝑐𝑡+1)] > 𝑢′(𝔼𝑡[𝑐𝑡+1]). This inequality together with (66.5) implies that 𝔼𝑡[𝑐𝑡+1] > 𝑐𝑡 (consumption is
said to be a ‘submartingale’), so that consumption stochastically diverges to +∞. The consumer’s savings also diverge to +∞.

2 An optimal decision rule is a map from the current state into current actions—in this case, consumption.
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Expressed in terms of 𝑐𝑡 we get

𝑐𝑡 = (1 − 𝛽) [
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑏𝑡] = 𝑟
1 + 𝑟 [

∞
∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 𝑏𝑡] (66.9)

where the last equality uses (1 + 𝑟)𝛽 = 1.
These last two equations assert that consumption equals economic income

• financial wealth equals −𝑏𝑡

• non-financial wealth equals ∑∞
𝑗=0 𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗]

• total wealth equals the sum of financial and non-financial wealth

• a marginal propensity to consume out of total wealth equals the interest factor 𝑟
1+𝑟

• economic income equals

– a constant marginal propensity to consume times the sum of non-financial wealth and financial wealth

– the amount the consumer can consume while leaving its wealth intact

Responding to the State

The state vector confronting the consumer at 𝑡 is [𝑏𝑡 𝑧𝑡].
Here

• 𝑧𝑡 is an exogenous component, unaffected by consumer behavior.

• 𝑏𝑡 is an endogenous component (since it depends on the decision rule).

Note that 𝑧𝑡 contains all variables useful for forecasting the consumer’s future endowment.

It is plausible that current decisions 𝑐𝑡 and 𝑏𝑡+1 should be expressible as functions of 𝑧𝑡 and 𝑏𝑡.

This is indeed the case.

In fact, from this discussion, we see that

∞
∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] = 𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡

Combining this with (66.9) gives

𝑐𝑡 = 𝑟
1 + 𝑟 [𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡] (66.10)

Using this equality to eliminate 𝑐𝑡 in the budget constraint (66.2) gives

𝑏𝑡+1 = (1 + 𝑟)(𝑏𝑡 + 𝑐𝑡 − 𝑦𝑡)
= (1 + 𝑟)𝑏𝑡 + 𝑟[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡] − (1 + 𝑟)𝑈𝑧𝑡
= 𝑏𝑡 + 𝑈[𝑟(𝐼 − 𝛽𝐴)−1 − (1 + 𝑟)𝐼]𝑧𝑡
= 𝑏𝑡 + 𝑈(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)𝑧𝑡

To get from the second last to the last expression in this chain of equalities is not trivial.

A key is to use the fact that (1 + 𝑟)𝛽 = 1 and (𝐼 − 𝛽𝐴)−1 = ∑∞
𝑗=0 𝛽𝑗𝐴𝑗.

We’ve now successfully written 𝑐𝑡 and 𝑏𝑡+1 as functions of 𝑏𝑡 and 𝑧𝑡.
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A State-Space Representation

We can summarize our dynamics in the form of a linear state-space system governing consumption, debt and income:

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑏𝑡+1 = 𝑏𝑡 + 𝑈[(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)]𝑧𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑐𝑡 = (1 − 𝛽)[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡]

(66.11)

To write this more succinctly, let

𝑥𝑡 = [𝑧𝑡
𝑏𝑡

] , ̃𝐴 = [ 𝐴 0
𝑈(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼) 1] , ̃𝐶 = [𝐶

0 ]

and

̃𝑈 = [ 𝑈 0
(1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1 −(1 − 𝛽)] , ̃𝑦𝑡 = [𝑦𝑡

𝑐𝑡
]

Then we can express equation (66.11) as

𝑥𝑡+1 = ̃𝐴𝑥𝑡 + ̃𝐶𝑤𝑡+1

̃𝑦𝑡 = ̃𝑈𝑥𝑡
(66.12)

We can use the following formulas from linear state space models to compute population mean 𝜇𝑡 = 𝔼𝑥𝑡 and covariance
Σ𝑡 ∶= 𝔼[(𝑥𝑡 − 𝜇𝑡)(𝑥𝑡 − 𝜇𝑡)′]

𝜇𝑡+1 = ̃𝐴𝜇𝑡 with 𝜇0 given (66.13)

Σ𝑡+1 = ̃𝐴Σ𝑡 ̃𝐴′ + ̃𝐶 ̃𝐶′ with Σ0 given (66.14)

We can then compute the mean and covariance of ̃𝑦𝑡 from

𝜇𝑦,𝑡 = ̃𝑈𝜇𝑡

Σ𝑦,𝑡 = ̃𝑈Σ𝑡 ̃𝑈 ′
(66.15)

A Simple Example with IID Income

To gain some preliminary intuition on the implications of (66.11), let’s look at a highly stylized example where income
is just IID.

(Later examples will investigate more realistic income streams.)

In particular, let {𝑤𝑡}∞
𝑡=1 be IID and scalar standard normal, and let

𝑧𝑡 = [𝑧1
𝑡
1 ] , 𝐴 = [0 0

0 1] , 𝑈 = [1 𝜇] , 𝐶 = [𝜎
0]

Finally, let 𝑏0 = 𝑧1
0 = 0.

Under these assumptions, we have 𝑦𝑡 = 𝜇 + 𝜎𝑤𝑡 ∼ 𝑁(𝜇, 𝜎2).
Further, if you work through the state space representation, you will see that

𝑏𝑡 = −𝜎
𝑡−1
∑
𝑗=1

𝑤𝑗

𝑐𝑡 = 𝜇 + (1 − 𝛽)𝜎
𝑡

∑
𝑗=1

𝑤𝑗
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Thus, income is IID and debt and consumption are both Gaussian random walks.

Defining assets as −𝑏𝑡, we see that assets are just the cumulative sum of unanticipated incomes prior to the present date.

The next figure shows a typical realization with 𝑟 = 0.05, 𝜇 = 1, and 𝜎 = 0.15
r = 0.05
β = 1 / (1 + r)
σ = 0.15
μ = 1
T = 60

@jit
def time_path(T):

w = np.random.randn(T+1) # w_0, w_1, ..., w_T
w[0] = 0
b = np.zeros(T+1)
for t in range(1, T+1):

b[t] = w[1:t].sum()
b = -σ * b
c = μ + (1 - β) * (σ * w - b)
return w, b, c

w, b, c = time_path(T)

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(μ + σ * w, 'g-', label="Non-financial income")
ax.plot(c, 'k-', label="Consumption")
ax.plot( b, 'b-', label="Debt")
ax.legend(ncol=3, mode='expand', bbox_to_anchor=(0., 1.02, 1., .102))
ax.grid()
ax.set_xlabel('Time')

plt.show()
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Observe that consumption is considerably smoother than income.

The figure below shows the consumption paths of 250 consumers with independent income streams

fig, ax = plt.subplots(figsize=(10, 6))

b_sum = np.zeros(T+1)
for i in range(250):

w, b, c = time_path(T) # Generate new time path
rcolor = random.choice(('c', 'g', 'b', 'k'))
ax.plot(c, color=rcolor, lw=0.8, alpha=0.7)

ax.grid()
ax.set(xlabel='Time', ylabel='Consumption')

plt.show()
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66.3 Alternative Representations

In this section, we shed more light on the evolution of savings, debt and consumption by representing their dynamics in
several different ways.

66.3.1 Hall’s Representation

Hall [Hall, 1978] suggested an insightful way to summarize the implications of LQ permanent income theory.

First, to represent the solution for 𝑏𝑡, shift (66.9) forward one period and eliminate 𝑏𝑡+1 by using (66.2) to obtain

𝑐𝑡+1 = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡+1[𝑦𝑡+𝑗+1] − (1 − 𝛽) [𝛽−1(𝑐𝑡 + 𝑏𝑡 − 𝑦𝑡)]

If we add and subtract 𝛽−1(1−𝛽) ∑∞
𝑗=0 𝛽𝑗𝔼𝑡𝑦𝑡+𝑗 from the right side of the preceding equation and rearrange, we obtain

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗 {𝔼𝑡+1[𝑦𝑡+𝑗+1] − 𝔼𝑡[𝑦𝑡+𝑗+1]} (66.16)

The right side is the time 𝑡 + 1 innovation to the expected present value of the endowment process {𝑦𝑡}.
We can represent the optimal decision rule for (𝑐𝑡, 𝑏𝑡+1) in the form of (66.16) and (66.8), which we repeat:

𝑏𝑡 =
∞

∑
𝑗=0

𝛽𝑗𝔼𝑡[𝑦𝑡+𝑗] − 1
1 − 𝛽 𝑐𝑡 (66.17)

Equation (66.17) asserts that the consumer’s debt due at 𝑡 equals the expected present value of its endowment minus the
expected present value of its consumption stream.
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A high debt thus indicates a large expected present value of surpluses 𝑦𝑡 − 𝑐𝑡.

Recalling again our discussion on forecasting geometric sums, we have

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡

𝔼𝑡+1
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡+1

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1 = 𝑈(𝐼 − 𝛽𝐴)−1𝐴𝑧𝑡

Using these formulas together with (66.3) and substituting into (66.16) and (66.17) gives the following representation for
the consumer’s optimum decision rule:

𝑐𝑡+1 = 𝑐𝑡 + (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1

𝑏𝑡 = 𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 1
1 − 𝛽 𝑐𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1

(66.18)

Representation (66.18) makes clear that

• The state can be taken as (𝑐𝑡, 𝑧𝑡).
– The endogenous part is 𝑐𝑡 and the exogenous part is 𝑧𝑡.

– Debt 𝑏𝑡 has disappeared as a component of the state because it is encoded in 𝑐𝑡.

• Consumption is a random walk with innovation (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1.

– This is a more explicit representation of the martingale result in (66.6).

66.3.2 Cointegration

Representation (66.18) reveals that the joint process {𝑐𝑡, 𝑏𝑡} possesses the property that Engle and Granger [Engle and
Granger, 1987] called cointegration.

Cointegration is a tool that allows us to apply powerful results from the theory of stationary stochastic processes to (certain
transformations of) nonstationary models.

To apply cointegration in the present context, suppose that 𝑧𝑡 is asymptotically stationary
3.

Despite this, both 𝑐𝑡 and 𝑏𝑡 will be non-stationary because they have unit roots (see (66.11) for 𝑏𝑡).

Nevertheless, there is a linear combination of 𝑐𝑡, 𝑏𝑡 that is asymptotically stationary.

In particular, from the second equality in (66.18) we have

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 (66.19)

Hence the linear combination (1 − 𝛽)𝑏𝑡 + 𝑐𝑡 is asymptotically stationary.

Accordingly, Granger and Engle would call [(1 − 𝛽) 1] a cointegrating vector for the state.

When applied to the nonstationary vector process [𝑏𝑡 𝑐𝑡]
′
, it yields a process that is asymptotically stationary.

3 This would be the case if, for example, the spectral radius of 𝐴 is strictly less than one.
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Equation (66.19) can be rearranged to take the form

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 (66.20)

Equation (66.20) asserts that the cointegrating residual on the left side equals the conditional expectation of the geometric
sum of future incomes on the right4.

66.3.3 Cross-Sectional Implications

Consider again (66.18), this time in light of our discussion of distribution dynamics in the lecture on linear systems.

The dynamics of 𝑐𝑡 are given by

𝑐𝑡+1 = 𝑐𝑡 + (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1 (66.21)

or

𝑐𝑡 = 𝑐0 +
𝑡

∑
𝑗=1

𝑤̂𝑗 for 𝑤̂𝑡+1 ∶= (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶𝑤𝑡+1

The unit root affecting 𝑐𝑡 causes the time 𝑡 variance of 𝑐𝑡 to grow linearly with 𝑡.
In particular, since {𝑤̂𝑡} is IID, we have

Var[𝑐𝑡] = Var[𝑐0] + 𝑡 𝜎̂2 (66.22)

where

𝜎̂2 ∶= (1 − 𝛽)2𝑈(𝐼 − 𝛽𝐴)−1𝐶𝐶′(𝐼 − 𝛽𝐴′)−1𝑈 ′

When 𝜎̂ > 0, {𝑐𝑡} has no asymptotic distribution.
Let’s consider what this means for a cross-section of ex-ante identical consumers born at time 0.
Let the distribution of 𝑐0 represent the cross-section of initial consumption values.

Equation (66.22) tells us that the variance of 𝑐𝑡 increases over time at a rate proportional to 𝑡.
A number of different studies have investigated this prediction and found some support for it (see, e.g., [Deaton and
Paxson, 1994], [Storesletten et al., 2004]).

66.3.4 Impulse Response Functions

Impulse response functions measure responses to various impulses (i.e., temporary shocks).

The impulse response function of {𝑐𝑡} to the innovation {𝑤𝑡} is a box.
In particular, the response of 𝑐𝑡+𝑗 to a unit increase in the innovation 𝑤𝑡+1 is (1 − 𝛽)𝑈(𝐼 − 𝛽𝐴)−1𝐶 for all 𝑗 ≥ 1.

4 See [John Y. Campbell, 1988], [Lettau and Ludvigson, 2001], [Lettau and Ludvigson, 2004] for interesting applications of related ideas.
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66.3.5 Moving Average Representation

It’s useful to express the innovation to the expected present value of the endowment process in terms of a moving average
representation for income 𝑦𝑡.

The endowment process defined by (66.3) has the moving average representation

𝑦𝑡+1 = 𝑑(𝐿)𝑤𝑡+1 (66.23)

where

• 𝑑(𝐿) = ∑∞
𝑗=0 𝑑𝑗𝐿𝑗 for some sequence 𝑑𝑗, where 𝐿 is the lag operator5

• at time 𝑡, the consumer has an information set6 𝑤𝑡 = [𝑤𝑡, 𝑤𝑡−1, …]
Notice that

𝑦𝑡+𝑗 − 𝔼𝑡[𝑦𝑡+𝑗] = 𝑑0𝑤𝑡+𝑗 + 𝑑1𝑤𝑡+𝑗−1 + ⋯ + 𝑑𝑗−1𝑤𝑡+1

It follows that

𝔼𝑡+1[𝑦𝑡+𝑗] − 𝔼𝑡[𝑦𝑡+𝑗] = 𝑑𝑗−1𝑤𝑡+1 (66.24)

Using (66.24) in (66.16) gives

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽)𝑑(𝛽)𝑤𝑡+1 (66.25)

The object 𝑑(𝛽) is the present value of themoving average coefficients in the representation for the endowment process
𝑦𝑡.

66.4 Two Classic Examples

We illustrate some of the preceding ideas with two examples.

In both examples, the endowment follows the process 𝑦𝑡 = 𝑧1𝑡 + 𝑧2𝑡 where

[𝑧1𝑡+1
𝑧2𝑡+1

] = [1 0
0 0] [𝑧1𝑡

𝑧2𝑡
] + [𝜎1 0

0 𝜎2
] [𝑤1𝑡+1

𝑤2𝑡+1
]

Here

• 𝑤𝑡+1 is an IID 2 × 1 process distributed as 𝑁(0, 𝐼).
• 𝑧1𝑡 is a permanent component of 𝑦𝑡.

• 𝑧2𝑡 is a purely transitory component of 𝑦𝑡.

66.4.1 Example 1

Assume as before that the consumer observes the state 𝑧𝑡 at time 𝑡.
In view of (66.18) we have

𝑐𝑡+1 − 𝑐𝑡 = 𝜎1𝑤1𝑡+1 + (1 − 𝛽)𝜎2𝑤2𝑡+1 (66.26)

Formula (66.26) shows how an increment 𝜎1𝑤1𝑡+1 to the permanent component of income 𝑧1𝑡+1 leads to

5 Representation (66.3) implies that 𝑑(𝐿) = 𝑈(𝐼 − 𝐴𝐿)−1𝐶.
6 A moving average representation for a process 𝑦𝑡 is said to be fundamental if the linear space spanned by 𝑦𝑡 is equal to the linear space spanned

by 𝑤𝑡. A time-invariant innovations representation, attained via the Kalman filter, is by construction fundamental.
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• a permanent one-for-one increase in consumption and

• no increase in savings −𝑏𝑡+1

But the purely transitory component of income 𝜎2𝑤2𝑡+1 leads to a permanent increment in consumption by a fraction
1 − 𝛽 of transitory income.

The remaining fraction 𝛽 is saved, leading to a permanent increment in −𝑏𝑡+1.

Application of the formula for debt in (66.11) to this example shows that

𝑏𝑡+1 − 𝑏𝑡 = −𝑧2𝑡 = −𝜎2𝑤2𝑡 (66.27)

This confirms that none of 𝜎1𝑤1𝑡 is saved, while all of 𝜎2𝑤2𝑡 is saved.

The next figure displays impulse-response functions that illustrates these very different reactions to transitory and perma-
nent income shocks.

r = 0.05
β = 1 / (1 + r)
S = 5 # Impulse date
σ1 = σ2 = 0.15

@jit
def time_path(T, permanent=False):

"Time path of consumption and debt given shock sequence"
w1 = np.zeros(T+1)
w2 = np.zeros(T+1)
b = np.zeros(T+1)
c = np.zeros(T+1)
if permanent:

w1[S+1] = 1.0
else:

w2[S+1] = 1.0
for t in range(1, T):

b[t+1] = b[t] - σ2 * w2[t]
c[t+1] = c[t] + σ1 * w1[t+1] + (1 - β) * σ2 * w2[t+1]

return b, c

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
titles = ['permanent', 'transitory']

L = 0.175

for ax, truefalse, title in zip(axes, (True, False), titles):
b, c = time_path(T=20, permanent=truefalse)
ax.set_title(f'Impulse reponse: {title} income shock')
ax.plot(c, 'g-', label="consumption")
ax.plot(b, 'b-', label="debt")
ax.plot((S, S), (-L, L), 'k-', lw=0.5)
ax.grid(alpha=0.5)
ax.set(xlabel=r'Time', ylim=(-L, L))

axes[0].legend(loc='lower right')

plt.tight_layout()
plt.show()
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Notice how the permanent income shock provokes no change in assets −𝑏𝑡+1 and an immediate permanent change in
consumption equal to the permanent increment in non-financial income.

In contrast, notice how most of a transitory income shock is saved and only a small amount is saved.

The box-like impulse responses of consumption to both types of shock reflect the random walk property of the optimal
consumption decision.

66.4.2 Example 2

Assume now that at time 𝑡 the consumer observes 𝑦𝑡, and its history up to 𝑡, but not 𝑧𝑡.

Under this assumption, it is appropriate to use an innovation representation to form 𝐴, 𝐶, 𝑈 in (66.18).

The discussion in sections 2.9.1 and 2.11.3 of [Ljungqvist and Sargent, 2018] shows that the pertinent state space repre-
sentation for 𝑦𝑡 is

[𝑦𝑡+1
𝑎𝑡+1

] = [1 −(1 − 𝐾)
0 0 ] [𝑦𝑡

𝑎𝑡
] + [1

1] 𝑎𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝑎𝑡

]

where

• 𝐾 ∶= the stationary Kalman gain
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• 𝑎𝑡 ∶= 𝑦𝑡 − 𝐸[𝑦𝑡 | 𝑦𝑡−1, … , 𝑦0]
In the same discussion in [Ljungqvist and Sargent, 2018] it is shown that 𝐾 ∈ [0, 1] and that 𝐾 increases as 𝜎1/𝜎2 does.

In other words, 𝐾 increases as the ratio of the standard deviation of the permanent shock to that of the transitory shock
increases.

Please see first look at the Kalman filter.

Applying formulas (66.18) implies

𝑐𝑡+1 − 𝑐𝑡 = [1 − 𝛽(1 − 𝐾)]𝑎𝑡+1 (66.28)

where the endowment process can now be represented in terms of the univariate innovation to 𝑦𝑡 as

𝑦𝑡+1 − 𝑦𝑡 = 𝑎𝑡+1 − (1 − 𝐾)𝑎𝑡 (66.29)

Equation (66.29) indicates that the consumer regards

• fraction 𝐾 of an innovation 𝑎𝑡+1 to 𝑦𝑡+1 as permanent

• fraction 1 − 𝐾 as purely transitory

The consumer permanently increases his consumption by the full amount of his estimate of the permanent part of 𝑎𝑡+1,
but by only (1 − 𝛽) times his estimate of the purely transitory part of 𝑎𝑡+1.

Therefore, in total, he permanently increments his consumption by a fraction 𝐾 + (1 − 𝛽)(1 − 𝐾) = 1 − 𝛽(1 − 𝐾) of
𝑎𝑡+1.

He saves the remaining fraction 𝛽(1 − 𝐾).
According to equation (66.29), the first difference of income is a first-order moving average.

Equation (66.28) asserts that the first difference of consumption is IID.

Application of formula to this example shows that

𝑏𝑡+1 − 𝑏𝑡 = (𝐾 − 1)𝑎𝑡 (66.30)

This indicates how the fraction 𝐾 of the innovation to 𝑦𝑡 that is regarded as permanent influences the fraction of the
innovation that is saved.

66.5 Further Reading

The model described above significantly changed how economists think about consumption.

While Hall’s model does a remarkably good job as a first approximation to consumption data, it’s widely believed that it
doesn’t capture important aspects of some consumption/savings data.

For example, liquidity constraints and precautionary savings appear to be present sometimes.

Further discussion can be found in, e.g., [Hall and Mishkin, 1982], [Parker, 1999], [Deaton, 1991], [Carroll, 2001].
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66.6 Appendix: The Euler Equation

Where does the first-order condition (66.5) come from?

Here we’ll give a proof for the two-period case, which is representative of the general argument.

The finite horizon equivalent of the no-Ponzi condition is that the agent cannot end her life in debt, so 𝑏2 = 0.
From the budget constraint (66.2) we then have

𝑐0 = 𝑏1
1 + 𝑟 − 𝑏0 + 𝑦0 and 𝑐1 = 𝑦1 − 𝑏1

Here 𝑏0 and 𝑦0 are given constants.

Substituting these constraints into our two-period objective 𝑢(𝑐0) + 𝛽𝔼0[𝑢(𝑐1)] gives

max
𝑏1

{𝑢 (𝑏1
𝑅 − 𝑏0 + 𝑦0) + 𝛽 𝔼0[𝑢(𝑦1 − 𝑏1)]}

You will be able to verify that the first-order condition is

𝑢′(𝑐0) = 𝛽𝑅 𝔼0[𝑢′(𝑐1)]

Using 𝛽𝑅 = 1 gives (66.5) in the two-period case.
The proof for the general case is similar.
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PERMANENT INCOME II: LQ TECHNIQUES
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• Permanent Income II: LQ Techniques

– Overview

– Setup

– The LQ Approach

– Implementation

– Two Example Economies

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

67.1 Overview

This lecture continues our analysis of the linear-quadratic (LQ) permanent income model of savings and consumption.

As we saw in our previous lecture on this topic, Robert Hall [Hall, 1978] used the LQ permanent income model to restrict
and interpret intertemporal comovements of nondurable consumption, nonfinancial income, and financial wealth.

For example, we saw how the model asserts that for any covariance stationary process for nonfinancial income

• consumption is a random walk

• financial wealth has a unit root and is cointegrated with consumption

Other applications use the same LQ framework.

For example, a model isomorphic to the LQ permanent income model has been used by Robert Barro [Barro, 1979] to
interpret intertemporal comovements of a government’s tax collections, its expenditures net of debt service, and its public
debt.

This isomorphism means that in analyzing the LQ permanent income model, we are in effect also analyzing the Barro tax
smoothing model.

It is just a matter of appropriately relabeling the variables in Hall’s model.

In this lecture, we’ll
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• show how the solution to the LQ permanent income model can be obtained using LQ control methods.

• represent the model as a linear state space system as in this lecture.

• apply QuantEcon’s LinearStateSpace class to characterize statistical features of the consumer’s optimal consump-
tion and borrowing plans.

We’ll then use these characterizations to construct a simple model of cross-section wealth and consumption dynamics in
the spirit of Truman Bewley [Bewley, 1986].

(Later we’ll study other Bewley models—see this lecture.)

The model will prove useful for illustrating concepts such as

• stationarity

• ergodicity

• ensemble moments and cross-section observations

Let’s start with some imports:

import matplotlib.pyplot as plt
import quantecon as qe
import numpy as np
import scipy.linalg as la

67.2 Setup

Let’s recall the basic features of the model discussed in the permanent income model.

Consumer preferences are ordered by

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (67.1)

where 𝑢(𝑐) = −(𝑐 − 𝛾)2.

The consumer maximizes (67.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞
𝑡=0 subject to the sequence of

budget constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0 (67.2)

and the no-Ponzi condition

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 < ∞ (67.3)

The interpretation of all variables and parameters are the same as in the previous lecture.

We continue to assume that (1 + 𝑟)𝛽 = 1.
The dynamics of {𝑦𝑡} again follow the linear state space model

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑈𝑧𝑡

(67.4)

The restrictions on the shock process and parameters are the same as in our previous lecture.
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67.2.1 Digression on a Useful Isomorphism

The LQ permanent income model of consumption is mathematically isomorphic with a version of Barro’s [Barro, 1979]
model of tax smoothing.

In the LQ permanent income model

• the household faces an exogenous process of nonfinancial income

• the household wants to smooth consumption across states and time

In the Barro tax smoothing model

• a government faces an exogenous sequence of government purchases (net of interest payments on its debt)

• a government wants to smooth tax collections across states and time

If we set

• 𝑇𝑡, total tax collections in Barro’s model to consumption 𝑐𝑡 in the LQ permanent income model.

• 𝐺𝑡, exogenous government expenditures in Barro’s model to nonfinancial income 𝑦𝑡 in the permanent income
model.

• 𝐵𝑡, government risk-free one-period assets falling due in Barro’s model to risk-free one-period consumer debt 𝑏𝑡
falling due in the LQ permanent income model.

• 𝑅, the gross rate of return on risk-free one-period government debt in Barro’s model to the gross rate of return
1 + 𝑟 on financial assets in the permanent income model of consumption.

then the two models are mathematically equivalent.

All characterizations of a {𝑐𝑡, 𝑦𝑡, 𝑏𝑡} in the LQ permanent income model automatically apply to a {𝑇𝑡, 𝐺𝑡, 𝐵𝑡} process
in the Barro model of tax smoothing.

See consumption and tax smoothing models for further exploitation of an isomorphism between consumption and tax
smoothing models.

67.2.2 A Specification of the Nonfinancial Income Process

For the purposes of this lecture, let’s assume {𝑦𝑡} is a second-order univariate autoregressive process:

𝑦𝑡+1 = 𝛼 + 𝜌1𝑦𝑡 + 𝜌2𝑦𝑡−1 + 𝜎𝑤𝑡+1

We can map this into the linear state space framework in (67.4), as discussed in our lecture on linear models.

To do so we take

𝑧𝑡 = ⎡⎢
⎣

1
𝑦𝑡

𝑦𝑡−1

⎤⎥
⎦

, 𝐴 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
𝜎
0
⎤⎥
⎦

, and 𝑈 = [0 1 0]
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67.3 The LQ Approach

Previouslywe solved the permanent income model by solving a system of linear expectational difference equations subject
to two boundary conditions.

Here we solve the same model using LQ methods based on dynamic programming.

After confirming that answers produced by the two methods agree, we apply QuantEcon’s LinearStateSpace class to
illustrate features of the model.

Why solve a model in two distinct ways?

Because by doing so we gather insights about the structure of the model.

Our earlier approach based on solving a system of expectational difference equations brought to the fore the role of the
consumer’s expectations about future nonfinancial income.

On the other hand, formulating the model in terms of an LQ dynamic programming problem reminds us that

• finding the state (of a dynamic programming problem) is an art, and

• iterations on a Bellman equation implicitly jointly solve both a forecasting problem and a control problem

67.3.1 The LQ Problem

Recall from our lecture on LQ theory that the optimal linear regulator problem is to choose a decision rule for 𝑢𝑡 to
minimize

𝔼
∞

∑
𝑡=0

𝛽𝑡{𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡},

subject to 𝑥0 given and the law of motion

𝑥𝑡+1 = ̃𝐴𝑥𝑡 + 𝐵̃𝑢𝑡 + ̃𝐶𝑤𝑡+1, 𝑡 ≥ 0, (67.5)

where 𝑤𝑡+1 is IID with mean vector zero and 𝔼𝑤𝑡𝑤′
𝑡 = 𝐼 .

The tildes in ̃𝐴, 𝐵̃, ̃𝐶 are to avoid clashing with notation in (67.4).

The value function for this problem is 𝑣(𝑥) = −𝑥′𝑃𝑥 − 𝑑, where
• 𝑃 is the unique positive semidefinite solution of the corresponding matrix Riccati equation.

• The scalar 𝑑 is given by 𝑑 = 𝛽(1 − 𝛽)−1trace(𝑃 ̃𝐶 ̃𝐶′).
The optimal policy is 𝑢𝑡 = −𝐹𝑥𝑡, where 𝐹 ∶= 𝛽(𝑄 + 𝛽𝐵̃′𝑃 𝐵̃)−1𝐵̃′𝑃 ̃𝐴.
Under an optimal decision rule 𝐹 , the state vector 𝑥𝑡 evolves according to 𝑥𝑡+1 = ( ̃𝐴 − 𝐵̃𝐹)𝑥𝑡 + ̃𝐶𝑤𝑡+1.

67.3.2 Mapping into the LQ Framework

To map into the LQ framework, we’ll use

𝑥𝑡 ∶= [𝑧𝑡
𝑏𝑡

] =
⎡
⎢⎢
⎣

1
𝑦𝑡

𝑦𝑡−1
𝑏𝑡

⎤
⎥⎥
⎦

as the state vector and 𝑢𝑡 ∶= 𝑐𝑡 − 𝛾 as the control.
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With this notation and 𝑈𝛾 ∶= [𝛾 0 0], we can write the state dynamics as in (67.5) when

̃𝐴 ∶= [ 𝐴 0
(1 + 𝑟)(𝑈𝛾 − 𝑈) 1 + 𝑟] 𝐵̃ ∶= [ 0

1 + 𝑟] and ̃𝐶 ∶= [𝐶
0 ] 𝑤𝑡+1

Please confirm for yourself that, with these definitions, the LQ dynamics (67.5) match the dynamics of 𝑧𝑡 and 𝑏𝑡 described
above.

To map utility into the quadratic form 𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 we can set

• 𝑄 ∶= 1 (remember that we are minimizing) and
• 𝑅 ∶= a 4 × 4 matrix of zeros

However, there is one problem remaining.

We have no direct way to capture the non-recursive restriction (67.3) on the debt sequence {𝑏𝑡} from within the LQ
framework.

To try to enforce it, we’re going to use a trick: put a small penalty on 𝑏2
𝑡 in the criterion function.

In the present setting, this means adding a small entry 𝜖 > 0 in the (4, 4) position of 𝑅.

That will induce a (hopefully) small approximation error in the decision rule.

We’ll check whether it really is small numerically soon.

67.4 Implementation

Let’s write some code to solve the model.

One comment before we start is that the bliss level of consumption 𝛾 in the utility function has no effect on the optimal
decision rule.

We saw this in the previous lecture permanent income.

The reason is that it drops out of the Euler equation for consumption.

In what follows we set it equal to unity.

67.4.1 The Exogenous Nonfinancial Income Process

First, we create the objects for the optimal linear regulator

# Set parameters
α, β, ρ1, ρ2, σ = 10.0, 0.95, 0.9, 0.0, 1.0

R = 1 / β
A = np.array([[1., 0., 0.],

[α, ρ1, ρ2],
[0., 1., 0.]])

C = np.array([[0.], [σ], [0.]])
G = np.array([[0., 1., 0.]])

# Form LinearStateSpace system and pull off steady state moments
μ_z0 = np.array([[1.0], [0.0], [0.0]])
Σ_z0 = np.zeros((3, 3))
Lz = qe.LinearStateSpace(A, C, G, mu_0=μ_z0, Sigma_0=Σ_z0)
μ_z, μ_y, Σ_z, Σ_y, Σ_yx = Lz.stationary_distributions()

(continues on next page)
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(continued from previous page)

# Mean vector of state for the savings problem
mxo = np.vstack([μ_z, 0.0])

# Create stationary covariance matrix of x -- start everyone off at b=0
a1 = np.zeros((3, 1))
aa = np.hstack([Σ_z, a1])
bb = np.zeros((1, 4))
sxo = np.vstack([aa, bb])

# These choices will initialize the state vector of an individual at zero
# debt and the ergodic distribution of the endowment process. Use these to
# create the Bewley economy.
mxbewley = mxo
sxbewley = sxo

The next step is to create the matrices for the LQ system

A12 = np.zeros((3,1))
ALQ_l = np.hstack([A, A12])
ALQ_r = np.array([[0, -R, 0, R]])
ALQ = np.vstack([ALQ_l, ALQ_r])

RLQ = np.array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 1e-9]])

QLQ = np.array([1.0])
BLQ = np.array([0., 0., 0., R]).reshape(4,1)
CLQ = np.array([0., σ, 0., 0.]).reshape(4,1)
β_LQ = β

Let’s print these out and have a look at them

print(f"A = \n {ALQ}")
print(f"B = \n {BLQ}")
print(f"R = \n {RLQ}")
print(f"Q = \n {QLQ}")

A =
[[ 1. 0. 0. 0. ]
[10. 0.9 0. 0. ]
[ 0. 1. 0. 0. ]
[ 0. -1.05263158 0. 1.05263158]]

B =
[[0. ]
[0. ]
[0. ]
[1.05263158]]

R =
[[0.e+00 0.e+00 0.e+00 0.e+00]
[0.e+00 0.e+00 0.e+00 0.e+00]
[0.e+00 0.e+00 0.e+00 0.e+00]
[0.e+00 0.e+00 0.e+00 1.e-09]]

Q =
[1.]
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Now create the appropriate instance of an LQ model

lqpi = qe.LQ(QLQ, RLQ, ALQ, BLQ, C=CLQ, beta=β_LQ)

We’ll save the implied optimal policy function soon compare them with what we get by employing an alternative solution
method

P, F, d = lqpi.stationary_values() # Compute value function and decision rule
ABF = ALQ - BLQ @ F # Form closed loop system

67.4.2 Comparison with the Difference Equation Approach

In our first lecture on the infinite horizon permanent income problem we used a different solution method.

The method was based around

• deducing the Euler equations that are the first-order conditions with respect to consumption and savings.

• using the budget constraints and boundary condition to complete a system of expectational linear difference equa-
tions.

• solving those equations to obtain the solution.

Expressed in state space notation, the solution took the form

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐶𝑤𝑡+1
𝑏𝑡+1 = 𝑏𝑡 + 𝑈[(𝐼 − 𝛽𝐴)−1(𝐴 − 𝐼)]𝑧𝑡

𝑦𝑡 = 𝑈𝑧𝑡
𝑐𝑡 = (1 − 𝛽)[𝑈(𝐼 − 𝛽𝐴)−1𝑧𝑡 − 𝑏𝑡]

Now we’ll apply the formulas in this system

# Use the above formulas to create the optimal policies for b_{t+1} and c_t
b_pol = G @ la.inv(np.eye(3, 3) - β * A) @ (A - np.eye(3, 3))
c_pol = (1 - β) * G @ la.inv(np.eye(3, 3) - β * A)

# Create the A matrix for a LinearStateSpace instance
A_LSS1 = np.vstack([A, b_pol])
A_LSS2 = np.eye(4, 1, -3)
A_LSS = np.hstack([A_LSS1, A_LSS2])

# Create the C matrix for LSS methods
C_LSS = np.vstack([C, np.zeros(1)])

# Create the G matrix for LSS methods
G_LSS1 = np.vstack([G, c_pol])
G_LSS2 = np.vstack([np.zeros(1), -(1 - β)])
G_LSS = np.hstack([G_LSS1, G_LSS2])

# Use the following values to start everyone off at b=0, initial incomes zero
μ_0 = np.array([1., 0., 0., 0.])
Σ_0 = np.zeros((4, 4))

A_LSS calculated as we have here should equal ABF calculated above using the LQ model

ABF - A_LSS
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array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[-9.51248178e-06, 9.51247915e-08, 0.00000000e+00,
-1.99999923e-08]])

Now compare pertinent elements of c_pol and F

print(c_pol, "\n", -F)

[[65.51724138 0.34482759 0. ]]
[[ 6.55172323e+01 3.44827677e-01 -0.00000000e+00 -5.00000190e-02]]

We have verified that the two methods give the same solution.

Now let’s create instances of the LinearStateSpace class and use it to do some interesting experiments.

To do this, we’ll use the outcomes from our second method.

67.5 Two Example Economies

In the spirit of Bewley models [Bewley, 1986], we’ll generate panels of consumers.

The examples differ only in the initial states with which we endow the consumers.

All other parameter values are kept the same in the two examples

• In the first example, all consumers begin with zero nonfinancial income and zero debt.

– The consumers are thus ex-ante identical.

• In the second example, while all begin with zero debt, we draw their initial income levels from the invariant dis-
tribution of financial income.

– Consumers are ex-ante heterogeneous.

In the first example, consumers’ nonfinancial income paths display pronounced transients early in the sample

• these will affect outcomes in striking ways

Those transient effects will not be present in the second example.

We use methods affiliated with the LinearStateSpace class to simulate the model.

67.5.1 First Set of Initial Conditions

We generate 25 paths of the exogenous non-financial income process and the associated optimal consumption and debt
paths.

In the first set of graphs, darker lines depict a particular sample path, while the lighter lines describe 24 other paths.

A second graph plots a collection of simulations against the population distribution that we extract from the Lin-
earStateSpace instance LSS.

Comparing sample paths with population distributions at each date 𝑡 is a useful exercise—see our discussion of the laws
of large numbers
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lss = qe.LinearStateSpace(A_LSS, C_LSS, G_LSS, mu_0=μ_0, Sigma_0=Σ_0)

67.5.2 Population and Sample Panels

In the code below, we use the LinearStateSpace class to

• compute and plot population quantiles of the distributions of consumption and debt for a population of consumers.

• simulate a group of 25 consumers and plot sample paths on the same graph as the population distribution.

def income_consumption_debt_series(A, C, G, μ_0, Σ_0, T=150, npaths=25):
"""
This function takes initial conditions (μ_0, Σ_0) and uses the
LinearStateSpace class from QuantEcon to simulate an economy
npaths times for T periods. It then uses that information to
generate some graphs related to the discussion below.
"""
lss = qe.LinearStateSpace(A, C, G, mu_0=μ_0, Sigma_0=Σ_0)

# Simulation/Moment Parameters
moment_generator = lss.moment_sequence()

# Simulate various paths
bsim = np.empty((npaths, T))
csim = np.empty((npaths, T))
ysim = np.empty((npaths, T))

for i in range(npaths):
sims = lss.simulate(T)
bsim[i, :] = sims[0][-1, :]
csim[i, :] = sims[1][1, :]
ysim[i, :] = sims[1][0, :]

# Get the moments
cons_mean = np.empty(T)
cons_var = np.empty(T)
debt_mean = np.empty(T)
debt_var = np.empty(T)
for t in range(T):

μ_x, μ_y, Σ_x, Σ_y = next(moment_generator)
cons_mean[t], cons_var[t] = μ_y[1,0], Σ_y[1, 1]
debt_mean[t], debt_var[t] = μ_x[3,0], Σ_x[3, 3]

return bsim, csim, ysim, cons_mean, cons_var, debt_mean, debt_var

def consumption_income_debt_figure(bsim, csim, ysim):

# Get T
T = bsim.shape[1]

# Create the first figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))
xvals = np.arange(T)

# Plot consumption and income
ax[0].plot(csim[0, :], label="c", color="b")

(continues on next page)
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(continued from previous page)

ax[0].plot(ysim[0, :], label="y", color="g")
ax[0].plot(csim.T, alpha=.1, color="b")
ax[0].plot(ysim.T, alpha=.1, color="g")
ax[0].legend(loc=4)
ax[0].set(title="Nonfinancial Income, Consumption, and Debt",

xlabel="t", ylabel="y and c")

# Plot debt
ax[1].plot(bsim[0, :], label="b", color="r")
ax[1].plot(bsim.T, alpha=.1, color="r")
ax[1].legend(loc=4)
ax[1].set(xlabel="t", ylabel="debt")

fig.tight_layout()
return fig

def consumption_debt_fanchart(csim, cons_mean, cons_var,
bsim, debt_mean, debt_var):

# Get T
T = bsim.shape[1]

# Create percentiles of cross-section distributions
cmean = np.mean(cons_mean)
c90 = 1.65 * np.sqrt(cons_var)
c95 = 1.96 * np.sqrt(cons_var)
c_perc_95p, c_perc_95m = cons_mean + c95, cons_mean - c95
c_perc_90p, c_perc_90m = cons_mean + c90, cons_mean - c90

# Create percentiles of cross-section distributions
dmean = np.mean(debt_mean)
d90 = 1.65 * np.sqrt(debt_var)
d95 = 1.96 * np.sqrt(debt_var)
d_perc_95p, d_perc_95m = debt_mean + d95, debt_mean - d95
d_perc_90p, d_perc_90m = debt_mean + d90, debt_mean - d90

# Create second figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))
xvals = np.arange(T)

# Consumption fan
ax[0].plot(xvals, cons_mean, color="k")
ax[0].plot(csim.T, color="k", alpha=.25)
ax[0].fill_between(xvals, c_perc_95m, c_perc_95p, alpha=.25, color="b")
ax[0].fill_between(xvals, c_perc_90m, c_perc_90p, alpha=.25, color="r")
ax[0].set(title="Consumption/Debt over time",

ylim=(cmean-15, cmean+15), ylabel="consumption")

# Debt fan
ax[1].plot(xvals, debt_mean, color="k")
ax[1].plot(bsim.T, color="k", alpha=.25)
ax[1].fill_between(xvals, d_perc_95m, d_perc_95p, alpha=.25, color="b")
ax[1].fill_between(xvals, d_perc_90m, d_perc_90p, alpha=.25, color="r")
ax[1].set(xlabel="t", ylabel="debt")

fig.tight_layout()
return fig
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Now let’s create figures with initial conditions of zero for 𝑦0 and 𝑏0

out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, μ_0, Σ_0)
bsim0, csim0, ysim0 = out[:3]
cons_mean0, cons_var0, debt_mean0, debt_var0 = out[3:]

consumption_income_debt_figure(bsim0, csim0, ysim0)

plt.show()

consumption_debt_fanchart(csim0, cons_mean0, cons_var0,
bsim0, debt_mean0, debt_var0)

plt.show()
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Here is what is going on in the above graphs.

For our simulation, we have set initial conditions 𝑏0 = 𝑦−1 = 𝑦−2 = 0.
Because 𝑦−1 = 𝑦−2 = 0, nonfinancial income 𝑦𝑡 starts far below its stationary mean 𝜇𝑦,∞ and rises early in each
simulation.

Recall from the previous lecture that we can represent the optimal decision rule for consumption in terms of the co-
integrating relationship

(1 − 𝛽)𝑏𝑡 + 𝑐𝑡 = (1 − 𝛽)𝐸𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 (67.6)

So at time 0 we have

𝑐0 = (1 − 𝛽)𝐸0
∞

∑
𝑡=0

𝛽𝑗𝑦𝑡

This tells us that consumption starts at the income that would be paid by an annuity whose value equals the expected
discounted value of nonfinancial income at time 𝑡 = 0.
To support that level of consumption, the consumer borrows a lot early and consequently builds up substantial debt.

In fact, he or she incurs so much debt that eventually, in the stochastic steady state, he consumes less each period than his
nonfinancial income.

He uses the gap between consumption and nonfinancial income mostly to service the interest payments due on his debt.
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Thus, when we look at the panel of debt in the accompanying graph, we see that this is a group of ex-ante identical people
each of whom starts with zero debt.

All of them accumulate debt in anticipation of rising nonfinancial income.

They expect their nonfinancial income to rise toward the invariant distribution of income, a consequence of our having
started them at 𝑦−1 = 𝑦−2 = 0.

Cointegration Residual

The following figure plots realizations of the left side of (67.6), which, as discussed in our last lecture, is called the
cointegrating residual.

As mentioned above, the right side can be thought of as an annuity payment on the expected present value of future
income 𝐸𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗.

Early along a realization, 𝑐𝑡 is approximately constant while (1 − 𝛽)𝑏𝑡 and (1 − 𝛽)𝐸𝑡 ∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗 both rise markedly

as the household’s present value of income and borrowing rise pretty much together.

This example illustrates the following point: the definition of cointegration implies that the cointegrating residual is
asymptotically covariance stationary, not covariance stationary.

The cointegrating residual for the specification with zero income and zero debt initially has a notable transient component
that dominates its behavior early in the sample.

By altering initial conditions, we shall remove this transient in our second example to be presented below

def cointegration_figure(bsim, csim):
"""
Plots the cointegration
"""
# Create figure
fig, ax = plt.subplots(figsize=(10, 8))
ax.plot((1 - β) * bsim[0, :] + csim[0, :], color="k")
ax.plot((1 - β) * bsim.T + csim.T, color="k", alpha=.1)

ax.set(title="Cointegration of Assets and Consumption", xlabel="t")

return fig

cointegration_figure(bsim0, csim0)
plt.show()
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67.5.3 A “Borrowers and Lenders” Closed Economy

When we set 𝑦−1 = 𝑦−2 = 0 and 𝑏0 = 0 in the preceding exercise, we make debt “head north” early in the sample.
Average debt in the cross-section rises and approaches the asymptote.

We can regard these as outcomes of a “small open economy” that borrows from abroad at the fixed gross interest rate
𝑅 = 𝑟 + 1 in anticipation of rising incomes.
So with the economic primitives set as above, the economy converges to a steady state in which there is an excess aggregate
supply of risk-free loans at a gross interest rate of 𝑅.

This excess supply is filled by “foreigner lenders” willing to make those loans.

We can use virtually the same code to rig a “poor man’s Bewley [Bewley, 1986] model” in the following way

• as before, we start everyone at 𝑏0 = 0.

• But instead of starting everyone at 𝑦−1 = 𝑦−2 = 0, we draw [𝑦−1
𝑦−2

] from the invariant distribution of the {𝑦𝑡}
process.

This rigs a closed economy in which people are borrowing and lending with each other at a gross risk-free interest rate
of 𝑅 = 𝛽−1.
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Across the group of people being analyzed, risk-free loans are in zero excess supply.

We have arranged primitives so that 𝑅 = 𝛽−1 clears the market for risk-free loans at zero aggregate excess supply.

So the risk-free loans are being made from one person to another within our closed set of agents.

There is no need for foreigners to lend to our group.

Let’s have a look at the corresponding figures

out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, mxbewley, sxbewley)
bsimb, csimb, ysimb = out[:3]
cons_meanb, cons_varb, debt_meanb, debt_varb = out[3:]

consumption_income_debt_figure(bsimb, csimb, ysimb)

plt.show()

consumption_debt_fanchart(csimb, cons_meanb, cons_varb,
bsimb, debt_meanb, debt_varb)

plt.show()
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The graphs confirm the following outcomes:

• As before, the consumption distribution spreads out over time.

But now there is some initial dispersion because there is ex-ante heterogeneity in the initial draws of [𝑦−1
𝑦−2

].

• As before, the cross-section distribution of debt spreads out over time.

• Unlike before, the average level of debt stays at zero, confirming that this is a closed borrower-and-lender economy.

• Now the cointegrating residual seems stationary, and not just asymptotically stationary.

Let’s have a look at the cointegration figure

cointegration_figure(bsimb, csimb)
plt.show()
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SIXTYEIGHT

PRODUCTION SMOOTHING VIA INVENTORIES

Contents

• Production Smoothing via Inventories

– Overview

– Example 1

– Inventories Not Useful

– Inventories Useful but are Hardwired to be Zero Always

– Example 2

– Example 3

– Example 4

– Example 5

– Example 6

– Exercises

In addition to what’s in Anaconda, this lecture employs the following library:

!pip install quantecon

68.1 Overview

This lecture can be viewed as an application of this quantecon lecture about linear quadratic control theory.

It formulates a discounted dynamic program for a firm that chooses a production schedule to balance

• minimizing costs of production across time, against

• keeping costs of holding inventories low

In the tradition of a classic book by Holt, Modigliani, Muth, and Simon [Holt et al., 1960], we simplify the firm’s problem
by formulating it as a linear quadratic discounted dynamic programming problem of the type studied in this quantecon
lecture.

Because its costs of production are increasing and quadratic in production, the firm holds inventories as a buffer stock in
order to smooth production across time, provided that holding inventories is not too costly.
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But the firm also wants to make its sales out of existing inventories, a preference that we represent by a cost that is
quadratic in the difference between sales in a period and the firm’s beginning of period inventories.

We compute examples designed to indicate how the firm optimally smooths production while keeping inventories close
to sales.

To introduce components of the model, let

• 𝑆𝑡 be sales at time 𝑡
• 𝑄𝑡 be production at time 𝑡
• 𝐼𝑡 be inventories at the beginning of time 𝑡
• 𝛽 ∈ (0, 1) be a discount factor
• 𝑐(𝑄𝑡) = 𝑐1𝑄𝑡 + 𝑐2𝑄2

𝑡 , be a cost of production function, where 𝑐1 > 0, 𝑐2 > 0, be an inventory cost function
• 𝑑(𝐼𝑡, 𝑆𝑡) = 𝑑1𝐼𝑡 + 𝑑2(𝑆𝑡 − 𝐼𝑡)2, where 𝑑1 > 0, 𝑑2 > 0, be a cost-of-holding-inventories function, consisting of
two components:

– a cost 𝑑1𝐼𝑡 of carrying inventories, and

– a cost 𝑑2(𝑆𝑡 − 𝐼𝑡)2 of having inventories deviate from sales

• 𝑝𝑡 = 𝑎0 − 𝑎1𝑆𝑡 + 𝑣𝑡 be an inverse demand function for a firm’s product, where 𝑎0 > 0, 𝑎1 > 0 and 𝑣𝑡 is a demand
shock at time 𝑡

• 𝜋_𝑡 = 𝑝𝑡𝑆𝑡 − 𝑐(𝑄𝑡) − 𝑑(𝐼𝑡, 𝑆𝑡) be the firm’s profits at time 𝑡
• ∑∞

𝑡=0 𝛽𝑡𝜋𝑡 be the present value of the firm’s profits at time 0
• 𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡 be the law of motion of inventories

• 𝑧𝑡+1 = 𝐴22𝑧𝑡 +𝐶2𝜖𝑡+1 be a law of motion for an exogenous state vector 𝑧𝑡 that contains time 𝑡 information useful
for predicting the demand shock 𝑣𝑡

• 𝑣𝑡 = 𝐺𝑧𝑡 link the demand shock to the information set 𝑧𝑡

• the constant 1 be the first component of 𝑧𝑡

To map our problem into a linear-quadratic discounted dynamic programming problem (also known as an optimal linear
regulator), we define the state vector at time 𝑡 as

𝑥𝑡 = [𝐼𝑡
𝑧𝑡

]

and the control vector as

𝑢𝑡 = [𝑄𝑡
𝑆𝑡

]

The law of motion for the state vector 𝑥𝑡 is evidently

[𝐼𝑡+1
𝑧𝑡

] = [ 1 0
0 𝐴22

] [𝐼𝑡
𝑧𝑡

] + [1 −1
0 0 ] [𝑄𝑡

𝑆𝑡
] + [ 0

𝐶2
] 𝜖𝑡+1

or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝜖𝑡+1

(At this point, we ask that you please forgive us for using 𝑄𝑡 to be the firm’s production at time 𝑡, while below we use 𝑄
as the matrix in the quadratic form 𝑢′

𝑡𝑄𝑢𝑡 that appears in the firm’s one-period profit function)

We can express the firm’s profit as a function of states and controls as

𝜋𝑡 = −(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑁𝑥𝑡)
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To form the matrices 𝑅, 𝑄, 𝑁 in an LQ dynamic programming problem, we note that the firm’s profits at time 𝑡 function
can be expressed

𝜋𝑡 =𝑝𝑡𝑆𝑡 − 𝑐 (𝑄𝑡) − 𝑑 (𝐼𝑡, 𝑆𝑡)
= (𝑎0 − 𝑎1𝑆𝑡 + 𝑣𝑡) 𝑆𝑡 − 𝑐1𝑄𝑡 − 𝑐2𝑄2

𝑡 − 𝑑1𝐼𝑡 − 𝑑2 (𝑆𝑡 − 𝐼𝑡)
2

=𝑎0𝑆𝑡 − 𝑎1𝑆2
𝑡 + 𝐺𝑧𝑡𝑆𝑡 − 𝑐1𝑄𝑡 − 𝑐2𝑄2

𝑡 − 𝑑1𝐼𝑡 − 𝑑2𝑆2
𝑡 − 𝑑2𝐼2

𝑡 + 2𝑑2𝑆𝑡𝐼𝑡

= − ⎛⎜⎜
⎝

𝑑1𝐼𝑡 + 𝑑2𝐼2
𝑡⏟⏟⏟⏟⏟

𝑥′
𝑡𝑅𝑥𝑡

+ 𝑎1𝑆2
𝑡 + 𝑑2𝑆2

𝑡 + 𝑐2𝑄2
𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢′
𝑡𝑄𝑢𝑡

− 𝑎0𝑆𝑡 − 𝐺𝑧𝑡𝑆𝑡 + 𝑐1𝑄𝑡 − 2𝑑2𝑆𝑡𝐼𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑢′

𝑡𝑁𝑥𝑡

⎞⎟⎟
⎠

= −
⎛⎜⎜⎜⎜
⎝

[ 𝐼𝑡 𝑧′
𝑡 ] [ 𝑑2

𝑑1
2 𝑆𝑐

𝑑1
2 𝑆′

𝑐 0 ]
⏟⏟⏟⏟⏟⏟⏟

≡𝑅

[ 𝐼𝑡
𝑧𝑡

] + [ 𝑄𝑡 𝑆𝑡 ] [ 𝑐2 0
0 𝑎1 + 𝑑2

]
⏟⏟⏟⏟⏟⏟⏟

≡𝑄

[ 𝑄𝑡
𝑆𝑡

] + 2 [ 𝑄𝑡 𝑆𝑡 ] [ 0 𝑐1
2 𝑆𝑐

−𝑑2 − 𝑎0
2 𝑆𝑐 − 𝐺

2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝑁

[ 𝐼𝑡
𝑧𝑡

]
⎞⎟⎟⎟⎟
⎠

where 𝑆𝑐 = [1, 0].
Remark on notation: The notation for cross product term in the QuantEcon library is 𝑁 .

The firms’ optimum decision rule takes the form

𝑢𝑡 = −𝐹𝑥𝑡

and the evolution of the state under the optimal decision rule is

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝜖𝑡+1

The firm chooses a decision rule for 𝑢𝑡 that maximizes

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝜋𝑡

subject to a given 𝑥0.

This is a stochastic discounted LQ dynamic program.

Here is code for computing an optimal decision rule and for analyzing its consequences.

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe

class SmoothingExample:
"""
Class for constructing, solving, and plotting results for
inventories and sales smoothing problem.
"""

def __init__(self,
β=0.96, # Discount factor
c1=1, # Cost-of-production
c2=1,
d1=1, # Cost-of-holding inventories
d2=1,
a0=10, # Inverse demand function
a1=1,
A22=[[1, 0], # z process

(continues on next page)

68.1. Overview 1249



Intermediate Quantitative Economics with Python

(continued from previous page)

[1, 0.9]],
C2=[[0], [1]],
G=[0, 1]):

self.β = β
self.c1, self.c2 = c1, c2
self.d1, self.d2 = d1, d2
self.a0, self.a1 = a0, a1
self.A22 = np.atleast_2d(A22)
self.C2 = np.atleast_2d(C2)
self.G = np.atleast_2d(G)

# Dimensions
k, j = self.C2.shape # Dimensions for randomness part
n = k + 1 # Number of states
m = 2 # Number of controls

Sc = np.zeros(k)
Sc[0] = 1

# Construct matrices of transition law
A = np.zeros((n, n))
A[0, 0] = 1
A[1:, 1:] = self.A22

B = np.zeros((n, m))
B[0, :] = 1, -1

C = np.zeros((n, j))
C[1:, :] = self.C2

self.A, self.B, self.C = A, B, C

# Construct matrices of one period profit function
R = np.zeros((n, n))
R[0, 0] = d2
R[1:, 0] = d1 / 2 * Sc
R[0, 1:] = d1 / 2 * Sc

Q = np.zeros((m, m))
Q[0, 0] = c2
Q[1, 1] = a1 + d2

N = np.zeros((m, n))
N[1, 0] = - d2
N[0, 1:] = c1 / 2 * Sc
N[1, 1:] = - a0 / 2 * Sc - self.G / 2

self.R, self.Q, self.N = R, Q, N

# Construct LQ instance
self.LQ = qe.LQ(Q, R, A, B, C, N, beta=β)
self.LQ.stationary_values()

def simulate(self, x0, T=100):

c1, c2 = self.c1, self.c2
(continues on next page)
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(continued from previous page)

d1, d2 = self.d1, self.d2
a0, a1 = self.a0, self.a1
G = self.G

x_path, u_path, w_path = self.LQ.compute_sequence(x0, ts_length=T)

I_path = x_path[0, :-1]
z_path = x_path[1:, :-1]
𝜈_path = (G @ z_path)[0, :]

Q_path = u_path[0, :]
S_path = u_path[1, :]

revenue = (a0 - a1 * S_path + 𝜈_path) * S_path
cost_production = c1 * Q_path + c2 * Q_path ** 2
cost_inventories = d1 * I_path + d2 * (S_path - I_path) ** 2

Q_no_inventory = (a0 + 𝜈_path - c1) / (2 * (a1 + c2))
Q_hardwired = (a0 + 𝜈_path - c1) / (2 * (a1 + c2 + d2))

fig, ax = plt.subplots(2, 2, figsize=(15, 10))

ax[0, 0].plot(range(T), I_path, label="inventories")
ax[0, 0].plot(range(T), S_path, label="sales")
ax[0, 0].plot(range(T), Q_path, label="production")
ax[0, 0].legend(loc=1)
ax[0, 0].set_title("inventories, sales, and production")

ax[0, 1].plot(range(T), (Q_path - S_path), color='b')
ax[0, 1].set_ylabel("change in inventories", color='b')
span = max(abs(Q_path - S_path))
ax[0, 1].set_ylim(0-span*1.1, 0+span*1.1)
ax[0, 1].set_title("demand shock and change in inventories")

ax1_ = ax[0, 1].twinx()
ax1_.plot(range(T), 𝜈_path, color='r')
ax1_.set_ylabel("demand shock", color='r')
span = max(abs(𝜈_path))
ax1_.set_ylim(0-span*1.1, 0+span*1.1)

ax1_.plot([0, T], [0, 0], '--', color='k')

ax[1, 0].plot(range(T), revenue, label="revenue")
ax[1, 0].plot(range(T), cost_production, label="cost_production")
ax[1, 0].plot(range(T), cost_inventories, label="cost_inventories")
ax[1, 0].legend(loc=1)
ax[1, 0].set_title("profits decomposition")

ax[1, 1].plot(range(T), Q_path, label="production")
ax[1, 1].plot(range(T), Q_hardwired, label='production when $I_t$ \

forced to be zero')
ax[1, 1].plot(range(T), Q_no_inventory, label='production when \

inventories not useful')
ax[1, 1].legend(loc=1)
ax[1, 1].set_title('three production concepts')

plt.show()
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Notice that the above code sets parameters at the following default values

• discount factor 𝛽 = 0.96,
• inverse demand function: 𝑎0 = 10, 𝑎1 = 1
• cost of production 𝑐1 = 1, 𝑐2 = 1
• costs of holding inventories 𝑑1 = 1, 𝑑2 = 1

In the examples below, we alter some or all of these parameter values.

68.2 Example 1

In this example, the demand shock follows AR(1) process:

𝜈𝑡 = 𝛼 + 𝜌𝜈𝑡−1 + 𝜖𝑡,

which implies

𝑧𝑡+1 = [ 1
𝑣𝑡+1

] = [ 1 0
𝛼 𝜌 ] [ 1

𝑣𝑡
]

⏟
𝑧𝑡

+ [ 0
1 ] 𝜖𝑡+1.

We set 𝛼 = 1 and 𝜌 = 0.9, their default values.
We’ll calculate and display outcomes, then discuss them below the pertinent figures.

ex1 = SmoothingExample()

x0 = [0, 1, 0]
ex1.simulate(x0)
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The figures above illustrate various features of an optimal production plan.

Starting from zero inventories, the firm builds up a stock of inventories and uses them to smooth costly production in the
face of demand shocks.

Optimal decisions evidently respond to demand shocks.

Inventories are always less than sales, so some sales come from current production, a consequence of the cost, 𝑑1𝐼𝑡 of
holding inventories.

The lower right panel shows differences between optimal production and two alternative production concepts that come
from altering the firm’s cost structure – i.e., its technology.

These two concepts correspond to these distinct altered firm problems.

• a setting in which inventories are not needed

• a setting in which they are needed but we arbitrarily prevent the firm from holding inventories by forcing it to set
𝐼𝑡 = 0 always

We use these two alternative production concepts in order to shed light on the baseline model.

68.3 Inventories Not Useful

Let’s turn first to the setting in which inventories aren’t needed.

In this problem, the firm forms an output plan that maximizes the expected value of

∞
∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑄𝑡 − 𝐶(𝑄𝑡)}

It turns out that the optimal plan for𝑄𝑡 for this problem also solves a sequence of static problems max𝑄𝑡
{𝑝𝑡𝑄𝑡 −𝑐(𝑄𝑡)}.

When inventories aren’t required or used, sales always equal production.

This simplifies the problem and the optimal no-inventory production maximizes the expected value of

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑄𝑡 − 𝐶 (𝑄𝑡)} .

The optimum decision rule is

𝑄𝑛𝑖
𝑡 = 𝑎0 + 𝜈𝑡 − 𝑐1

𝑐2 + 𝑎1
.

68.4 Inventories Useful but are Hardwired to be Zero Always

Next, we turn to a distinct problem in which inventories are useful – meaning that there are costs of 𝑑2(𝐼𝑡−𝑆𝑡)2 associated
with having sales not equal to inventories – but we arbitrarily impose on the firm the costly restriction that it never hold
inventories.

Here the firm’s maximization problem is

max
{𝐼𝑡,𝑄𝑡,𝑆𝑡}

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑆𝑡 − 𝐶 (𝑄𝑡) − 𝑑 (𝐼𝑡, 𝑆𝑡)}

subject to the restrictions that 𝐼𝑡 = 0 for all 𝑡 and that 𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡.
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The restriction that 𝐼𝑡 = 0 implies that 𝑄𝑡 = 𝑆𝑡 and that the maximization problem reduces to

max
𝑄𝑡

∞
∑
𝑡=0

𝛽𝑡 {𝑝𝑡𝑄𝑡 − 𝐶 (𝑄𝑡) − 𝑑 (0, 𝑄𝑡)}

Here the optimal production plan is

𝑄ℎ
𝑡 = 𝑎0 + 𝜈𝑡 − 𝑐1

𝑐2 + 𝑎1 + 𝑑2
.

We introduce this 𝐼𝑡 is hardwired to zero specification in order to shed light on the role that inventories play by comparing
outcomes with those under our two other versions of the problem.

The bottom right panel displays a production path for the original problem that we are interested in (the blue line) as well
with an optimal production path for the model in which inventories are not useful (the green path) and also for the model
in which, although inventories are useful, they are hardwired to zero and the firm pays cost 𝑑(0, 𝑄𝑡) for not setting sales
𝑆𝑡 = 𝑄𝑡 equal to zero (the orange line).

Notice that it is typically optimal for the firm to produce more when inventories aren’t useful. Here there is no requirement
to sell out of inventories and no costs from having sales deviate from inventories.

But “typical” does not mean “always”.

Thus, if we look closely, we notice that for small 𝑡, the green “production when inventories aren’t useful” line in the lower
right panel is below optimal production in the original model.

High optimal production in the original model early on occurs because the firm wants to accumulate inventories quickly
in order to acquire high inventories for use in later periods.

But how the green line compares to the blue line early on depends on the evolution of the demand shock, as we will see
in a deterministically seasonal demand shock example to be analyzed below.

In that example, the original firm optimally accumulates inventories slowly because the next positive demand shock is in
the distant future.

To make the green-blue model production comparison easier to see, let’s confine the graphs to the first 10 periods:

ex1.simulate(x0, T=10)
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68.5 Example 2

Next, we shut down randomness in demand and assume that the demand shock 𝜈𝑡 follows a deterministic path:

𝜈𝑡 = 𝛼 + 𝜌𝜈𝑡−1

Again, we’ll compute and display outcomes in some figures

ex2 = SmoothingExample(C2=[[0], [0]])

x0 = [0, 1, 0]
ex2.simulate(x0)
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68.6 Example 3

Now we’ll put randomness back into the demand shock process and also assume that there are zero costs of holding
inventories.

In particular, we’ll look at a situation in which 𝑑1 = 0 but 𝑑2 > 0.
Now it becomes optimal to set sales approximately equal to inventories and to use inventories to smooth production quite
well, as the following figures confirm

ex3 = SmoothingExample(d1=0)

x0 = [0, 1, 0]
ex3.simulate(x0)
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68.7 Example 4

To bring out some features of the optimal policy that are related to some technical issues in linear control theory, we’ll
now temporarily assume that it is costless to hold inventories.

When we completely shut down the cost of holding inventories by setting 𝑑1 = 0 and 𝑑2 = 0, something absurd happens
(because the Bellman equation is opportunistic and very smart).

(Technically, we have set parameters that end up violating conditions needed to assure stability of the optimally controlled
state.)

The firm finds it optimal to set 𝑄𝑡 ≡ 𝑄∗ = −𝑐1
2𝑐2

, an output level that sets the costs of production to zero (when 𝑐1 > 0,
as it is with our default settings, then it is optimal to set production negative, whatever that means!).

Recall the law of motion for inventories

𝐼𝑡+1 = 𝐼𝑡 + 𝑄𝑡 − 𝑆𝑡

So when 𝑑1 = 𝑑2 = 0 so that the firm finds it optimal to set 𝑄𝑡 = −𝑐1
2𝑐2

for all 𝑡, then

𝐼𝑡+1 − 𝐼𝑡 = −𝑐1
2𝑐2

− 𝑆𝑡 < 0

for almost all values of 𝑆𝑡 under our default parameters that keep demand positive almost all of the time.

The dynamic program instructs the firm to set production costs to zero and to run a Ponzi scheme by running inventories
down forever.

(We can interpret this as the firm somehow going short in or borrowing inventories)

The following figures confirm that inventories head south without limit
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ex4 = SmoothingExample(d1=0, d2=0)

x0 = [0, 1, 0]
ex4.simulate(x0)

Let’s shorten the time span displayed in order to highlight what is going on.

We’ll set the horizon 𝑇 = 30 with the following code
# shorter period
ex4.simulate(x0, T=30)
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68.8 Example 5

Now we’ll assume that the demand shock that follows a linear time trend

𝑣𝑡 = 𝑏 + 𝑎𝑡, 𝑎 > 0, 𝑏 > 0

To represent this, we set 𝐶2 = [0
0] and

𝐴22 = [ 1 0
1 1 ] , 𝑥0 = [ 1

0 ] , 𝐺 = [ 𝑏 𝑎 ]

# Set parameters
a = 0.5
b = 3.

ex5 = SmoothingExample(A22=[[1, 0], [1, 1]], C2=[[0], [0]], G=[b, a])

x0 = [0, 1, 0] # set the initial inventory as 0
ex5.simulate(x0, T=10)
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68.9 Example 6

Now we’ll assume a deterministically seasonal demand shock.

To represent this we’ll set

𝐴22 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

, 𝐶2 =
⎡
⎢
⎢
⎢
⎣

0
0
0
0
0

⎤
⎥
⎥
⎥
⎦

, 𝐺′ =
⎡
⎢
⎢
⎢
⎣

𝑏
𝑎
0
0
0

⎤
⎥
⎥
⎥
⎦

where 𝑎 > 0, 𝑏 > 0 and

𝑥0 =
⎡
⎢
⎢
⎢
⎣

1
0
1
0
0

⎤
⎥
⎥
⎥
⎦

ex6 = SmoothingExample(A22=[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0]],

C2=[[0], [0], [0], [0], [0]],
G=[b, a, 0, 0, 0])

(continues on next page)
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(continued from previous page)

x00 = [0, 1, 0, 1, 0, 0] # Set the initial inventory as 0
ex6.simulate(x00, T=20)

Now we’ll generate some more examples that differ simply from the initial season of the year in which we begin the
demand shock

x01 = [0, 1, 1, 0, 0, 0]
ex6.simulate(x01, T=20)
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x02 = [0, 1, 0, 0, 1, 0]
ex6.simulate(x02, T=20)

1262 Chapter 68. Production Smoothing via Inventories



Intermediate Quantitative Economics with Python

x03 = [0, 1, 0, 0, 0, 1]
ex6.simulate(x03, T=20)

68.10 Exercises

Please try to analyze some inventory sales smoothing problems using the SmoothingExample class.

Exercise 68.10.1

Assume that the demand shock follows AR(2) process below:

𝜈𝑡 = 𝛼 + 𝜌1𝜈𝑡−1 + 𝜌2𝜈𝑡−2 + 𝜖𝑡.

where 𝛼 = 1, 𝜌1 = 1.2, and 𝜌2 = −0.3. You need to construct 𝐴22, 𝐶, and 𝐺 matrices properly and then to input
them as the keyword arguments of SmoothingExample class. Simulate paths starting from the initial condition
𝑥0 = [0, 1, 0, 0]′.
After this, try to construct a very similarSmoothingExamplewith the same demand shock process but exclude the
randomness 𝜖𝑡. Compute the stationary states ̄𝑥 by simulating for a long period. Then try to add shocks with different
magnitude to ̄𝜈𝑡 and simulate paths. You should see how firms respond differently by staring at the production plans.

Solution to Exercise 68.10.1

# set parameters
α = 1
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ρ1 = 1.2
ρ2 = -.3

# construct matrices
A22 =[[1, 0, 0],

[1, ρ1, ρ2],
[0, 1, 0]]

C2 = [[0], [1], [0]]
G = [0, 1, 0]

ex1 = SmoothingExample(A22=A22, C2=C2, G=G)

x0 = [0, 1, 0, 0] # initial condition
ex1.simulate(x0)

# now silence the noise
ex1_no_noise = SmoothingExample(A22=A22, C2=[[0], [0], [0]], G=G)

# initial condition
x0 = [0, 1, 0, 0]

# compute stationary states
x_bar = ex1_no_noise.LQ.compute_sequence(x0, ts_length=250)[0][:, -1]
x_bar

array([ 3.69387755, 1. , 10. , 10. ])

In the following, we add small and large shocks to ̄𝜈𝑡 and compare how firm responds differently in quantity. As the
shock is not very persistent under the parameterization we are using, we focus on a short period response.
T = 40

# small shock
x_bar1 = x_bar.copy()
x_bar1[2] += 2
ex1_no_noise.simulate(x_bar1, T=T)

1264 Chapter 68. Production Smoothing via Inventories



Intermediate Quantitative Economics with Python

# large shock
x_bar1 = x_bar.copy()
x_bar1[2] += 10
ex1_no_noise.simulate(x_bar1, T=T)
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Exercise 68.10.2

Change parameters of 𝐶(𝑄𝑡) and 𝑑(𝐼𝑡, 𝑆𝑡).
1. Make production more costly, by setting 𝑐2 = 5.
2. Increase the cost of having inventories deviate from sales, by setting 𝑑2 = 5.

Solution to Exercise 68.10.2

x0 = [0, 1, 0]

SmoothingExample(c2=5).simulate(x0)

SmoothingExample(d2=5).simulate(x0)
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CHAPTER

SIXTYNINE

A LAKE MODEL OF EMPLOYMENT AND UNEMPLOYMENT

Contents

• A Lake Model of Employment and Unemployment

– Overview

– The model

– Implementation

– Dynamics of an individual worker

– Endogenous job finding rate

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon jax

69.1 Overview

This lecture describes what has come to be called a lake model.

The lake model is a basic tool for modeling unemployment.

It allows us to analyze

• flows between unemployment and employment

• how these flows influence steady state employment and unemployment rates

It is a good model for interpreting monthly labor department reports on gross and net jobs created and destroyed.

The “lakes” in the model are the pools of employed and unemployed.

The “flows” between the lakes are caused by

• firing and hiring

• entry and exit from the labor force

For the first part of this lecture, the parameters governing transitions into and out of unemployment and employment are
exogenous.
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Later, we’ll determine some of these transition rates endogenously using the McCall search model.

We’ll also use some nifty concepts like ergodicity, which provides a fundamental link between cross-sectional and long
run time series distributions.

These concepts will help us build an equilibrium model of ex-ante homogeneous workers whose different luck generates
variations in their ex post experiences.

Let’s start with some imports:

import matplotlib.pyplot as plt
import jax
import jax.numpy as jnp
from typing import NamedTuple
from quantecon.distributions import BetaBinomial
from functools import partial
import jax.scipy.stats as stats

69.1.1 Prerequisites

Before working through what follows, we recommend you read the lecture on finite Markov chains.

You will also need some basic linear algebra and probability.

69.2 The model

The economy is inhabited by a very large number of ex-ante identical workers.

The workers live forever, spending their lives moving between unemployment and employment.

Their rates of transition between employment and unemployment are governed by the following parameters:

• 𝜆, the job finding rate for currently unemployed workers
• 𝛼, the dismissal rate for currently employed workers
• 𝑏, the entry rate into the labor force
• 𝑑, the exit rate from the labor force

The growth rate of the labor force evidently equals 𝑔 = 𝑏 − 𝑑.

69.2.1 Aggregate variables

We want to derive the dynamics of the following aggregates:

• 𝐸𝑡, the total number of employed workers at date 𝑡
• 𝑈𝑡, the total number of unemployed workers at 𝑡
• 𝑁𝑡, the number of workers in the labor force at 𝑡

We also want to know the values of the following objects:

• The employment rate 𝑒𝑡 ∶= 𝐸𝑡/𝑁𝑡.

• The unemployment rate 𝑢𝑡 ∶= 𝑈𝑡/𝑁𝑡.

(Here and below, capital letters represent aggregates and lowercase letters represent rates)
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69.2.2 Laws of motion for stock variables

We begin by constructing laws of motion for the aggregate variables 𝐸𝑡, 𝑈𝑡, 𝑁𝑡.

Of the mass of workers 𝐸𝑡 who are employed at date 𝑡,
• (1 − 𝑑)𝐸𝑡 will remain in the labor force

• of these, (1 − 𝛼)(1 − 𝑑)𝐸𝑡 will remain employed

Of the mass of workers 𝑈𝑡 workers who are currently unemployed,

• (1 − 𝑑)𝑈𝑡 will remain in the labor force

• of these, (1 − 𝑑)𝜆𝑈𝑡 will become employed

Therefore, the number of workers who will be employed at date 𝑡 + 1 will be

𝐸𝑡+1 = (1 − 𝑑)(1 − 𝛼)𝐸𝑡 + (1 − 𝑑)𝜆𝑈𝑡

A similar analysis implies

𝑈𝑡+1 = (1 − 𝑑)𝛼𝐸𝑡 + (1 − 𝑑)(1 − 𝜆)𝑈𝑡 + 𝑏(𝐸𝑡 + 𝑈𝑡)

The value 𝑏(𝐸𝑡 + 𝑈𝑡) is the mass of new workers entering the labor force unemployed.

The total stock of workers 𝑁𝑡 = 𝐸𝑡 + 𝑈𝑡 evolves as

𝑁𝑡+1 = (1 + 𝑏 − 𝑑)𝑁𝑡 = (1 + 𝑔)𝑁𝑡

Letting 𝑋𝑡 ∶= (𝑈𝑡
𝐸𝑡

), the law of motion for 𝑋 is

𝑋𝑡+1 = 𝐴𝑋𝑡 where 𝐴 ∶= [(1 − 𝑑)(1 − 𝜆) + 𝑏 (1 − 𝑑)𝛼 + 𝑏
(1 − 𝑑)𝜆 (1 − 𝑑)(1 − 𝛼)]

This law tells us how total employment and unemployment evolve over time.

69.2.3 Laws of motion for rates

Now let’s derive the law of motion for rates.

To get these we can divide both sides of 𝑋𝑡+1 = 𝐴𝑋𝑡 by 𝑁𝑡+1 to get

[𝑈𝑡+1/𝑁𝑡+1
𝐸𝑡+1/𝑁𝑡+1

] = 1
1 + 𝑔 𝐴 [𝑈𝑡/𝑁𝑡

𝐸𝑡/𝑁𝑡
]

Letting

𝑥𝑡 ∶= (𝑢𝑡
𝑒𝑡

) = (𝑈𝑡/𝑁𝑡
𝐸𝑡/𝑁𝑡

)

we can also write this as

𝑥𝑡+1 = ̂𝐴𝑥𝑡 where ̂𝐴 ∶= 1
1 + 𝑔 𝐴

You can check that 𝑒𝑡 + 𝑢𝑡 = 1 implies that 𝑒𝑡+1 + 𝑢𝑡+1 = 1.
This follows from the fact that the columns of ̂𝐴 sum to 1.
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69.3 Implementation

Let’s code up these equations.

To do this we’re going to use a class that we’ll call LakeModel that stores the primitives 𝛼, 𝜆, 𝑏, 𝑑
class LakeModel(NamedTuple):

"""
Parameters for the lake model
"""
λ: float = 0.283
α: float = 0.013
b: float = 0.0124
d: float = 0.00822

We will also use a specialized function to generate time series in an efficient JAX-compatible manner.

(Iteratively generating time series is somewhat nontrivial in JAX because arrays are immutable.)

@partial(jax.jit, static_argnames=['f', 'num_steps'])
def generate_path(f, initial_state, num_steps, **kwargs):

"""
Generate a time series by repeatedly applying an update rule.

Given a map f, initial state x_0, and a set of model parameter θ, this
function computes and returns the sequence {x_t}_{t=0}^{T-1} when

x_{t+1} = f(x_t, t, θ)

Args:
f: Update function mapping (x_t, t, θ) -> x_{t+1}
initial_state: Initial state x_0
num_steps: Number of time steps T to simulate
**kwargs: Optional extra arguments passed to f

Returns:
Array of shape (dim(x), T) containing the time series path
[x_0, x_1, x_2, ..., x_{T-1}]

"""

def update_wrapper(state, t):
"""
Wrapper function that adapts f for use with JAX scan.
"""
next_state = f(state, t, **kwargs)
return next_state, state

_, path = jax.lax.scan(update_wrapper,
initial_state, jnp.arange(num_steps))

return path.T

Now we can compute the matrices and simulate the dynamics.

@jax.jit
def compute_matrices(model: LakeModel):

"""Compute the transition matrices A and A_hat for the model."""
λ, α, b, d = model.λ, model.α, model.b, model.d
g = b - d

(continues on next page)
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(continued from previous page)

A = jnp.array([[(1-d) * (1-λ) + b, (1 - d) * α + b],
[ (1-d) * λ, (1 - d) * (1 - α)]])

A_hat = A / (1 + g)
return A, A_hat, g

@jax.jit
def stock_update(current_stocks, time_step, model):

"""
Apply transition matrix to get next period's stocks.
"""
A, A_hat, g = compute_matrices(model)
next_stocks = A @ current_stocks
return next_stocks

@jax.jit
def rate_update(current_rates, time_step, model):

"""
Apply normalized transition matrix for next period's rates.
"""
A, A_hat, g = compute_matrices(model)
next_rates = A_hat @ current_rates
return next_rates

We create two instances, one with 𝛼 = 0.013 and another with 𝛼 = 0.03
model = LakeModel()
model_new = LakeModel(α=0.03)

print(f"Default α: {model.α}")
A, A_hat, g = compute_matrices(model)
print(f"A matrix:\n{A}")

Default α: 0.013

A matrix:
[[0.7235062 0.02529314]
[0.28067374 0.97888684]]

A_new, A_hat_new, g_new = compute_matrices(model_new)
print(f"New α: {model_new.α}")
print(f"New A matrix:\n{A_new}")

New α: 0.03
New A matrix:
[[0.7235062 0.0421534 ]
[0.28067374 0.9620266 ]]
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69.3.1 Aggregate dynamics

Let’s run a simulation under the default parameters (see above) starting from 𝑋0 = (12, 138).
N_0 = 150 # Population
e_0 = 0.92 # Initial employment rate
u_0 = 1 - e_0 # Initial unemployment rate
T = 50 # Simulation length

U_0 = u_0 * N_0
E_0 = e_0 * N_0

fig, axes = plt.subplots(3, 1, figsize=(10, 8))
X_0 = jnp.array([U_0, E_0])
X_path = generate_path(stock_update, X_0, T, model=model)

axes[0].plot(X_path[0, :], lw=2)
axes[0].set_title('unemployment')

axes[1].plot(X_path[1, :], lw=2)
axes[1].set_title('employment')

axes[2].plot(X_path.sum(0), lw=2)
axes[2].set_title('labor force')

plt.tight_layout()
plt.show()
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The aggregates 𝐸𝑡 and 𝑈𝑡 don’t converge because their sum 𝐸𝑡 + 𝑈𝑡 grows at rate 𝑔.
On the other hand, the vector of employment and unemployment rates 𝑥𝑡 can be in a steady state ̄𝑥 if there exists an ̄𝑥
such that

• ̄𝑥 = ̂𝐴 ̄𝑥
• the components satisfy ̄𝑒 + 𝑢̄ = 1

This equation tells us that a steady state level ̄𝑥 is an eigenvector of ̂𝐴 associated with a unit eigenvalue.

The following function can be used to compute the steady state.

@jax.jit
def rate_steady_state(model: LakeModel):

r"""
Finds the steady state of the system :math:`x_{t+1} = \hat A x_{t}`
by computing the eigenvector corresponding to the unit eigenvalue.
"""
A, A_hat, g = compute_matrices(model)
eigenvals, eigenvec = jnp.linalg.eig(A_hat)

# Find the eigenvector corresponding to eigenvalue 1
unit_idx = jnp.argmin(jnp.abs(eigenvals - 1.0))

# Get the corresponding eigenvector

(continues on next page)
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steady_state = jnp.real(eigenvec[:, unit_idx])

# Normalize to ensure positive values and sum to 1
steady_state = jnp.abs(steady_state)
steady_state = steady_state / jnp.sum(steady_state)

return steady_state

We also have 𝑥𝑡 → ̄𝑥 as 𝑡 → ∞ provided that the remaining eigenvalue of ̂𝐴 has modulus less than 1.

This is the case for our default parameters:

A, A_hat, g = compute_matrices(model)
e, f = jnp.linalg.eigvals(A_hat)
print(f"Eigenvalue magnitudes: {abs(e):.2f}, {abs(f):.2f}")

Eigenvalue magnitudes: 0.70, 1.00

Let’s look at the convergence of the unemployment and employment rates to steady state levels (dashed black line)

xbar = rate_steady_state(model)

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
x_0 = jnp.array([u_0, e_0])
x_path = generate_path(rate_update, x_0, T, model=model)

titles = ['unemployment rate', 'employment rate']

for i, title in enumerate(titles):
axes[i].plot(x_path[i, :], lw=2, alpha=0.5)
axes[i].hlines(xbar[i], 0, T, 'black', '--')
axes[i].set_title(title)

plt.tight_layout()
plt.show()
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69.4 Dynamics of an individual worker

An individual worker’s employment dynamics are governed by a finite state Markov process.

The worker can be in one of two states:

• 𝑠𝑡 = 0 means unemployed
• 𝑠𝑡 = 1 means employed

Let’s start off under the assumption that 𝑏 = 𝑑 = 0.
The associated transition matrix is then

𝑃 = (1 − 𝜆 𝜆
𝛼 1 − 𝛼)

Let 𝜓𝑡 denote the marginal distribution over employment/unemployment states for the worker at time 𝑡.
As usual, we regard it as a row vector.

We know from an earlier discussion that 𝜓𝑡 follows the law of motion

𝜓𝑡+1 = 𝜓𝑡𝑃
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We also know from the lecture on finite Markov chains that if 𝛼 ∈ (0, 1) and 𝜆 ∈ (0, 1), then 𝑃 has a unique stationary
distribution, denoted here by 𝜓∗.

The unique stationary distribution satisfies

𝜓∗[0] = 𝛼
𝛼 + 𝜆

Not surprisingly, probability mass on the unemployment state increases with the dismissal rate and falls with the job
finding rate.

69.4.1 Ergodicity

Let’s look at a typical lifetime of employment-unemployment spells.

We want to compute the average amounts of time an infinitely lived worker would spend employed and unemployed.

Let

̄𝑠𝑢,𝑇 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝟙{𝑠𝑡 = 0}

and

̄𝑠𝑒,𝑇 ∶= 1
𝑇

𝑇
∑
𝑡=1

𝟙{𝑠𝑡 = 1}

(As usual, 𝟙{𝑄} = 1 if statement 𝑄 is true and 0 otherwise)

These are the fraction of time a worker spends unemployed and employed, respectively, up until period 𝑇 .
If 𝛼 ∈ (0, 1) and 𝜆 ∈ (0, 1), then 𝑃 is ergodic, and hence we have

lim
𝑇 →∞

̄𝑠𝑢,𝑇 = 𝜓∗[0] and lim
𝑇 →∞

̄𝑠𝑒,𝑇 = 𝜓∗[1]

with probability one.

Inspection tells us that 𝑃 is exactly the transpose of ̂𝐴 under the assumption 𝑏 = 𝑑 = 0.
Thus, the percentages of time that an infinitely lived worker spends employed and unemployed equal the fractions of
workers employed and unemployed in the steady state distribution.

69.4.2 Convergence rate

How long does it take for time series sample averages to converge to cross-sectional averages?

We can investigate this by simulating the Markov chain.

Let’s plot the path of the sample averages over 5,000 periods

@jax.jit
def markov_update(state, t, P, keys):

"""
Sample next state from transition probabilities.
"""
probs = P[state]
state_new = jax.random.choice(keys[t],

a=jnp.arange(len(probs)),

(continues on next page)
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(continued from previous page)

p=probs)
return state_new

model_markov = LakeModel(d=0, b=0)
T = 5000 # Simulation length

α, λ = model_markov.α, model_markov.λ

P = jnp.array([[1 - λ, λ],
[ α, 1 - α]])

xbar = rate_steady_state(model_markov)

# Simulate the Markov chain
key = jax.random.PRNGKey(0)
keys = jax.random.split(key, T)
s_path = generate_path(markov_update, 1, T, P=P, keys=keys)

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
s_bar_e = jnp.cumsum(s_path) / jnp.arange(1, T+1)
s_bar_u = 1 - s_bar_e

to_plot = [s_bar_u, s_bar_e]
titles = ['percent of time unemployed', 'percent of time employed']

for i, plot in enumerate(to_plot):
axes[i].plot(plot, lw=2, alpha=0.5)
axes[i].hlines(xbar[i], 0, T, 'r', '--')
axes[i].set_title(titles[i])

plt.tight_layout()
plt.show()
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The stationary probabilities are given by the dashed red line.

In this case it takes much of the sample for these two objects to converge.

This is largely due to the high persistence in the Markov chain.

69.5 Endogenous job finding rate

We now make the hiring rate endogenous.

The transition rate from unemployment to employment will be determined by the McCall search model [McCall, 1970].

All details relevant to the following discussion can be found in our treatment of that model.
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69.5.1 Reservation wage

The most important thing to remember about the model is that optimal decisions are characterized by a reservation wage
𝑤̄

• If the wage offer 𝑤 in hand is greater than or equal to 𝑤̄, then the worker accepts.
• Otherwise, the worker rejects.

As we saw in our discussion of the model, the reservation wage depends on the wage offer distribution and the parameters

• 𝛼, the separation rate
• 𝛽, the discount factor
• 𝛾, the offer arrival rate
• 𝑐, unemployment compensation

69.5.2 Linking the McCall search model to the lake model

Suppose that all workers inside a lake model behave according to the McCall search model.

The exogenous probability of leaving employment remains 𝛼.
But their optimal decision rules determine the probability 𝜆 of leaving unemployment.

This is now

𝜆 = 𝛾ℙ{𝑤𝑡 ≥ 𝑤̄} = 𝛾 ∑
𝑤′≥𝑤̄

𝑝(𝑤′) (69.1)

69.5.3 Fiscal policy

We can use the McCall search version of the Lake Model to find an optimal level of unemployment insurance.

We assume that the government sets unemployment compensation 𝑐.
The government imposes a lump-sum tax 𝜏 sufficient to finance total unemployment payments.

To attain a balanced budget at a steady state, taxes, the steady state unemployment rate 𝑢, and the unemployment com-
pensation rate must satisfy

𝜏 = 𝑢𝑐

The lump-sum tax applies to everyone, including unemployed workers.

Thus, the post-tax income of an employed worker with wage 𝑤 is 𝑤 − 𝜏 .
The post-tax income of an unemployed worker is 𝑐 − 𝜏 .
For each specification (𝑐, 𝜏) of government policy, we can solve for the worker’s optimal reservation wage.
This determines 𝜆 via (69.1) evaluated at post tax wages, which in turn determines a steady state unemployment rate
𝑢(𝑐, 𝜏).
For a given level of unemployment benefit 𝑐, we can solve for a tax that balances the budget in the steady state

𝜏 = 𝑢(𝑐, 𝜏)𝑐

To evaluate alternative government tax-unemployment compensation pairs, we require a welfare criterion.
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We use a steady state welfare criterion

𝑊 ∶= 𝑒 𝔼[𝑉 | employed] + 𝑢 𝑈

where the notation 𝑉 and 𝑈 is as defined in the McCall search model lecture.

The wage offer distribution will be a discretized version of the lognormal distribution 𝐿𝑁(log(20), 1), as shown in the
next figure

def create_wage_distribution(max_wage: float,
wage_grid_size: int,
log_wage_mean: float):

"""Create wage distribution"""
w_vec_temp = jnp.linspace(1e-8, max_wage,

wage_grid_size + 1)
cdf = stats.norm.cdf(jnp.log(w_vec_temp),

loc=jnp.log(log_wage_mean), scale=1)
pdf = cdf[1:] - cdf[:-1]
p_vec = pdf / pdf.sum()
w_vec = (w_vec_temp[1:] + w_vec_temp[:-1]) / 2
return w_vec, p_vec

w_vec, p_vec = create_wage_distribution(170, 200, 20)

# Plot the wage distribution
fig, ax = plt.subplots()

ax.plot(w_vec, p_vec)
ax.set_xlabel('wages')
ax.set_ylabel('probability')

plt.tight_layout()
plt.show()
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We take a period to be a month.

We set 𝑏 and 𝑑 to match monthly birth and death rates, respectively, in the U.S. population

• 𝑏 = 0.0124
• 𝑑 = 0.00822

Following [Davis et al., 2006], we set 𝛼, the hazard rate of leaving employment, to
• 𝛼 = 0.013

69.5.4 Fiscal policy code

We will make use of techniques from the McCall model lecture

The first piece of code implements value function iteration

@jax.jit
def u(c, σ=2.0):

return jnp.where(c > 0, (c**(1 - σ) - 1) / (1 - σ), -10e6)

class McCallModel(NamedTuple):
"""
Stores the parameters for the McCall search model
"""
α: float # Job separation rate

(continues on next page)
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(continued from previous page)

β: float # Discount rate
γ: float # Job offer rate
c: float # Unemployment compensation
σ: float # Utility parameter
w_vec: jnp.ndarray # Possible wage values
p_vec: jnp.ndarray # Probabilities over w_vec

def create_mccall_model(α=0.2, β=0.98, γ=0.7, c=6.0, σ=2.0,
w_vec=None, p_vec=None) -> McCallModel:

"""
Create a McCallModel.
"""
if w_vec is None:

n = 60 # Number of possible outcomes for wage

# Wages between 10 and 20
w_vec = jnp.linspace(10, 20, n)
a, b = 600, 400 # Shape parameters
dist = BetaBinomial(n-1, a, b)
p_vec = jnp.array(dist.pdf())

return McCallModel(α=α, β=β, γ=γ, c=c, σ=σ, w_vec=w_vec, p_vec=p_vec)

@jax.jit
def bellman(mcm: McCallModel, V, U):

"""
Update the Bellman equations.
"""
α, β, γ, c, σ = mcm.α, mcm.β, mcm.γ, mcm.c, mcm.σ
w_vec, p_vec = mcm.w_vec, mcm.p_vec

V_new = u(w_vec, σ) + β * ((1 - α) * V + α * U)
U_new = u(c, σ) + β * (1 - γ) * U + β * γ * (jnp.maximum(U, V) @ p_vec)

return V_new, U_new

@jax.jit
def solve_mccall_model(mcm: McCallModel, tol=1e-5, max_iter=2000):

"""
Iterates to convergence on the Bellman equations.
"""
def cond_fun(state):

V, U, i, error = state
return jnp.logical_and(error > tol, i < max_iter)

def body_fun(state):
V, U, i, error = state
V_new, U_new = bellman(mcm, V, U)
error_1 = jnp.max(jnp.abs(V_new - V))
error_2 = jnp.abs(U_new - U)
error_new = jnp.maximum(error_1, error_2)
return V_new, U_new, i + 1, error_new

# Initial state
V_init = jnp.ones(len(mcm.w_vec))

(continues on next page)
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U_init = 1.0
i_init = 0
error_init = tol + 1

init_state = (V_init, U_init, i_init, error_init)
V_final, U_final, _, _ = jax.lax.while_loop(

cond_fun, body_fun, init_state)

return V_final, U_final

Now let’s compute and plot welfare, employment, unemployment, and tax revenue as a function of the unemployment
compensation rate

class EconomyParameters(NamedTuple):
"""Parameters for the economy"""
α: float
α_q: float # Quarterly (α is monthly)
b: float
d: float
β: float
γ: float
σ: float
log_wage_mean: float
wage_grid_size: int
max_wage: float

def create_economy_params(α=0.013, b=0.0124, d=0.00822,
β=0.98, γ=1.0, σ=2.0,
log_wage_mean=20,
wage_grid_size=200,
max_wage=170) -> EconomyParameters:

"""Create economy parameters with default values"""
α_q = (1-(1-α)**3) # Convert monthly to quarterly
return EconomyParameters(α=α, α_q=α_q, b=b, d=d, β=β, γ=γ, σ=σ,

log_wage_mean=log_wage_mean,
wage_grid_size=wage_grid_size,
max_wage=max_wage)

@jax.jit
def compute_optimal_quantities(c, τ,

params: EconomyParameters, w_vec, p_vec):
"""
Compute the reservation wage, job finding rate and value functions
of the workers given c and τ.
"""
mcm = create_mccall_model(

α=params.α_q,
β=params.β,
γ=params.γ,
c=c-τ, # Post tax compensation
σ=params.σ,
w_vec=w_vec-τ, # Post tax wages
p_vec=p_vec

)

V, U = solve_mccall_model(mcm)
(continues on next page)
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w_idx = jnp.searchsorted(V - U, 0)
w_bar = jnp.where(w_idx == len(V), jnp.inf, mcm.w_vec[w_idx])

λ = params.γ * jnp.sum(p_vec * (w_vec - τ > w_bar))
return w_bar, λ, V, U

@jax.jit
def compute_steady_state_quantities(c, τ,

params: EconomyParameters, w_vec, p_vec):
"""
Compute the steady state unemployment rate given c and τ using optimal
quantities from the McCall model and computing corresponding steady
state quantities
"""
w_bar, λ, V, U = compute_optimal_quantities(c, τ,

params, w_vec, p_vec)

# Compute steady state employment and unemployment rates
model = LakeModel(α=params.α_q, λ=λ, b=params.b, d=params.d)
u, e = rate_steady_state(model)

# Compute steady state welfare
mask = (w_vec - τ > w_bar)
w = jnp.sum(V * p_vec * mask) / jnp.sum(p_vec * mask)
welfare = e * w + u * U

return e, u, welfare

def find_balanced_budget_tax(c, params: EconomyParameters,
w_vec, p_vec):

"""
Find the tax level that will induce a balanced budget
"""
def steady_state_budget(t):

e, u, w = compute_steady_state_quantities(c, t,
params, w_vec, p_vec)

return t - u * c

# Use a simple bisection method
t_low, t_high = 0.0, 0.9 * c
tol = 1e-6
max_iter = 100

for i in range(max_iter):
t_mid = (t_low + t_high) / 2
budget = steady_state_budget(t_mid)

if abs(budget) < tol:
return t_mid

elif budget < 0:
t_low = t_mid

else:
t_high = t_mid

return t_mid
(continues on next page)
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# Create economy parameters and wage distribution
params = create_economy_params()
w_vec, p_vec = create_wage_distribution(params.max_wage,

params.wage_grid_size,
params.log_wage_mean)

# Levels of unemployment insurance we wish to study
c_vec = jnp.linspace(5, 140, 60)

tax_vec = []
unempl_vec = []
empl_vec = []
welfare_vec = []

for c in c_vec:
t = find_balanced_budget_tax(c, params, w_vec, p_vec)
e_rate, u_rate, welfare = compute_steady_state_quantities(c, t, params,

w_vec, p_vec)
tax_vec.append(t)
unempl_vec.append(u_rate)
empl_vec.append(e_rate)
welfare_vec.append(welfare)

fig, axes = plt.subplots(2, 2, figsize=(12, 10))

plots = [unempl_vec, empl_vec, tax_vec, welfare_vec]
titles = ['unemployment', 'employment', 'tax', 'welfare']

for ax, plot, title in zip(axes.flatten(), plots, titles):
ax.plot(c_vec, plot, lw=2, alpha=0.7)
ax.set_title(title)

plt.tight_layout()
plt.show()
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Welfare first increases and then decreases as unemployment benefits rise.

The level that maximizes steady state welfare is approximately 62.

69.6 Exercises

Exercise 69.6.1

In the JAX implementation of the Lake Model, we use a NamedTuple for parameters and separate functions for
computations.

This approach has several advantages:

1. It’s immutable, which aligns with JAX’s functional programming paradigm

2. Functions can be JIT-compiled for better performance

In this exercise, your task is to:

1. Update parameters by creating a new instance of the model with the parameters (α=0.02, λ=0.3).

2. Use JAX’s vmap to compute steady states for different parameter values
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3. Plot how the steady-state unemployment rate varies with the job finding rate 𝜆

Solution to Exercise 69.6.1

Here is one solution

@jax.jit
def compute_unemployment_rate(λ_val):

"""Computes steady-state unemployment for a given λ"""
model = LakeModel(λ=λ_val)
steady_state = rate_steady_state(model)
return steady_state[0]

# Use vmap to compute for multiple λ values
λ_values = jnp.linspace(0.1, 0.5, 50)
unemployment_rates = jax.vmap(compute_unemployment_rate)(λ_values)

# Plot the results
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(λ_values, unemployment_rates, lw=2)
ax.set_xlabel(r'$\lambda$')
ax.set_ylabel('steady-state unemployment rate')
plt.show()

model_base = LakeModel()
model_ex1 = LakeModel(α=0.02, λ=0.3)

print(f"Base model α: {model_base.α}")
print(f"New model α: {model_ex1.α}, λ: {model_ex1.λ}")

# Compute steady states for both
base_steady_state = rate_steady_state(model_base)
new_steady_state = rate_steady_state(model_ex1)

print(f"Base unemployment rate: {base_steady_state[0]:.4f}")
print(f"New unemployment rate: {new_steady_state[0]:.4f}")
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Base model α: 0.013
New model α: 0.02, λ: 0.3
Base unemployment rate: 0.0827
New unemployment rate: 0.0978

Exercise 69.6.2

Consider an economy with an initial stock of workers𝑁0 = 100 at the steady state level of employment in the baseline
parameterization

• 𝛼 = 0.013
• 𝜆 = 0.283
• 𝑏 = 0.0124
• 𝑑 = 0.00822

(The values for 𝛼 and 𝜆 follow [Davis et al., 2006])

Suppose that in response to new legislation the hiring rate reduces to 𝜆 = 0.2.
Plot the transition dynamics of the unemployment and employment stocks for 50 periods.

Plot the transition dynamics for the rates.

How long does the economy take to converge to its new steady state?

What is the new steady state level of employment?
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Solution to Exercise 69.6.2

We begin by constructing the model with default parameters and finding the initial steady state

model_initial = LakeModel()
x0 = rate_steady_state(model_initial)
print(f"Initial Steady State: {x0}")

Initial Steady State: [0.08266623 0.9173338 ]

Initialize the simulation values

N0 = 100
T = 50

New legislation changes 𝜆 to 0.2

model_ex2 = LakeModel(λ=0.2)
xbar = rate_steady_state(model_ex2) # new steady state

# Simulate paths
X_path = generate_path(stock_update, x0 * N0, T, model=model_ex2)
x_path = generate_path(rate_update, x0, T, model=model_ex2)
print(f"New Steady State: {xbar}")

New Steady State: [0.1130929 0.8869071]

Now plot stocks

fig, axes = plt.subplots(3, 1, figsize=[10, 9])

axes[0].plot(X_path[0, :])
axes[0].set_title('unemployment')

axes[1].plot(X_path[1, :])
axes[1].set_title('employment')

axes[2].plot(X_path.sum(0))
axes[2].set_title('labor force')

plt.tight_layout()
plt.show()
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And how the rates evolve

fig, axes = plt.subplots(2, 1, figsize=(10, 8))

titles = ['unemployment rate', 'employment rate']

for i, title in enumerate(titles):
axes[i].plot(x_path[i, :])
axes[i].hlines(xbar[i], 0, T, 'r', '--')
axes[i].set_title(title)

plt.tight_layout()
plt.show()
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We see that it takes 20 periods for the economy to converge to its new steady state levels.

Exercise 69.6.3

Consider an economy with an initial stock of workers𝑁0 = 100 at the steady state level of employment in the baseline
parameterization.

Suppose that for 20 periods the birth rate was temporarily high (𝑏 = 0.025) and then returned to its original level.
Plot the transition dynamics of the unemployment and employment stocks for 50 periods.

Plot the transition dynamics for the rates.

How long does the economy take to return to its original steady state?

Solution to Exercise 69.6.3

This exercise has the economy experiencing a boom in entrances to the labor market and then later returning to the
original levels.

For 20 periods the economy has a new entry rate into the labor market.

Let’s start off at the baseline parameterization and record the steady state
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model_baseline = LakeModel()
x0 = rate_steady_state(model_baseline)
N0 = 100
T = 50

Here are the other parameters:

b_hat = 0.025
T_hat = 20

Let’s increase 𝑏 to the new value and simulate for 20 periods

model_high_b = LakeModel(b=b_hat)

# Simulate stocks and rates for first 20 periods
X_path1 = generate_path(stock_update, x0 * N0, T_hat, model=model_high_b)
x_path1 = generate_path(rate_update, x0, T_hat, model=model_high_b)

Nowwe reset 𝑏 to the original value and then, using the state after 20 periods for the new initial conditions, we simulate
for the additional 30 periods

# Use final state from period 20 as initial condition
X_path2 = generate_path(stock_update, X_path1[:, -1], T-T_hat,

model=model_baseline)
x_path2 = generate_path(rate_update, x_path1[:, -1], T-T_hat,

model=model_baseline)

Finally, we combine these two paths and plot

# Combine paths
X_path = jnp.hstack([X_path1, X_path2[:, 1:]])
x_path = jnp.hstack([x_path1, x_path2[:, 1:]])

fig, axes = plt.subplots(3, 1, figsize=[10, 9])

axes[0].plot(X_path[0, :])
axes[0].set_title('unemployment')

axes[1].plot(X_path[1, :])
axes[1].set_title('employment')

axes[2].plot(X_path.sum(0))
axes[2].set_title('labor force')

plt.tight_layout()
plt.show()
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And the rates

fig, axes = plt.subplots(2, 1, figsize=[10, 6])

titles = ['unemployment rate', 'employment rate']

for i, title in enumerate(titles):
axes[i].plot(x_path[i, :])
axes[i].hlines(x0[i], 0, T, 'r', '--')
axes[i].set_title(title)

plt.tight_layout()
plt.show()
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CHAPTER

SEVENTY

RATIONAL EXPECTATIONS EQUILIBRIUM

Contents

• Rational Expectations Equilibrium

– Overview

– Rational Expectations Equilibrium

– Computing an Equilibrium

– Exercises

“If you’re so smart, why aren’t you rich?”

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

70.1 Overview

This lecture introduces the concept of a rational expectations equilibrium.

To illustrate it, we describe a linear quadratic version of a model due to Lucas and Prescott [Lucas and Prescott, 1971].

That 1971 paper is one of a small number of research articles that ignited a rational expectations revolution.

We follow Lucas and Prescott by employing a setting that is readily “Bellmanized” (i.e., susceptible to being formulated
as a dynamic programming problems.

Because we use linear quadratic setups for demand and costs, we can deploy the LQ programming techniques described
in this lecture.

We will learn about how a representative agent’s problem differs from a planner’s, and how a planning problem can be
used to compute quantities and prices in a rational expectations equilibrium.

We will also learn about how a rational expectations equilibrium can be characterized as a fixed point of a mapping from
a perceived law of motion to an actual law of motion.

Equality between a perceived and an actual law of motion for endogenous market-wide objects captures in a nutshell what
the rational expectations equilibrium concept is all about.

Finally, we will learn about the important “Big 𝐾, little 𝑘” trick, a modeling device widely used in macroeconomics.
Except that for us
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• Instead of “Big 𝐾” it will be “Big 𝑌 ”.

• Instead of “little 𝑘” it will be “little 𝑦”.
Let’s start with some standard imports:

import matplotlib.pyplot as plt
import numpy as np

We’ll also use the LQ class from QuantEcon.py.

from quantecon import LQ

70.1.1 The Big Y, little y Trick

This widely used method applies in contexts in which a representative firm or agent is a “price taker” operating within
a competitive equilibrium.

The following setting justifies the concept of a representative firm that stands in for a large number of other firms too.

There is a uniform unit measure of identical firms named 𝜔 ∈ Ω = [0, 1].
The output of firm 𝜔 is 𝑦(𝜔).

The output of all firms is 𝑌 = ∫1
0 𝑦(𝜔)𝑑 𝜔.

All firms end up choosing to produce the same output, so that at the end of the day 𝑦(𝜔) = 𝑦 and 𝑌 = 𝑦 = ∫1
0 𝑦(𝜔)𝑑 𝜔.

This setting allows us to speak of a representative firm that chooses to produce 𝑦.
We want to impose that

• The representative firm or individual firm takes aggregate 𝑌 as given when it chooses individual 𝑦(𝜔), but ….

• At the end of the day, 𝑌 = 𝑦(𝜔) = 𝑦, so that the representative firm is indeed representative.

The Big 𝑌 , little 𝑦 trick accomplishes these two goals by
• Taking 𝑌 as beyond control when posing the choice problem of who chooses 𝑦; but ….

• Imposing 𝑌 = 𝑦 after having solved the individual’s optimization problem.

Please watch for how this strategy is applied as the lecture unfolds.

We begin by applying the Big 𝑌 , little 𝑦 trick in a very simple static context.

A Simple Static Example of the Big Y, little y Trick

Consider a static model in which a unit measure of firms produce a homogeneous good that is sold in a competitive
market.

Each of these firms ends up producing and selling output 𝑦(𝜔) = 𝑦.
The price 𝑝 of the good lies on an inverse demand curve

𝑝 = 𝑎0 − 𝑎1𝑌 (70.1)

where

• 𝑎𝑖 > 0 for 𝑖 = 0, 1

• 𝑌 = ∫1
0 𝑦(𝜔)𝑑𝜔 is the market-wide level of output
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For convenience, we’ll often just write 𝑦 instead of 𝑦(𝜔) when we are describing the choice problem of an individual firm
𝜔 ∈ Ω.
Each firm has a total cost function

𝑐(𝑦) = 𝑐1𝑦 + 0.5𝑐2𝑦2, 𝑐𝑖 > 0 for 𝑖 = 1, 2

The profits of a representative firm are 𝑝𝑦 − 𝑐(𝑦).
Using (70.1), we can express the problem of the representative firm as

max
𝑦

[(𝑎0 − 𝑎1𝑌 )𝑦 − 𝑐1𝑦 − 0.5𝑐2𝑦2] (70.2)

In posing problem (70.2), we want the firm to be a price taker.

We do that by regarding 𝑝 and therefore 𝑌 as exogenous to the firm.

The essence of the Big 𝑌 , little 𝑦 trick is not to set 𝑌 = 𝑛𝑦 before taking the first-order condition with respect to 𝑦 in
problem (70.2).

This assures that the firm is a price taker.

The first-order condition for problem (70.2) is

𝑎0 − 𝑎1𝑌 − 𝑐1 − 𝑐2𝑦 = 0 (70.3)

At this point, but not before, we substitute 𝑌 = 𝑦 into (70.3) to obtain the following linear equation

𝑎0 − 𝑐1 − (𝑎1 + 𝑐2)𝑌 = 0 (70.4)

to be solved for the competitive equilibrium market-wide output 𝑌 .

After solving for 𝑌 , we can compute the competitive equilibrium price 𝑝 from the inverse demand curve (70.1).

70.1.2 Related Planning Problem

Define consumer surplus as the area under the inverse demand curve:

𝑆𝑐(𝑌 ) = ∫
𝑌

0
(𝑎0 − 𝑎1𝑠)𝑑𝑠 = 𝑎𝑜𝑌 − 𝑎1

2 𝑌 2.

Define the social cost of production as

𝑆𝑝(𝑌 ) = 𝑐1𝑌 + 𝑐2
2 𝑌 2

Consider the planning problem

max
𝑌

[𝑆𝑐(𝑌 ) − 𝑆𝑝(𝑌 )]

The first-order necessary condition for the planning problem is equation (70.4).

Thus, a 𝑌 that solves (70.4) is a competitive equilibrium output as well as an output that solves the planning problem.

This type of outcome provides an intellectual justification for liking a competitive equilibrium.
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70.1.3 Further Reading

References for this lecture include

• [Lucas and Prescott, 1971]

• [Sargent, 1987], chapter XIV

• [Ljungqvist and Sargent, 2018], chapter 7

70.2 Rational Expectations Equilibrium

Our first illustration of a rational expectations equilibrium involves a market with a unit measure of identical firms, each
of which seeks to maximize the discounted present value of profits in the face of adjustment costs.

The adjustment costs induce the firms to make gradual adjustments, which in turn requires consideration of future prices.

Individual firms understand that, via the inverse demand curve, the price is determined by the amounts supplied by other
firms.

Hence each firm wants to forecast future total industry output.

In our context, a forecast is generated by a belief about the law of motion for the aggregate state.

Rational expectations equilibrium prevails when this belief coincides with the actual law of motion generated by produc-
tion choices induced by this belief.

We formulate a rational expectations equilibrium in terms of a fixed point of an operator that maps beliefs into optimal
beliefs.

70.2.1 Competitive Equilibrium with Adjustment Costs

To illustrate, consider a collection of 𝑛 firms producing a homogeneous good that is sold in a competitive market.

Each firm sell output 𝑦𝑡(𝜔) = 𝑦𝑡.

The price 𝑝𝑡 of the good lies on the inverse demand curve

𝑝𝑡 = 𝑎0 − 𝑎1𝑌𝑡 (70.5)

where

• 𝑎𝑖 > 0 for 𝑖 = 0, 1

• 𝑌𝑡 = ∫1
0 𝑦𝑡(𝜔)𝑑𝜔 = 𝑦𝑡 is the market-wide level of output

The Firm’s Problem

Each firm is a price taker.

While it faces no uncertainty, it does face adjustment costs

In particular, it chooses a production plan to maximize

∞
∑
𝑡=0

𝛽𝑡𝑟𝑡 (70.6)
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where

𝑟𝑡 ∶= 𝑝𝑡𝑦𝑡 − 𝛾(𝑦𝑡+1 − 𝑦𝑡)2

2 , 𝑦0 given (70.7)

Regarding the parameters,

• 𝛽 ∈ (0, 1) is a discount factor
• 𝛾 > 0 measures the cost of adjusting the rate of output

Regarding timing, the firm observes 𝑝𝑡 and 𝑦𝑡 when it chooses 𝑦𝑡+1 at time 𝑡.
To state the firm’s optimization problem completely requires that we specify dynamics for all state variables.

This includes ones that the firm cares about but does not control like 𝑝𝑡.

We turn to this problem now.

Prices and Aggregate Output

In view of (70.5), the firm’s incentive to forecast the market price translates into an incentive to forecast aggregate output
𝑌𝑡.

Aggregate output depends on the choices of other firms.

The output 𝑦𝑡(𝜔) of a single firm 𝜔 has a negligible effect on aggregate output ∫1
0 𝑦𝑡(𝜔)𝑑𝜔.

That justifies firms in regarding their forecasts of aggregate output as being unaffected by their own output decisions.

Representative Firm’s Beliefs

We suppose the firm believes that market-wide output 𝑌𝑡 follows the law of motion

𝑌𝑡+1 = 𝐻(𝑌𝑡) (70.8)

where 𝑌0 is a known initial condition.

The belief function 𝐻 is an equilibrium object, and hence remains to be determined.

Optimal Behavior Given Beliefs

For now, let’s fix a particular belief 𝐻 in (70.8) and investigate the firm’s response to it.

Let 𝑣 be the optimal value function for the firm’s problem given 𝐻 .

The value function satisfies the Bellman equation

𝑣(𝑦, 𝑌 ) = max
𝑦′

{𝑎0𝑦 − 𝑎1𝑦𝑌 − 𝛾(𝑦′ − 𝑦)2

2 + 𝛽𝑣(𝑦′, 𝐻(𝑌 ))} (70.9)

Let’s denote the firm’s optimal policy function by ℎ, so that

𝑦𝑡+1 = ℎ(𝑦𝑡, 𝑌𝑡) (70.10)

where

ℎ(𝑦, 𝑌 ) ∶= argmax𝑦′ {𝑎0𝑦 − 𝑎1𝑦𝑌 − 𝛾(𝑦′ − 𝑦)2

2 + 𝛽𝑣(𝑦′, 𝐻(𝑌 ))} (70.11)

Evidently 𝑣 and ℎ both depend on 𝐻 .
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Characterization with First-Order Necessary Conditions

In what follows it will be helpful to have a second characterization of ℎ, based on first-order conditions.
The first-order necessary condition for choosing 𝑦′ is

−𝛾(𝑦′ − 𝑦) + 𝛽𝑣𝑦(𝑦′, 𝐻(𝑌 )) = 0 (70.12)

An important useful envelope result of Benveniste-Scheinkman [Benveniste and Scheinkman, 1979] implies that to dif-
ferentiate 𝑣 with respect to 𝑦 we can naively differentiate the right side of (70.9), giving

𝑣𝑦(𝑦, 𝑌 ) = 𝑎0 − 𝑎1𝑌 + 𝛾(𝑦′ − 𝑦)

Substituting this equation into (70.12) gives the Euler equation

−𝛾(𝑦𝑡+1 − 𝑦𝑡) + 𝛽[𝑎0 − 𝑎1𝑌𝑡+1 + 𝛾(𝑦𝑡+2 − 𝑦𝑡+1)] = 0 (70.13)

The firm optimally sets an output path that satisfies (70.13), taking (70.8) as given, and subject to

• the initial conditions for (𝑦0, 𝑌0).
• the terminal condition lim𝑡→∞ 𝛽𝑡𝑦𝑡𝑣𝑦(𝑦𝑡, 𝑌𝑡) = 0.

This last condition is called the transversality condition, and acts as a first-order necessary condition “at infinity”.

A representative firm’s decision rule solves the difference equation (70.13) subject to the given initial condition 𝑦0 and
the transversality condition.

Note that solving the Bellman equation (70.9) for 𝑣 and then ℎ in (70.11) yields a decision rule that automatically imposes
both the Euler equation (70.13) and the transversality condition.

The Actual Law of Motion for Output

As we’ve seen, a given belief translates into a particular decision rule ℎ.
Recalling that in equilbrium 𝑌𝑡 = 𝑦𝑡, the actual law of motion for market-wide output is then

𝑌𝑡+1 = ℎ(𝑌𝑡, 𝑌𝑡) (70.14)

Thus, when firms believe that the law of motion for market-wide output is (70.8), their optimizing behavior makes the
actual law of motion be (70.14).

70.2.2 Definition of Rational Expectations Equilibrium

A rational expectations equilibrium or recursive competitive equilibrium of the model with adjustment costs is a decision
rule ℎ and an aggregate law of motion 𝐻 such that

1. Given belief 𝐻 , the map ℎ is the firm’s optimal policy function.

2. The law of motion 𝐻 satisfies 𝐻(𝑌 ) = ℎ(𝑌 , 𝑌 ) for all 𝑌 .

Thus, a rational expectations equilibrium equates the perceived and actual laws of motion (70.8) and (70.14).
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Fixed Point Characterization

As we’ve seen, the firm’s optimum problem induces a mapping Φ from a perceived law of motion 𝐻 for market-wide
output to an actual law of motion Φ(𝐻).
The mapping Φ is the composition of two mappings, the first of which maps a perceived law of motion into a decision
rule via (70.9)–(70.11), the second of which maps a decision rule into an actual law via (70.14).

The 𝐻 component of a rational expectations equilibrium is a fixed point of Φ.

70.3 Computing an Equilibrium

Now let’s compute a rational expectations equilibrium.

70.3.1 Failure of Contractivity

Readers accustomed to dynamic programming arguments might try to address this problem by choosing some guess 𝐻0
for the aggregate law of motion and then iterating with Φ.
Unfortunately, the mapping Φ is not a contraction.

Indeed, there is no guarantee that direct iterations on Φ converge1.

There are examples in which these iterations diverge.

Fortunately, another method works here.

The method exploits a connection between equilibrium and Pareto optimality expressed in the fundamental theorems of
welfare economics (see, e.g, [Mas-Colell et al., 1995]).

Lucas and Prescott [Lucas and Prescott, 1971] used this method to construct a rational expectations equilibrium.

Some details follow.

70.3.2 A Planning Problem Approach

Our plan of attack is to match the Euler equations of the market problem with those for a single-agent choice problem.

As we’ll see, this planning problem can be solved by LQ control (linear regulator).

Optimal quantities from the planning problem are rational expectations equilibrium quantities.

The rational expectations equilibrium price can be obtained as a shadow price in the planning problem.

We first compute a sum of consumer and producer surplus at time 𝑡

𝑠(𝑌𝑡, 𝑌𝑡+1) ∶= ∫
𝑌𝑡

0
(𝑎0 − 𝑎1𝑥) 𝑑𝑥 − 𝛾(𝑌𝑡+1 − 𝑌𝑡)2

2 (70.15)

The first term is the area under the demand curve, while the second measures the social costs of changing output.

1 A literature that studies whether models populated with agents who learn can converge to rational expectations equilibria features iterations on a
modification of the mapping Φ that can be approximated as 𝛾Φ + (1 − 𝛾)𝐼. Here 𝐼 is the identity operator and 𝛾 ∈ (0, 1) is a relaxation parameter.
See [Marcet and Sargent, 1989] and [Evans and Honkapohja, 2001] for statements and applications of this approach to establish conditions under which
collections of adaptive agents who use least squares learning to converge to a rational expectations equilibrium.
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The planning problem is to choose a production plan {𝑌𝑡} to maximize
∞

∑
𝑡=0

𝛽𝑡𝑠(𝑌𝑡, 𝑌𝑡+1)

subject to an initial condition for 𝑌0.

70.3.3 Solution of Planning Problem

Evaluating the integral in (70.15) yields the quadratic form 𝑎0𝑌𝑡 − 𝑎1𝑌 2
𝑡 /2.

As a result, the Bellman equation for the planning problem is

𝑉 (𝑌 ) = max
𝑌 ′

{𝑎0𝑌 − 𝑎1
2 𝑌 2 − 𝛾(𝑌 ′ − 𝑌 )2

2 + 𝛽𝑉 (𝑌 ′)} (70.16)

The associated first-order condition is

−𝛾(𝑌 ′ − 𝑌 ) + 𝛽𝑉 ′(𝑌 ′) = 0 (70.17)

Applying the same Benveniste-Scheinkman formula gives

𝑉 ′(𝑌 ) = 𝑎0 − 𝑎1𝑌 + 𝛾(𝑌 ′ − 𝑌 )

Substituting this into equation (70.17) and rearranging leads to the Euler equation

𝛽𝑎0 + 𝛾𝑌𝑡 − [𝛽𝑎1 + 𝛾(1 + 𝛽)]𝑌𝑡+1 + 𝛾𝛽𝑌𝑡+2 = 0 (70.18)

70.3.4 Key Insight

Return to equation (70.13) and set 𝑦𝑡 = 𝑌𝑡 for all 𝑡.
A small amount of algebra will convince you that when 𝑦𝑡 = 𝑌𝑡, equations (70.18) and (70.13) are identical.

Thus, the Euler equation for the planning problem matches the second-order difference equation that we derived by

1. finding the Euler equation of the representative firm and

2. substituting into it the expression 𝑌𝑡 = 𝑦𝑡 that “makes the representative firm be representative”.

If it is appropriate to apply the same terminal conditions for these two difference equations, which it is, then we have
verified that a solution of the planning problem is also a rational expectations equilibrium quantity sequence.

It follows that for this example we can compute equilibrium quantities by forming the optimal linear regulator problem
corresponding to the Bellman equation (70.16).

The optimal policy function for the planning problem is the aggregate law of motion 𝐻 that the representative firm faces
within a rational expectations equilibrium.

Structure of the Law of Motion

As you are asked to show in the exercises, the fact that the planner’s problem is an LQ control problem implies an optimal
policy — and hence aggregate law of motion — taking the form

𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡 (70.19)

for some parameter pair 𝜅0, 𝜅1.
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Now that we know the aggregate law of motion is linear, we can see from the firm’s Bellman equation (70.9) that the
firm’s problem can also be framed as an LQ problem.

As you’re asked to show in the exercises, the LQ formulation of the firm’s problem implies a law of motion that looks as
follows

𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡 (70.20)

Hence a rational expectations equilibrium will be defined by the parameters (𝜅0, 𝜅1, ℎ0, ℎ1, ℎ2) in (70.19)–(70.20).

70.4 Exercises

Exercise 70.4.1

Consider the firm problem described above.

Let the firm’s belief function 𝐻 be as given in (70.19).

Formulate the firm’s problem as a discounted optimal linear regulator problem, being careful to describe all of the
objects needed.

Use the class LQ from the QuantEcon.py package to solve the firm’s problem for the following parameter values:

𝑎0 = 100, 𝑎1 = 0.05, 𝛽 = 0.95, 𝛾 = 10, 𝜅0 = 95.5, 𝜅1 = 0.95

Express the solution of the firm’s problem in the form (70.20) and give the values for each ℎ𝑗.

If there were a unit measure of identical competitive firms all behaving according to (70.20), what would (70.20)
imply for the actual law of motion (70.8) for market supply.

Solution to Exercise 70.4.1

To map a problem into a discounted optimal linear control problem, we need to define

• state vector 𝑥𝑡 and control vector 𝑢𝑡

• matrices 𝐴, 𝐵, 𝑄, 𝑅 that define preferences and the law of motion for the state

For the state and control vectors, we choose

𝑥𝑡 = ⎡⎢
⎣

𝑦𝑡
𝑌𝑡
1

⎤⎥
⎦

, 𝑢𝑡 = 𝑦𝑡+1 − 𝑦𝑡

For 𝐵, 𝑄, 𝑅 we set

𝐴 = ⎡⎢
⎣

1 0 0
0 𝜅1 𝜅0
0 0 1

⎤⎥
⎦

, 𝐵 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑅 = ⎡⎢
⎣

0 𝑎1/2 −𝑎0/2
𝑎1/2 0 0

−𝑎0/2 0 0
⎤⎥
⎦

, 𝑄 = 𝛾/2

By multiplying out you can confirm that

• 𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 = −𝑟𝑡

• 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡
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We’ll use the module lqcontrol.py to solve the firm’s problem at the stated parameter values.

This will return an LQ policy 𝐹 with the interpretation 𝑢𝑡 = −𝐹𝑥𝑡, or

𝑦𝑡+1 − 𝑦𝑡 = −𝐹0𝑦𝑡 − 𝐹1𝑌𝑡 − 𝐹2

Matching parameters with 𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡 leads to

ℎ0 = −𝐹2, ℎ1 = 1 − 𝐹0, ℎ2 = −𝐹1

Here’s our solution
# Model parameters

a0 = 100
a1 = 0.05
β = 0.95
γ = 10.0

# Beliefs

κ0 = 95.5
κ1 = 0.95

# Formulate the LQ problem

A = np.array([[1, 0, 0], [0, κ1, κ0], [0, 0, 1]])
B = np.array([1, 0, 0])
B.shape = 3, 1
R = np.array([[0, a1/2, -a0/2], [a1/2, 0, 0], [-a0/2, 0, 0]])
Q = 0.5 * γ

# Solve for the optimal policy

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
out1 = f"F = [{F[0]:.3f}, {F[1]:.3f}, {F[2]:.3f}]"
h0, h1, h2 = -F[2], 1 - F[0], -F[1]
out2 = f"(h0, h1, h2) = ({h0:.3f}, {h1:.3f}, {h2:.3f})"

print(out1)
print(out2)

F = [-0.000, 0.046, -96.949]
(h0, h1, h2) = (96.949, 1.000, -0.046)

The implication is that

𝑦𝑡+1 = 96.949 + 𝑦𝑡 − 0.046 𝑌𝑡

For the case 𝑛 > 1, recall that 𝑌𝑡 = 𝑛𝑦𝑡, which, combined with the previous equation, yields

𝑌𝑡+1 = 𝑛 (96.949 + 𝑦𝑡 − 0.046 𝑌𝑡) = 𝑛96.949 + (1 − 𝑛0.046)𝑌𝑡
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Exercise 70.4.2

Consider the following 𝜅0, 𝜅1 pairs as candidates for the aggregate law of motion component of a rational expectations
equilibrium (see (70.19)).

Extending the program that you wrote for Exercise 70.4.1, determine which if any satisfy the definition of a rational
expectations equilibrium

• (94.0886298678, 0.923409232937)

• (93.2119845412, 0.984323478873)

• (95.0818452486, 0.952459076301)

Describe an iterative algorithm that uses the program that you wrote for Exercise 70.4.1 to compute a rational ex-
pectations equilibrium.

(You are not being asked actually to use the algorithm you are suggesting)

Solution to Exercise 70.4.2

To determine whether a 𝜅0, 𝜅1 pair forms the aggregate law of motion component of a rational expectations equilib-
rium, we can proceed as follows:

• Determine the corresponding firm law of motion 𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡.

• Test whether the associated aggregate law :𝑌𝑡+1 = 𝑛ℎ(𝑌𝑡/𝑛, 𝑌𝑡) evaluates to 𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡.

In the second step, we can use 𝑌𝑡 = 𝑛𝑦𝑡 = 𝑦𝑡, so that 𝑌𝑡+1 = 𝑛ℎ(𝑌𝑡/𝑛, 𝑌𝑡) becomes

𝑌𝑡+1 = ℎ(𝑌𝑡, 𝑌𝑡) = ℎ0 + (ℎ1 + ℎ2)𝑌𝑡

Hence to test the second step we can test 𝜅0 = ℎ0 and 𝜅1 = ℎ1 + ℎ2.

The following code implements this test

candidates = ((94.0886298678, 0.923409232937),
(93.2119845412, 0.984323478873),
(95.0818452486, 0.952459076301))

for κ0, κ1 in candidates:

# Form the associated law of motion
A = np.array([[1, 0, 0], [0, κ1, κ0], [0, 0, 1]])

# Solve the LQ problem for the firm
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
h0, h1, h2 = -F[2], 1 - F[0], -F[1]

# Test the equilibrium condition
if np.allclose((κ0, κ1), (h0, h1 + h2)):

print(f'Equilibrium pair = {κ0}, {κ1}')
print('f(h0, h1, h2) = {h0}, {h1}, {h2}')
break

Equilibrium pair = 95.0818452486, 0.952459076301
f(h0, h1, h2) = {h0}, {h1}, {h2}
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The output tells us that the answer is pair (iii), which implies (ℎ0, ℎ1, ℎ2) = (95.0819, 1.0000, −.0475).
(Notice we use np.allclose to test equality of floating-point numbers, since exact equality is too strict).

Regarding the iterative algorithm, one could loop from a given (𝜅0, 𝜅1) pair to the associated firm law and then to a
new (𝜅0, 𝜅1) pair.
This amounts to implementing the operator Φ described in the lecture.

(There is in general no guarantee that this iterative process will converge to a rational expectations equilibrium)

Exercise 70.4.3

Recall the planner’s problem described above

1. Formulate the planner’s problem as an LQ problem.

2. Solve it using the same parameter values in exercise 1

• 𝑎0 = 100, 𝑎1 = 0.05, 𝛽 = 0.95, 𝛾 = 10
3. Represent the solution in the form 𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡.

4. Compare your answer with the results from exercise 2.

Solution to Exercise 70.4.3

We are asked to write the planner problem as an LQ problem.

For the state and control vectors, we choose

𝑥𝑡 = [𝑌𝑡
1 ] , 𝑢𝑡 = 𝑌𝑡+1 − 𝑌𝑡

For the LQ matrices, we set

𝐴 = [1 0
0 1] , 𝐵 = [1

0] , 𝑅 = [ 𝑎1/2 −𝑎0/2
−𝑎0/2 0 ] , 𝑄 = 𝛾/2

By multiplying out you can confirm that

• 𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 = −𝑠(𝑌𝑡, 𝑌𝑡+1)
• 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

By obtaining the optimal policy and using 𝑢𝑡 = −𝐹𝑥𝑡 or

𝑌𝑡+1 − 𝑌𝑡 = −𝐹0𝑌𝑡 − 𝐹1

we can obtain the implied aggregate law of motion via 𝜅0 = −𝐹1 and 𝜅1 = 1 − 𝐹0.

The Python code to solve this problem is below:

# Formulate the planner's LQ problem

A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1 / 2, -a0 / 2], [-a0 / 2, 0]])
Q = γ / 2

# Solve for the optimal policy

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()

# Print the results

F = F.flatten()
κ0, κ1 = -F[1], 1 - F[0]
print(κ0, κ1)
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95.08187459215002 0.9524590627039248

The output yields the same (𝜅0, 𝜅1) pair obtained as an equilibrium from the previous exercise.

Exercise 70.4.4

A monopolist faces the industry demand curve (70.5) and chooses {𝑌𝑡} to maximize ∑∞
𝑡=0 𝛽𝑡𝑟𝑡 where

𝑟𝑡 = 𝑝𝑡𝑌𝑡 − 𝛾(𝑌𝑡+1 − 𝑌𝑡)2

2
Formulate this problem as an LQ problem.

Compute the optimal policy using the same parameters as Exercise 70.4.2.

In particular, solve for the parameters in

𝑌𝑡+1 = 𝑚0 + 𝑚1𝑌𝑡

Compare your results with Exercise 70.4.2 – comment.
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Solution to Exercise 70.4.4

The monopolist’s LQ problem is almost identical to the planner’s problem from the previous exercise, except that

𝑅 = [ 𝑎1 −𝑎0/2
−𝑎0/2 0 ]

The problem can be solved as follows

A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1, -a0 / 2], [-a0 / 2, 0]])
Q = γ / 2

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()

F = F.flatten()
m0, m1 = -F[1], 1 - F[0]
print(m0, m1)

73.47294403502818 0.9265270559649701

We see that the law of motion for the monopolist is approximately 𝑌𝑡+1 = 73.4729 + 0.9265𝑌𝑡.

In the rational expectations case, the law of motion was approximately 𝑌𝑡+1 = 95.0818 + 0.9525𝑌𝑡.

One way to compare these two laws of motion is by their fixed points, which give long-run equilibrium output in each
case.

For laws of the form 𝑌𝑡+1 = 𝑐0 + 𝑐1𝑌𝑡, the fixed point is 𝑐0/(1 − 𝑐1).
If you crunch the numbers, you will see that the monopolist adopts a lower long-run quantity than obtained by the
competitive market, implying a higher market price.

This is analogous to the elementary static-case results
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CHAPTER

SEVENTYONE

STABILITY IN LINEAR RATIONAL EXPECTATIONS MODELS

Contents

• Stability in Linear Rational Expectations Models

– Overview

– Linear Difference Equations

– Illustration: Cagan’s Model

– Some Python Code

– Alternative Code

– Another Perspective

– Log money Supply Feeds Back on Log Price Level

– Big 𝑃 , Little 𝑝 Interpretation

– Fun with SymPy

In addition to what’s in Anaconda, this lecture deploys the following libraries:

!pip install quantecon

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from sympy import init_printing, symbols, Matrix
init_printing()

71.1 Overview

This lecture studies stability in the context of an elementary rational expectations model.

We study a rational expectations version of Philip Cagan’s model [Cagan, 1956] linking the price level to the money
supply.

Cagan did not use a rational expectations version of his model, but Sargent [Sargent, 1977] did.
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We study a rational expectations version of this model because it is intrinsically interesting and because it has a mathe-
matical structure that appears in virtually all linear rational expectations model, namely, that a key endogenous variable
equals a mathematical expectation of a geometric sum of future values of another variable.

The model determines the price level or rate of inflation as a function of the money supply or the rate of change in the
money supply.

In this lecture, we’ll encounter:

• a convenient formula for the expectation of geometric sum of future values of a variable

• a way of solving an expectational difference equation by mapping it into a vector first-order difference equation
and appropriately manipulating an eigen decomposition of the transition matrix in order to impose stability

• a way to use a Big 𝐾, little 𝑘 argument to allow apparent feedback from endogenous to exogenous variables within
a rational expectations equilibrium

• a use of eigenvector decompositions of matrices that allowed Blanchard and Khan (1981) [Blanchard and Kahn,
1980] and Whiteman (1983) [Whiteman, 1983] to solve a class of linear rational expectations models

• how to use SymPy to get analytical formulas for some key objects comprising a rational expectations equilibrium

Matrix decompositions employed here are described in more depth in this lecture Lagrangian formulations.

We formulate a version of Cagan’s model under rational expectations as an expectational difference equation whose
solution is a rational expectations equilibrium.

We’ll start this lecture with a quick review of deterministic (i.e., non-random) first-order and second-order linear difference
equations.

71.2 Linear Difference Equations

We’ll use the backward shift or lag operator 𝐿.
The lag operator 𝐿 maps a sequence {𝑥𝑡}∞

𝑡=0 into the sequence {𝑥𝑡−1}∞
𝑡=0

We’ll deploy 𝐿 by using the equality 𝐿𝑥𝑡 ≡ 𝑥𝑡−1 in algebraic expressions.

Further, the inverse 𝐿−1 of the lag operator is the forward shift operator.

We’ll often use the equality 𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1 below.

The algebra of lag and forward shift operators can simplify representing and solving linear difference equations.

71.2.1 First Order

We want to solve a linear first-order scalar difference equation.

Let |𝜆| < 1 and let {𝑢𝑡}∞
𝑡=−∞ be a bounded sequence of scalar real numbers.

Let 𝐿 be the lag operator defined by 𝐿𝑥𝑡 ≡ 𝑥𝑡−1 and let 𝐿−1 be the forward shift operator defined by 𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1.

Then

(1 − 𝜆𝐿)𝑦𝑡 = 𝑢𝑡, ∀𝑡 (71.1)

has solutions

𝑦𝑡 = (1 − 𝜆𝐿)−1𝑢𝑡 + 𝑘𝜆𝑡 (71.2)
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or

𝑦𝑡 =
∞

∑
𝑗=0

𝜆𝑗𝑢𝑡−𝑗 + 𝑘𝜆𝑡

for any real number 𝑘.
You can verify this fact by applying (1 − 𝜆𝐿) to both sides of equation (71.2) and noting that (1 − 𝜆𝐿)𝜆𝑡 = 0.
To pin down 𝑘 we need one condition imposed from outside (e.g., an initial or terminal condition) on the path of 𝑦.
Now let |𝜆| > 1.
Rewrite equation (71.1) as

𝑦𝑡−1 = 𝜆−1𝑦𝑡 − 𝜆−1𝑢𝑡, ∀𝑡 (71.3)

or

(1 − 𝜆−1𝐿−1)𝑦𝑡 = −𝜆−1𝑢𝑡+1. (71.4)

A solution is

𝑦𝑡 = −𝜆−1 ( 1
1 − 𝜆−1𝐿−1 ) 𝑢𝑡+1 + 𝑘𝜆𝑡 (71.5)

for any 𝑘.
To verify that this is a solution, check the consequences of operating on both sides of equation (71.5) by (1 − 𝜆𝐿) and
compare to equation (71.1).

For any bounded {𝑢𝑡} sequence, solution (71.2) exists for |𝜆| < 1 because the distributed lag in 𝑢 converges.

Solution (71.5) exists when |𝜆| > 1 because the distributed lead in 𝑢 converges.

When |𝜆| > 1, the distributed lag in 𝑢 in (71.2) may diverge, in which case a solution of this form does not exist.

The distributed lead in 𝑢 in (71.5) need not converge when |𝜆| < 1.

71.2.2 Second Order

Now consider the second order difference equation

(1 − 𝜆1𝐿)(1 − 𝜆2𝐿)𝑦𝑡+1 = 𝑢𝑡 (71.6)

where {𝑢𝑡} is a bounded sequence, 𝑦0 is an initial condition, |𝜆1| < 1 and |𝜆2| > 1.
We seek a bounded sequence {𝑦𝑡}∞

𝑡=0 that satisfies (71.6). Using insights from our analysis of the first-order equation,
operate on both sides of (71.6) by the forward inverse of (1 − 𝜆2𝐿) to rewrite equation (71.6) as

(1 − 𝜆1𝐿)𝑦𝑡+1 = − 𝜆−1
2

1 − 𝜆−1
2 𝐿−1 𝑢𝑡+1

or

𝑦𝑡+1 = 𝜆1𝑦𝑡 − 𝜆−1
2

∞
∑
𝑗=0

𝜆−𝑗
2 𝑢𝑡+𝑗+1. (71.7)

Thus, we obtained equation (71.7) by solving a stable root (in this case 𝜆1) backward, and an unstable root (in this case
𝜆2) forward.

Equation (71.7) has a form that we shall encounter often.

• 𝜆1𝑦𝑡 is called the feedback part

• − 𝜆−1
2

1−𝜆−1
2 𝐿−1 𝑢𝑡+1 is called the feedforward part
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71.3 Illustration: Cagan’s Model

Now let’s use linear difference equations to represent and solve Sargent’s [Sargent, 1977] rational expectations version of
Cagan’s model [Cagan, 1956] that connects the price level to the public’s anticipations of future money supplies.

Cagan did not use a rational expectations version of his model, but Sargent [Sargent, 1977]

Let

• 𝑚𝑑
𝑡 be the log of the demand for money

• 𝑚𝑡 be the log of the supply of money

• 𝑝𝑡 be the log of the price level

It follows that 𝑝𝑡+1 − 𝑝𝑡 is the rate of inflation.

The logarithm of the demand for real money balances 𝑚𝑑
𝑡 − 𝑝𝑡 is an inverse function of the expected rate of inflation

𝑝𝑡+1 − 𝑝𝑡 for 𝑡 ≥ 0:

𝑚𝑑
𝑡 − 𝑝𝑡 = −𝛽(𝑝𝑡+1 − 𝑝𝑡), 𝛽 > 0

Equate the demand for log money 𝑚𝑑
𝑡 to the supply of log money 𝑚𝑡 in the above equation and rearrange to deduce that

the logarithm of the price level 𝑝𝑡 is related to the logarithm of the money supply 𝑚𝑡 by

𝑝𝑡 = (1 − 𝜆)𝑚𝑡 + 𝜆𝑝𝑡+1 (71.8)

where 𝜆 ≡ 𝛽
1+𝛽 ∈ (0, 1).

(We note that the characteristic polynomial if 1 − 𝜆−1𝑧−1 = 0 so that the zero of the characteristic polynomial in this
case is 𝜆 ∈ (0, 1) which here is inside the unit circle.)
Solving the first order difference equation (71.8) forward gives

𝑝𝑡 = (1 − 𝜆)
∞

∑
𝑗=0

𝜆𝑗𝑚𝑡+𝑗, (71.9)

which is the unique stable solution of difference equation (71.8) among a class of more general solutions

𝑝𝑡 = (1 − 𝜆)
∞

∑
𝑗=0

𝜆𝑗𝑚𝑡+𝑗 + 𝑐𝜆−𝑡 (71.10)

that is indexed by the real number 𝑐 ∈ R.

Because we want to focus on stable solutions, we set 𝑐 = 0.
Equation (71.10) attributes perfect foresight about the money supply sequence to the holders of real balances.

We begin by assuming that the log of the money supply is exogenous in the sense that it is an autonomous process that
does not feed back on the log of the price level.

In particular, we assume that the log of the money supply is described by the linear state space system

𝑚𝑡 = 𝐺𝑥𝑡
𝑥𝑡+1 = 𝐴𝑥𝑡

(71.11)

where 𝑥𝑡 is an 𝑛 × 1 vector that does not include 𝑝𝑡 or lags of 𝑝𝑡, 𝐴 is an 𝑛 × 𝑛 matrix with eigenvalues that are less than
𝜆−1 in absolute values, and 𝐺 is a 1 × 𝑛 selector matrix.

Variables appearing in the vector 𝑥𝑡 contain information that might help predict future values of the money supply.

We’ll start with an example in which 𝑥𝑡 includes only 𝑚𝑡, possibly lagged values of 𝑚, and a constant.
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An example of such an {𝑚𝑡} process that fits info state space system (71.11) is one that satisfies the second order linear
difference equation

𝑚𝑡+1 = 𝛼 + 𝜌1𝑚𝑡 + 𝜌2𝑚𝑡−1

where the zeros of the characteristic polynomial (1 − 𝜌1𝑧 − 𝜌2𝑧2) are strictly greater than 1 in modulus.
(Please see this QuantEcon lecture for more about characteristic polynomials and their role in solving linear difference
equations.)

We seek a stable or non-explosive solution of the difference equation (71.8) that obeys the system comprised of (71.8)-
(71.11).

By stable or non-explosive, we mean that neither 𝑚𝑡 nor 𝑝𝑡 diverges as 𝑡 → +∞.

This requires that we shut down the term 𝑐𝜆−𝑡 in equation (71.10) above by setting 𝑐 = 0
The solution we are after is

𝑝𝑡 = 𝐹𝑥𝑡 (71.12)

where

𝐹 = (1 − 𝜆)𝐺(𝐼 − 𝜆𝐴)−1 (71.13)

Note

As mentioned above, an explosive solution of difference equation (71.8) can be constructed by adding to the right hand
of (71.12) a sequence 𝑐𝜆−𝑡 where 𝑐 is an arbitrary positive constant.

71.4 Some Python Code

We’ll construct examples that illustrate (71.11).

Our first example takes as the law of motion for the log money supply the second order difference equation

𝑚𝑡+1 = 𝛼 + 𝜌1𝑚𝑡 + 𝜌2𝑚𝑡−1 (71.14)

that is parameterized by 𝜌1, 𝜌2, 𝛼
To capture this parameterization with system (71.9) we set

𝑥𝑡 = ⎡⎢
⎣

1
𝑚𝑡

𝑚𝑡−1

⎤⎥
⎦

, 𝐴 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦

, 𝐺 = [0 1 0]

Here is Python code

λ = .9

α = 0
ρ1 = .9
ρ2 = .05

A = np.array([[1, 0, 0],
[α, ρ1, ρ2],
[0, 1, 0]])

G = np.array([[0, 1, 0]])
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The matrix 𝐴 has one eigenvalue equal to unity.

It is associated with the 𝐴11 component that captures a constant component of the state 𝑥𝑡.

We can verify that the two eigenvalues of 𝐴 not associated with the constant in the state 𝑥𝑡 are strictly less than unity in
modulus.

eigvals = np.linalg.eigvals(A)
print(eigvals)

[-0.05249378 0.95249378 1. ]

(abs(eigvals) <= 1).all()

np.True_

Now let’s compute 𝐹 in formulas (71.12) and (71.13).

# compute the solution, i.e. forumula (3)
F = (1 - λ) * G @ np.linalg.inv(np.eye(A.shape[0]) - λ * A)
print("F= ",F)

F= [[0. 0.66889632 0.03010033]]

Now let’s simulate paths of 𝑚𝑡 and 𝑝𝑡 starting from an initial value 𝑥0.

# set the initial state
x0 = np.array([1, 1, 0])

T = 100 # length of simulation

m_seq = np.empty(T+1)
p_seq = np.empty(T+1)

[m_seq[0]] = G @ x0
[p_seq[0]] = F @ x0

# simulate for T periods
x_old = x0
for t in range(T):

x = A @ x_old

[m_seq[t+1]] = G @ x
[p_seq[t+1]] = F @ x

x_old = x

plt.figure()
plt.plot(range(T+1), m_seq, label=r'$m_t$')
plt.plot(range(T+1), p_seq, label=r'$p_t$')
plt.xlabel('t')
plt.title(rf'λ={λ}, α={α}, $ρ_1$={ρ1}, $ρ_2$={ρ2}')
plt.legend()
plt.show()
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In the above graph, why is the log of the price level always less than the log of the money supply?

Because

• according to equation (71.9), 𝑝𝑡 is a geometric weighted average of current and future values of 𝑚𝑡, and

• it happens that in this example future 𝑚’s are always less than the current 𝑚

71.5 Alternative Code

We could also have run the simulation using the quantecon LinearStateSpace code.

The following code block performs the calculation with that code.

# construct a LinearStateSpace instance

# stack G and F
G_ext = np.vstack([G, F])

C = np.zeros((A.shape[0], 1))

ss = qe.LinearStateSpace(A, C, G_ext, mu_0=x0)

T = 100

# simulate using LinearStateSpace

(continues on next page)
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(continued from previous page)

x, y = ss.simulate(ts_length=T)

# plot
plt.figure()
plt.plot(range(T), y[0,:], label='$m_t$')
plt.plot(range(T), y[1,:], label='$p_t$')
plt.xlabel('t')
plt.title(f'λ={λ}, α={α}, $ρ_1$={ρ1}, $ρ_2$={ρ2}')
plt.legend()
plt.show()

71.5.1 Special Case

To simplify our presentation in ways that will let focus on an important idea, in the above second-order difference equation
(71.14) that governs 𝑚𝑡, we now set 𝛼 = 0, 𝜌1 = 𝜌 ∈ (−1, 1), and 𝜌2 = 0 so that the law of motion for 𝑚𝑡 becomes

𝑚𝑡+1 = 𝜌𝑚𝑡 (71.15)

and the state 𝑥𝑡 becomes

𝑥𝑡 = 𝑚𝑡.

Consequently, we can set 𝐺 = 1, 𝐴 = 𝜌 making our formula (71.13) for 𝐹 become

𝐹 = (1 − 𝜆)(1 − 𝜆𝜌)−1.
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so that the log the log price level satisfies

𝑝𝑡 = 𝐹𝑚𝑡.

Please keep these formulas in mind as we investigate an alternative route to and interpretation of our formula for 𝐹 .

71.6 Another Perspective

Above, we imposed stability or non-explosiveness on the solution of the key difference equation (71.8) in Cagan’s model
by solving the unstable root of the characteristic polynomial forward.

To shed light on the mechanics involved in imposing stability on a solution of a potentially unstable system of linear
difference equations and to prepare the way for generalizations of our model in which the money supply is allowed to feed
back on the price level itself, we stack equations (71.8) and (71.15) to form the system

[𝑚𝑡+1
𝑝𝑡+1

] = [ 𝜌 0
−(1 − 𝜆)/𝜆 𝜆−1] [𝑚𝑡

𝑝𝑡
] (71.16)

or

𝑦𝑡+1 = 𝐻𝑦𝑡, 𝑡 ≥ 0 (71.17)

where

𝐻 = [ 𝜌 0
−(1 − 𝜆)/𝜆 𝜆−1] . (71.18)

Transition matrix 𝐻 has eigenvalues 𝜌 ∈ (0, 1) and 𝜆−1 > 1.
Because an eigenvalue of 𝐻 exceeds unity, if we iterate on equation (71.17) starting from an arbitrary initial vector

𝑦0 = [𝑚0
𝑝0

] with 𝑚0 > 0, 𝑝0 > 0, we discover that in general absolute values of both components of 𝑦𝑡 diverge toward

+∞ as 𝑡 → +∞.

To substantiate this claim, we can use the eigenvector matrix decomposition of 𝐻 that is available to us because the
eigenvalues of 𝐻 are distinct

𝐻 = 𝑄Λ𝑄−1.

Here Λ is a diagonal matrix of eigenvalues of 𝐻 and 𝑄 is a matrix whose columns are eigenvectors associated with the
corresponding eigenvalues.

Note that

𝐻𝑡 = 𝑄Λ𝑡𝑄−1

so that

𝑦𝑡 = 𝑄Λ𝑡𝑄−1𝑦0

For almost all initial vectors 𝑦0, the presence of the eigenvalue 𝜆−1 > 1 causes both components of 𝑦𝑡 to diverge in
absolute value to +∞.

To explore this outcome in more detail, we can use the following transformation

𝑦∗
𝑡 = 𝑄−1𝑦𝑡
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that allows us to represent the dynamics in a way that isolates the source of the propensity of paths to diverge:

𝑦∗
𝑡+1 = Λ𝑡𝑦∗

𝑡

Staring at this equation indicates that unless

𝑦∗
0 = [𝑦∗

1,0
0 ] (71.19)

the path of 𝑦∗
𝑡 and therefore the paths of both components of 𝑦𝑡 = 𝑄𝑦∗

𝑡 will diverge in absolute value as 𝑡 → +∞. (We
say that the paths explode)

Equation (71.19) also leads us to conclude that there is a unique setting for the initial vector 𝑦0 for which both components
of 𝑦𝑡 do not diverge.

The required setting of 𝑦0 must evidently have the property that

𝑄𝑦0 = 𝑦∗
0 = [𝑦∗

1,0
0 ] .

But note that since 𝑦0 = [𝑚0
𝑝0

] and 𝑚0 is given to us an initial condition, 𝑝0 has to do all the adjusting to satisfy this

equation.

Sometimes this situation is described by saying that while 𝑚0 is truly a state variable, 𝑝0 is a jump variable that must
adjust at 𝑡 = 0 in order to satisfy the equation.
Thus, in a nutshell the unique value of the vector 𝑦0 for which the paths of 𝑦𝑡 do not diverge must have second component
𝑝0 that verifies equality (71.19) by setting the second component of 𝑦∗

0 equal to zero.

The component 𝑝0 of the initial vector 𝑦0 = [𝑚0
𝑝0

] must evidently satisfy

𝑄{2}𝑦0 = 0

where 𝑄{2} denotes the second row of 𝑄−1, a restriction that is equivalent to

𝑄21𝑚0 + 𝑄22𝑝0 = 0 (71.20)

where 𝑄𝑖𝑗 denotes the (𝑖, 𝑗) component of 𝑄−1.

Solving this equation for 𝑝0, we find

𝑝0 = −(𝑄22)−1𝑄21𝑚0. (71.21)

This is the unique stabilizing value of 𝑝0 expressed as a function of 𝑚0.

71.6.1 Refining the Formula

We can get an even more convenient formula for 𝑝0 that is cast in terms of components of 𝑄 instead of components of
𝑄−1.

To get this formula, first note that because (𝑄21 𝑄22) is the second row of the inverse of 𝑄 and because 𝑄−1𝑄 = 𝐼 , it
follows that

[𝑄21 𝑄22] [𝑄11
𝑄21

] = 0
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which implies that

𝑄21𝑄11 + 𝑄22𝑄21 = 0.

Therefore,

−(𝑄22)−1𝑄21 = 𝑄21𝑄−1
11 .

So we can write

𝑝0 = 𝑄21𝑄−1
11 𝑚0. (71.22)

It can be verified that this formula replicates itself over time in the sense that

𝑝𝑡 = 𝑄21𝑄−1
11 𝑚𝑡. (71.23)

To implement formula (71.23), we want to compute 𝑄1 the eigenvector of 𝑄 associated with the stable eigenvalue 𝜌 of
𝑄.

By hand it can be verified that the eigenvector associated with the stable eigenvalue 𝜌 is proportional to

𝑄1 = [1 − 𝜆𝜌
1 − 𝜆 ] .

Notice that if we set 𝐴 = 𝜌 and 𝐺 = 1 in our earlier formula for 𝑝𝑡 we get

𝑝𝑡 = 𝐺(𝐼 − 𝜆𝐴)−1𝑚𝑡 = (1 − 𝜆)(1 − 𝜆𝜌)−1𝑚𝑡,

a formula that is equivalent with

𝑝𝑡 = 𝑄21𝑄−1
11 𝑚𝑡,

where

𝑄1 = [𝑄11
𝑄21

] .

71.6.2 Remarks about Feedback

We have expressed (71.16) in what superficially appears to be a form in which 𝑦𝑡+1 feeds back on 𝑦𝑡, even though what we
actually want to represent is that the component 𝑝𝑡 feeds forward on 𝑝𝑡+1, and through it, on future 𝑚𝑡+𝑗, 𝑗 = 0, 1, 2, ….

A tell-tale sign that we should look beyond its superficial “feedback” form is that 𝜆−1 > 1 so that the matrix 𝐻 in (71.16)
is unstable

• it has one eigenvalue 𝜌 that is less than one in modulus that does not imperil stability, but …
• it has a second eigenvalue 𝜆−1 that exceeds one in modulus and that makes 𝐻 an unstable matrix

We’ll keep these observations in mind as we turn now to a case in which the log money supply actually does feed back on
the log of the price level.

71.7 Log money Supply Feeds Back on Log Price Level

An arrangement of eigenvalues that split around unity, with one being below unity and another being greater than unity,
sometimes prevails when there is feedback from the log price level to the log money supply.
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Let the feedback rule be

𝑚𝑡+1 = 𝜌𝑚𝑡 + 𝛿𝑝𝑡 (71.24)

where 𝜌 ∈ (0, 1) and where we shall now allow 𝛿 ≠ 0.
Warning: If things are to fit together as we wish to deliver a stable system for some initial value 𝑝0 that we want to
determine uniquely, 𝛿 cannot be too large.
The forward-looking equation (71.8) continues to describe equality between the demand and supply of money.

We assume that equations (71.8) and (71.24) govern 𝑦𝑡 ≡ [𝑚𝑡
𝑝𝑡

] for 𝑡 ≥ 0.

The transition matrix 𝐻 in the law of motion

𝑦𝑡+1 = 𝐻𝑦𝑡

now becomes

𝐻 = [ 𝜌 𝛿
−(1 − 𝜆)/𝜆 𝜆−1] .

We take 𝑚0 as a given initial condition and as before seek an initial value 𝑝0 that stabilizes the system in the sense that
𝑦𝑡 converges as 𝑡 → +∞.

Our approach is identical with the one followed above and is based on an eigenvalue decomposition in which, cross our
fingers, one eigenvalue exceeds unity and the other is less than unity in absolute value.

When 𝛿 ≠ 0 as we now assume, the eigenvalues of 𝐻 will no longer be 𝜌 ∈ (0, 1) and 𝜆−1 > 1
We’ll just calculate them and apply the same algorithm that we used above.

That algorithm remains valid so long as the eigenvalues split around unity as before.

Again we assume that 𝑚0 is an initial condition, but that 𝑝0 is not given but to be solved for.

Let’s write and execute some Python code that will let us explore how outcomes depend on 𝛿.
def construct_H(ρ, λ, δ):

"contruct matrix H given parameters."

H = np.empty((2, 2))
H[0, :] = ρ,δ
H[1, :] = - (1 - λ) / λ, 1 / λ

return H

def H_eigvals(ρ=.9, λ=.5, δ=0):
"compute the eigenvalues of matrix H given parameters."

# construct H matrix
H = construct_H(ρ, λ, δ)

# compute eigenvalues
eigvals = np.linalg.eigvals(H)

return eigvals

H_eigvals()
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array([2. , 0.9])

Notice that a negative 𝛿 will not imperil the stability of the matrix 𝐻 , even if it has a big absolute value.

# small negative δ
H_eigvals(δ=-0.05)

array([0.8562829, 2.0437171])

# large negative δ
H_eigvals(δ=-1.5)

array([0.10742784, 2.79257216])

A sufficiently small positive 𝛿 also causes no problem.
# sufficiently small positive δ
H_eigvals(δ=0.05)

array([0.94750622, 1.95249378])

But a large enough positive 𝛿 makes both eigenvalues of 𝐻 strictly greater than unity in modulus.

For example,

H_eigvals(δ=0.2)

array([1.12984379, 1.77015621])

We want to study systems in which one eigenvalue exceeds unity in modulus while the other is less than unity in modulus,
so we avoid values of 𝛿 that are too.
That is, we want to avoid too much positive feedback from 𝑝𝑡 to 𝑚𝑡+1.

def magic_p0(m0, ρ=.9, λ=.5, δ=0):
"""
Use the magic formula (8) to compute the level of p0
that makes the system stable.
"""

H = construct_H(ρ, λ, δ)
eigvals, Q = np.linalg.eig(H)

# find the index of the smaller eigenvalue
ind = 0 if eigvals[0] < eigvals[1] else 1

# verify that the eigenvalue is less than unity
if eigvals[ind] > 1:

print("both eigenvalues exceed unity in modulus")

return None

p0 = Q[1, ind] / Q[0, ind] * m0

return p0
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Let’s plot how the solution 𝑝0 changes as 𝑚0 changes for different settings of 𝛿.
m_range = np.arange(0.1, 2., 0.1)

for δ in [-0.05, 0, 0.05]:
plt.plot(m_range, [magic_p0(m0, δ=δ) for m0 in m_range], label=f"δ={δ}")

plt.legend()

plt.xlabel(r"$m_0$")
plt.ylabel(r"$p_0$")
plt.show()

To look at things from a different angle, we can fix the initial value 𝑚0 and see how 𝑝0 changes as 𝛿 changes.
m0 = 1

δ_range = np.linspace(-0.05, 0.05, 100)
plt.plot(δ_range, [magic_p0(m0, δ=δ) for δ in δ_range])
plt.xlabel(r'$\delta$')
plt.ylabel(r'$p_0$')
plt.title(rf'$m_0$={m0}')
plt.show()
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Notice that when 𝛿 is large enough, both eigenvalues exceed unity in modulus, causing a stabilizing value of 𝑝0 not to
exist.

magic_p0(1, δ=0.2)

both eigenvalues exceed unity in modulus

71.8 Big 𝑃 , Little 𝑝 Interpretation

It is helpful to view our solutions of difference equations having feedback from the price level or inflation to money or
the rate of money creation in terms of the Big 𝐾, little 𝑘 idea discussed in Rational Expectations Models.

This will help us sort out what is taken as given by the decision makers who use the difference equation (71.9) to determine
𝑝𝑡 as a function of their forecasts of future values of 𝑚𝑡.

Let’s write the stabilizing solution that we have computed using the eigenvector decomposition of 𝐻 as 𝑃𝑡 = 𝐹 ∗𝑚𝑡,
where

𝐹 ∗ = 𝑄21𝑄−1
11 .

Then from 𝑃𝑡+1 = 𝐹 ∗𝑚𝑡+1 and 𝑚𝑡+1 = 𝜌𝑚𝑡 + 𝛿𝑃𝑡 we can deduce the recursion 𝑃𝑡+1 = 𝐹 ∗𝜌𝑚𝑡 + 𝐹 ∗𝛿𝑃𝑡 and create
the stacked system

[𝑚𝑡+1
𝑃𝑡+1

] = [ 𝜌 𝛿
𝐹 ∗𝜌 𝐹 ∗𝛿] [𝑚𝑡

𝑃𝑡
]
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or

𝑥𝑡+1 = 𝐴𝑥𝑡

where 𝑥𝑡 = [𝑚𝑡
𝑃𝑡

].

Apply formula (71.13) for 𝐹 to deduce that

𝑝𝑡 = 𝐹 [𝑚𝑡
𝑃𝑡

] = 𝐹 [ 𝑚𝑡
𝐹 ∗𝑚𝑡

]

which implies that

𝑝𝑡 = [𝐹1 𝐹2] [ 𝑚𝑡
𝐹 ∗𝑚𝑡

] = 𝐹1𝑚𝑡 + 𝐹2𝐹 ∗𝑚𝑡

so that we can anticipate that

𝐹 ∗ = 𝐹1 + 𝐹2𝐹 ∗

We shall verify this equality in the next block of Python code that implements the following computations.

1. For the system with 𝛿 ≠ 0 so that there is feedback, we compute the stabilizing solution for 𝑝𝑡 in the form
𝑝𝑡 = 𝐹 ∗𝑚𝑡 where 𝐹 ∗ = 𝑄21𝑄−1

11 as above.

2. Recalling the system (71.11), (71.12), and (71.13) above, we define 𝑥𝑡 = [𝑚𝑡
𝑃𝑡

] and notice that it is Big 𝑃𝑡 and

not little 𝑝𝑡 here. Then we form 𝐴 and 𝐺 as 𝐴 = [ 𝜌 𝛿
𝐹 ∗𝜌 𝐹 ∗𝛿] and 𝐺 = [1 0] and we compute [𝐹1 𝐹2] ≡ 𝐹

from equation (71.13) above.

3. We compute 𝐹1 + 𝐹2𝐹 ∗ and compare it with 𝐹 ∗ and check for the anticipated equality.

# set parameters
ρ = .9
λ = .5
δ = .05

# solve for F_star
H = construct_H(ρ, λ, δ)
eigvals, Q = np.linalg.eig(H)

ind = 0 if eigvals[0] < eigvals[1] else 1
F_star = Q[1, ind] / Q[0, ind]
F_star

# solve for F_check
A = np.empty((2, 2))
A[0, :] = ρ, δ
A[1, :] = F_star * A[0, :]

G = np.array([1, 0])

F_check= (1 - λ) * G @ np.linalg.inv(np.eye(2) - λ * A)
F_check
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array([0.92755597, 0.02375311])

Compare 𝐹 ∗ with 𝐹1 + 𝐹2𝐹 ∗

F_check[0] + F_check[1] * F_star, F_star

71.9 Fun with SymPy

This section is a gift for readers who have made it this far.

It puts SymPy to work on our model.

Thus, we use Sympy to compute some key objects comprising the eigenvector decomposition of 𝐻 .

We start by generating an 𝐻 with nonzero 𝛿.
λ, δ, ρ = symbols('λ, δ, ρ')

H1 = Matrix([[ρ,δ], [- (1 - λ) / λ, λ ** -1]])

H1

[ 𝜌 𝛿
𝜆−1

𝜆
1
𝜆

]

H1.eigenvals()

H1.eigenvects()

⎡⎢
⎣

⎛⎜⎜
⎝

𝜆𝜌 + 1
2𝜆 − √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 , 1, ⎡⎢
⎣

⎡⎢
⎣

𝜆( 𝜆𝜌+1
2𝜆 − √4𝛿𝜆2−4𝛿𝜆+𝜆2𝜌2−2𝜆𝜌+1

2𝜆 )

𝜆−1 − 1
𝜆−1

1
⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

𝜆𝜌 + 1
2𝜆 + √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 , 1, ⎡⎢
⎣

⎡⎢
⎣

𝜆( 𝜆𝜌+1
2𝜆 + √4𝛿𝜆2−4𝛿𝜆+𝜆2𝜌2−2𝜆𝜌+1

2𝜆 )

𝜆−1 − 1
𝜆−1

1
⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

⎤⎥
⎦

Now let’s compute 𝐻 when 𝛿 is zero.
H2 = Matrix([[ρ,0], [- (1 - λ) / λ, λ ** -1]])

H2

[ 𝜌 0
𝜆−1

𝜆
1
𝜆

]
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H2.eigenvals()

H2.eigenvects()

[( 1
𝜆, 1, [[0

1]]) , (𝜌, 1, [[
𝜆𝜌−1
𝜆−1
1 ]])]

Below we do induce SymPy to do the following fun things for us analytically:

1. We compute the matrix 𝑄 whose first column is the eigenvector associated with 𝜌. and whose second column is
the eigenvector associated with 𝜆−1.

2. We use SymPy to compute the inverse 𝑄−1 of 𝑄 (both in symbols).

3. We use SymPy to compute 𝑄21𝑄−1
11 (in symbols).

4. Where 𝑄𝑖𝑗 denotes the (𝑖, 𝑗) component of 𝑄−1, we use SymPy to compute −(𝑄22)−1𝑄21 (again in symbols)

# construct Q
vec = []
for i, (eigval, _, eigvec) in enumerate(H2.eigenvects()):

vec.append(eigvec[0])

if eigval == ρ:
ind = i

Q = vec[ind].col_insert(1, vec[1-ind])

Q

[
𝜆𝜌−1
𝜆−1 0
1 1]

𝑄−1

Q_inv = Q ** (-1)
Q_inv

[
𝜆−1

𝜆𝜌−1 0
1−𝜆

𝜆𝜌−1 1]

𝑄21𝑄−1
11

Q[1, 0] / Q[0, 0]

−(𝑄22)−1𝑄21
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- Q_inv[1, 0] / Q_inv[1, 1]
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SEVENTYTWO

MARKOV PERFECT EQUILIBRIUM

Contents

• Markov Perfect Equilibrium

– Overview

– Background

– Linear Markov Perfect Equilibria

– Application

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

72.1 Overview

This lecture describes the concept of Markov perfect equilibrium.

Markov perfect equilibrium is a key notion for analyzing economic problems involving dynamic strategic interaction, and
a cornerstone of applied game theory.

In this lecture, we teach Markov perfect equilibrium by example.

We will focus on settings with

• two players

• quadratic payoff functions

• linear transition rules for the state

Other references include chapter 7 of [Ljungqvist and Sargent, 2018].

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
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72.2 Background

Markov perfect equilibrium is a refinement of the concept of Nash equilibrium.

It is used to study settings where multiple decision-makers interact non-cooperatively over time, each pursuing its own
objective.

The agents in the model face a common state vector, the time path of which is influenced by – and influences – their
decisions.

In particular, the transition law for the state that confronts each agent is affected by decision rules of other agents.

Individual payoff maximization requires that each agent solve a dynamic programming problem that includes this transi-
tion law.

Markov perfect equilibrium prevails when no agent wishes to revise its policy, taking as given the policies of all other
agents.

Well known examples include

• Choice of price, output, location or capacity for firms in an industry (e.g., [Ericson and Pakes, 1995], [Ryan, 2012],
[Doraszelski and Satterthwaite, 2010]).

• Rate of extraction from a shared natural resource, such as a fishery (e.g., [Levhari and Mirman, 1980], [Van Long,
2011]).

Let’s examine a model of the first type.

72.2.1 Example: A Duopoly Model

Two firms are the only producers of a good, the demand for which is governed by a linear inverse demand function

𝑝 = 𝑎0 − 𝑎1(𝑞1 + 𝑞2) (72.1)

Here 𝑝 = 𝑝𝑡 is the price of the good, 𝑞𝑖 = 𝑞𝑖𝑡 is the output of firm 𝑖 = 1, 2 at time 𝑡 and 𝑎0 > 0, 𝑎1 > 0.
In (72.1) and what follows,

• the time subscript is suppressed when possible to simplify notation

• ̂𝑥 denotes a next period value of variable 𝑥
Each firm recognizes that its output affects total output and therefore the market price.

The one-period payoff function of firm 𝑖 is price times quantity minus adjustment costs:

𝜋𝑖 = 𝑝𝑞𝑖 − 𝛾( ̂𝑞𝑖 − 𝑞𝑖)2, 𝛾 > 0, (72.2)

Substituting the inverse demand curve (72.1) into (72.2) lets us express the one-period payoff as

𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) = 𝑎0𝑞𝑖 − 𝑎1𝑞2
𝑖 − 𝑎1𝑞𝑖𝑞−𝑖 − 𝛾( ̂𝑞𝑖 − 𝑞𝑖)2, (72.3)

where 𝑞−𝑖 denotes the output of the firm other than 𝑖.
The objective of the firm is to maximize ∑∞

𝑡=0 𝛽𝑡𝜋𝑖𝑡.

Firm 𝑖 chooses a decision rule that sets next period quantity ̂𝑞𝑖 as a function 𝑓𝑖 of the current state (𝑞𝑖, 𝑞−𝑖).
An essential aspect of a Markov perfect equilibrium is that each firm takes the decision rule of the other firm as known
and given.

1334 Chapter 72. Markov Perfect Equilibrium



Intermediate Quantitative Economics with Python

Given 𝑓−𝑖, the Bellman equation of firm 𝑖 is
𝑣𝑖(𝑞𝑖, 𝑞−𝑖) = max

̂𝑞𝑖
{𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) + 𝛽𝑣𝑖( ̂𝑞𝑖, 𝑓−𝑖(𝑞−𝑖, 𝑞𝑖))} (72.4)

Definition A Markov perfect equilibrium of the duopoly model is a pair of value functions (𝑣1, 𝑣2) and a pair of policy
functions (𝑓1, 𝑓2) such that, for each 𝑖 ∈ {1, 2} and each possible state,

• The value function 𝑣𝑖 satisfies Bellman equation (72.4).

• The maximizer on the right side of (72.4) equals 𝑓𝑖(𝑞𝑖, 𝑞−𝑖).
The adjective “Markov” denotes that the equilibrium decision rules depend only on the current values of the state variables,
not other parts of their histories.

“Perfect” means complete, in the sense that the equilibrium is constructed by backward induction and hence builds in
optimizing behavior for each firm at all possible future states.

• These include many states that will not be reached when we iterate forward on the pair of equilibrium strategies 𝑓𝑖
starting from a given initial state.

72.2.2 Computation

One strategy for computing a Markov perfect equilibrium is iterating to convergence on pairs of Bellman equations and
decision rules.

In particular, let 𝑣𝑗
𝑖 , 𝑓𝑗

𝑖 be the value function and policy function for firm 𝑖 at the 𝑗-th iteration.
Imagine constructing the iterates

𝑣𝑗+1
𝑖 (𝑞𝑖, 𝑞−𝑖) = max

̂𝑞𝑖
{𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) + 𝛽𝑣𝑗

𝑖( ̂𝑞𝑖, 𝑓−𝑖(𝑞−𝑖, 𝑞𝑖))} (72.5)

These iterations can be challenging to implement computationally.

However, they simplify for the case in which one-period payoff functions are quadratic and transition laws are linear —
which takes us to our next topic.

72.3 Linear Markov Perfect Equilibria

As we saw in the duopoly example, the study of Markov perfect equilibria in games with two players leads us to an
interrelated pair of Bellman equations.

In linear-quadratic dynamic games, these “stacked Bellman equations” become “stackedRiccati equations” with a tractable
mathematical structure.

We’ll lay out that structure in a general setup and then apply it to some simple problems.

72.3.1 Coupled Linear Regulator Problems

We consider a general linear-quadratic regulator game with two players.

For convenience, we’ll start with a finite horizon formulation, where 𝑡0 is the initial date and 𝑡1 is the common terminal
date.

Player 𝑖 takes {𝑢−𝑖𝑡} as given and minimizes
𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡} (72.6)
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while the state evolves according to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 (72.7)

Here

• 𝑥𝑡 is an 𝑛 × 1 state vector and 𝑢𝑖𝑡 is a 𝑘𝑖 × 1 vector of controls for player 𝑖
• 𝑅𝑖 is 𝑛 × 𝑛
• 𝑆𝑖 is 𝑘−𝑖 × 𝑘−𝑖

• 𝑄𝑖 is 𝑘𝑖 × 𝑘𝑖

• 𝑊𝑖 is 𝑛 × 𝑘𝑖

• 𝑀𝑖 is 𝑘−𝑖 × 𝑘𝑖

• 𝐴 is 𝑛 × 𝑛
• 𝐵𝑖 is 𝑛 × 𝑘𝑖

72.3.2 Computing Equilibrium

We formulate a linear Markov perfect equilibrium as follows.

Player 𝑖 employs linear decision rules 𝑢𝑖𝑡 = −𝐹𝑖𝑡𝑥𝑡, where 𝐹𝑖𝑡 is a 𝑘𝑖 × 𝑛 matrix.

A Markov perfect equilibrium is a pair of sequences {𝐹1𝑡, 𝐹2𝑡} over 𝑡 = 𝑡0, … , 𝑡1 − 1 such that
• {𝐹1𝑡} solves player 1’s problem, taking {𝐹2𝑡} as given, and
• {𝐹2𝑡} solves player 2’s problem, taking {𝐹1𝑡} as given

If we take 𝑢2𝑡 = −𝐹2𝑡𝑥𝑡 and substitute it into (72.6) and (72.7), then player 1’s problem becomes minimization of

𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡Π1𝑡𝑥𝑡 + 𝑢′

1𝑡𝑄1𝑢1𝑡 + 2𝑢′
1𝑡Γ1𝑡𝑥𝑡} (72.8)

subject to

𝑥𝑡+1 = Λ1𝑡𝑥𝑡 + 𝐵1𝑢1𝑡, (72.9)

where

• Λ𝑖𝑡 ∶= 𝐴 − 𝐵−𝑖𝐹−𝑖𝑡

• Π𝑖𝑡 ∶= 𝑅𝑖 + 𝐹 ′
−𝑖𝑡𝑆𝑖𝐹−𝑖𝑡

• Γ𝑖𝑡 ∶= 𝑊 ′
𝑖 − 𝑀 ′

𝑖 𝐹−𝑖𝑡

This is an LQ dynamic programming problem that can be solved by working backwards.

Decision rules that solve this problem are

𝐹1𝑡 = (𝑄1 + 𝛽𝐵′
1𝑃1𝑡+1𝐵1)−1(𝛽𝐵′

1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡) (72.10)

where 𝑃1𝑡 solves the matrix Riccati difference equation

𝑃1𝑡 = Π1𝑡 − (𝛽𝐵′
1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡)′(𝑄1 + 𝛽𝐵′

1𝑃1𝑡+1𝐵1)−1(𝛽𝐵′
1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡) + 𝛽Λ′

1𝑡𝑃1𝑡+1Λ1𝑡 (72.11)

Similarly, decision rules that solve player 2’s problem are

𝐹2𝑡 = (𝑄2 + 𝛽𝐵′
2𝑃2𝑡+1𝐵2)−1(𝛽𝐵′

2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡) (72.12)
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where 𝑃2𝑡 solves

𝑃2𝑡 = Π2𝑡 − (𝛽𝐵′
2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡)′(𝑄2 + 𝛽𝐵′

2𝑃2𝑡+1𝐵2)−1(𝛽𝐵′
2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡) + 𝛽Λ′

2𝑡𝑃2𝑡+1Λ2𝑡 (72.13)

Here, in all cases 𝑡 = 𝑡0, … , 𝑡1 − 1 and the terminal conditions are 𝑃𝑖𝑡1
= 0.

The solution procedure is to use equations (72.10), (72.11), (72.12), and (72.13), and “work backwards” from time 𝑡1 −1.
Since we’re working backward, 𝑃1𝑡+1 and 𝑃2𝑡+1 are taken as given at each stage.

Moreover, since

• some terms on the right-hand side of (72.10) contain 𝐹2𝑡

• some terms on the right-hand side of (72.12) contain 𝐹1𝑡

we need to solve these 𝑘1 + 𝑘2 equations simultaneously.

Key Insight

A key insight is that equations (72.10) and (72.12) are linear in 𝐹1𝑡 and 𝐹2𝑡.

After these equations have been solved, we can take 𝐹𝑖𝑡 and solve for 𝑃𝑖𝑡 in (72.11) and (72.13).

Infinite Horizon

We often want to compute the solutions of such games for infinite horizons, in the hope that the decision rules 𝐹𝑖𝑡 settle
down to be time-invariant as 𝑡1 → +∞.

In practice, we usually fix 𝑡1 and compute the equilibrium of an infinite horizon game by driving 𝑡0 → −∞.

This is the approach we adopt in the next section.

72.3.3 Implementation

We use the function nnash from QuantEcon.py that computes a Markov perfect equilibrium of the infinite horizon linear-
quadratic dynamic game in the manner described above.

72.4 Application

Let’s use these procedures to treat some applications, starting with the duopoly model.

72.4.1 A Duopoly Model

To map the duopoly model into coupled linear-quadratic dynamic programming problems, define the state and controls
as

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2

If we write

𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡
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where 𝑄1 = 𝑄2 = 𝛾,

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦

and 𝑅2 ∶= ⎡⎢
⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦

then we recover the one-period payoffs in expression (72.3).

The law of motion for the state 𝑥𝑡 is 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 where

𝐴 ∶= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, 𝐵1 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐵2 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

The optimal decision rule of firm 𝑖 will take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡, inducing the following closed-loop system for the
evolution of 𝑥 in the Markov perfect equilibrium:

𝑥𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵1𝐹2)𝑥𝑡 (72.14)

72.4.2 Parameters and Solution

Consider the previously presented duopoly model with parameter values of:

• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

From these, we compute the infinite horizon MPE using the preceding code

import numpy as np
import quantecon as qe

# Parameters
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

# In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[ 0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[ 0, a1 / 2., 0.]]

R2 = [[ 0., 0., -a0 / 2],
[ 0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

(continues on next page)
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(continued from previous page)

# Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

# Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")
print("\n")

Computed policies for firm 1 and firm 2:

F1 = [[-0.66846615 0.29512482 0.07584666]]
F2 = [[-0.66846615 0.07584666 0.29512482]]

Running the code produces the following output.

One way to see that 𝐹𝑖 is indeed optimal for firm 𝑖 taking 𝐹2 as given is to use QuantEcon.py’s LQ class.

In particular, let’s take F2 as computed above, plug it into (72.8) and (72.9) to get firm 1’s problem and solve it using LQ.

We hope that the resulting policy will agree with F1 as computed above

Λ1 = A - B2 @ F2
lq1 = qe.LQ(Q1, R1, Λ1, B1, beta=β)
P1_ih, F1_ih, d = lq1.stationary_values()
F1_ih

array([[-0.66846613, 0.29512482, 0.07584666]])

This is close enough for rock and roll, as they say in the trade.

Indeed, np.allclose agrees with our assessment

np.allclose(F1, F1_ih)

True

72.4.3 Dynamics

Let’s now investigate the dynamics of price and output in this simple duopoly model under the MPE policies.

Given our optimal policies 𝐹1 and 𝐹2, the state evolves according to (72.14).
The following program

• imports 𝐹1 and 𝐹2 from the previous program along with all parameters.

• computes the evolution of 𝑥𝑡 using (72.14).

• extracts and plots industry output 𝑞𝑡 = 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡.

AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1

(continues on next page)
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(continued from previous page)

for t in range(n-1):
x[:, t+1] = AF @ x[:, t]

q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(q, 'b-', lw=2, alpha=0.75, label='total output')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='price')
ax.set_title('Output and prices, duopoly MPE')
ax.legend(frameon=False)
plt.show()

Note that the initial condition has been set to 𝑞10 = 𝑞20 = 1.0.
To gain some perspective we can compare this to what happens in the monopoly case.

The first panel in the next figure compares output of the monopolist and industry output under the MPE, as a function of
time.

The second panel shows analogous curves for price.

Here parameters are the same as above for both the MPE and monopoly solutions.

The monopolist initial condition is 𝑞0 = 2.0 to mimic the industry initial condition 𝑞10 = 𝑞20 = 1.0 in the MPE case.

As expected, output is higher and prices are lower under duopoly than monopoly.
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72.5 Exercises

Exercise 72.5.1

Replicate the pair of figures showing the comparison of output and prices for the monopolist and duopoly under MPE.

Parameters are as in duopoly_mpe.py and you can use that code to compute MPE policies under duopoly.

The optimal policy in the monopolist case can be computed using QuantEcon.py’s LQ class.

Solution to Exercise 72.5.1

First, let’s compute the duopoly MPE under the stated parameters

# == Parameters == #
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

# == In LQ form == #
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])
R1 = [[ 0., -a0/2, 0.],

[-a0 / 2., a1, a1 / 2.],
[ 0, a1 / 2., 0.]]

R2 = [[ 0., 0., -a0 / 2],
[ 0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

# == Solve using QE's nnash function == #
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

Now we evaluate the time path of industry output and prices given initial condition 𝑞10 = 𝑞20 = 1.
AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n-1):

x[:, t+1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

Next, let’s have a look at the monopoly solution.
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For the state and control, we take

𝑥𝑡 = 𝑞𝑡 − ̄𝑞 and 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡

To convert to an LQ problem we set

𝑅 = 𝑎1 and 𝑄 = 𝛾

in the payoff function 𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 and

𝐴 = 𝐵 = 1

in the law of motion 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.

We solve for the optimal policy 𝑢𝑡 = −𝐹𝑥𝑡 and track the resulting dynamics of {𝑞𝑡}, starting at 𝑞0 = 2.0.

R = a1
Q = γ
A = B = 1
lq_alt = qe.LQ(Q, R, A, B, beta=β)
P, F, d = lq_alt.stationary_values()
q_bar = a0 / (2.0 * a1)
qm = np.empty(n)
qm[0] = 2
x0 = qm[0] - q_bar
x = x0
for i in range(1, n):

x = A * x - B * F * x
qm[i] = float(x.item()) + q_bar

pm = a0 - a1 * qm

Let’s have a look at the different time paths

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(qm, 'b-', lw=2, alpha=0.75, label='monopolist output')
ax.plot(q, 'g-', lw=2, alpha=0.75, label='MPE total output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(pm, 'b-', lw=2, alpha=0.75, label='monopolist price')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='MPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()
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Exercise 72.5.2

In this exercise, we consider a slightly more sophisticated duopoly problem.

It takes the form of infinite horizon linear-quadratic game proposed by Judd [Judd, 1990].

Two firms set prices and quantities of two goods interrelated through their demand curves.

Relevant variables are defined as follows:

• 𝐼𝑖𝑡 = inventories of firm 𝑖 at beginning of 𝑡
• 𝑞𝑖𝑡 = production of firm 𝑖 during period 𝑡
• 𝑝𝑖𝑡 = price charged by firm 𝑖 during period 𝑡
• 𝑆𝑖𝑡 = sales made by firm 𝑖 during period 𝑡
• 𝐸𝑖𝑡 = costs of production of firm 𝑖 during period 𝑡
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• 𝐶𝑖𝑡 = costs of carrying inventories for firm 𝑖 during 𝑡

The firms’ cost functions are

• 𝐶𝑖𝑡 = 𝑐𝑖1 + 𝑐𝑖2𝐼𝑖𝑡 + 0.5𝑐𝑖3𝐼2
𝑖𝑡

• 𝐸𝑖𝑡 = 𝑒𝑖1 + 𝑒𝑖2𝑞𝑖𝑡 + 0.5𝑒𝑖3𝑞2
𝑖𝑡 where 𝑒𝑖𝑗, 𝑐𝑖𝑗 are positive scalars

Inventories obey the laws of motion

𝐼𝑖,𝑡+1 = (1 − 𝛿)𝐼𝑖𝑡 + 𝑞𝑖𝑡 − 𝑆𝑖𝑡

Demand is governed by the linear schedule

𝑆𝑡 = 𝐷𝑝𝑖𝑡 + 𝑏

where

• 𝑆𝑡 = [𝑆1𝑡 𝑆2𝑡]
′

• 𝐷 is a 2 × 2 negative definite matrix and

• 𝑏 is a vector of constants

Firm 𝑖 maximizes the undiscounted sum

lim
𝑇 →∞

1
𝑇

𝑇
∑
𝑡=0

(𝑝𝑖𝑡𝑆𝑖𝑡 − 𝐸𝑖𝑡 − 𝐶𝑖𝑡)

We can convert this to a linear-quadratic problem by taking

𝑢𝑖𝑡 = [𝑝𝑖𝑡
𝑞𝑖𝑡

] and 𝑥𝑡 = ⎡⎢
⎣

𝐼1𝑡
𝐼2𝑡
1

⎤⎥
⎦

Decision rules for price and quantity take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡.

The Markov perfect equilibrium of Judd’s model can be computed by filling in the matrices appropriately.

The exercise is to calculate these matrices and compute the following figures.

The first figure shows the dynamics of inventories for each firm when the parameters are

δ = 0.02
D = np.array([[-1, 0.5], [0.5, -1]])
b = np.array([25, 25])
c1 = c2 = np.array([1, -2, 1])
e1 = e2 = np.array([10, 10, 3])
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Inventories trend to a common steady state.

If we increase the depreciation rate to 𝛿 = 0.05, then we expect steady state inventories to fall.
This is indeed the case, as the next figure shows

In this exercise, reproduce the figure when 𝛿 = 0.02.
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Solution to Exercise 72.5.2

We treat the case 𝛿 = 0.02
δ = 0.02
D = np.array([[-1, 0.5], [0.5, -1]])
b = np.array([25, 25])
c1 = c2 = np.array([1, -2, 1])
e1 = e2 = np.array([10, 10, 3])

δ_1 = 1 - δ

Recalling that the control and state are

𝑢𝑖𝑡 = [𝑝𝑖𝑡
𝑞𝑖𝑡

] and 𝑥𝑡 = ⎡⎢
⎣

𝐼1𝑡
𝐼2𝑡
1

⎤⎥
⎦

we set up the matrices as follows:

# == Create matrices needed to compute the Nash feedback equilibrium == #

A = np.array([[δ_1, 0, -δ_1 * b[0]],
[ 0, δ_1, -δ_1 * b[1]],
[ 0, 0, 1]])

B1 = δ_1 * np.array([[1, -D[0, 0]],
[0, -D[1, 0]],
[0, 0]])

B2 = δ_1 * np.array([[0, -D[0, 1]],
[1, -D[1, 1]],
[0, 0]])

R1 = -np.array([[0.5 * c1[2], 0, 0.5 * c1[1]],
[ 0, 0, 0],
[0.5 * c1[1], 0, c1[0]]])

R2 = -np.array([[0, 0, 0],
[0, 0.5 * c2[2], 0.5 * c2[1]],
[0, 0.5 * c2[1], c2[0]]])

Q1 = np.array([[-0.5 * e1[2], 0], [0, D[0, 0]]])
Q2 = np.array([[-0.5 * e2[2], 0], [0, D[1, 1]]])

S1 = np.zeros((2, 2))
S2 = np.copy(S1)

W1 = np.array([[ 0, 0],
[ 0, 0],
[-0.5 * e1[1], b[0] / 2.]])

W2 = np.array([[ 0, 0],
[ 0, 0],
[-0.5 * e2[1], b[1] / 2.]])

M1 = np.array([[0, 0], [0, D[0, 1] / 2.]])
M2 = np.copy(M1)

We can now compute the equilibrium using qe.nnash
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F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1,
R2, Q1, Q2, S1,
S2, W1, W2, M1, M2)

print("\nFirm 1's feedback rule:\n")
print(F1)

print("\nFirm 2's feedback rule:\n")
print(F2)

Firm 1's feedback rule:

[[ 2.43666582e-01 2.72360627e-02 -6.82788293e+00]
[ 3.92370734e-01 1.39696451e-01 -3.77341073e+01]]

Firm 2's feedback rule:

[[ 2.72360627e-02 2.43666582e-01 -6.82788293e+00]
[ 1.39696451e-01 3.92370734e-01 -3.77341073e+01]]

Now let’s look at the dynamics of inventories, and reproduce the graph corresponding to 𝛿 = 0.02

AF = A - B1 @ F1 - B2 @ F2
n = 25
x = np.empty((3, n))
x[:, 0] = 2, 0, 1
for t in range(n-1):

x[:, t+1] = AF @ x[:, t]
I1 = x[0, :]
I2 = x[1, :]
fig, ax = plt.subplots(figsize=(9, 5))
ax.plot(I1, 'b-', lw=2, alpha=0.75, label='inventories, firm 1')
ax.plot(I2, 'g-', lw=2, alpha=0.75, label='inventories, firm 2')
ax.set_title(rf'$\delta = {δ}$')
ax.legend()
plt.show()
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73.1 Overview

In this lecture, we study a simplified version of an uncertainty traps model of Fajgelbaum, Schaal and Taschereau-
Dumouchel [Fajgelbaum et al., 2015].

The model features self-reinforcing uncertainty that has big impacts on economic activity.

In the model,

• Fundamentals vary stochastically and are not fully observable.

• At any moment there are both active and inactive entrepreneurs; only active entrepreneurs produce.

• Agents – active and inactive entrepreneurs – have beliefs about the fundamentals expressed as probability distri-
butions.

• Greater uncertainty means greater dispersions of these distributions.

• Entrepreneurs are risk-averse and hence less inclined to be active when uncertainty is high.

• The output of active entrepreneurs is observable, supplying a noisy signal that helps everyone inside the model infer
fundamentals.

• Entrepreneurs update their beliefs about fundamentals using Bayes’ Law, implemented via Kalman filtering.

Uncertainty traps emerge because:

• High uncertainty discourages entrepreneurs from becoming active.

• A low level of participation – i.e., a smaller number of active entrepreneurs – diminishes the flow of information
about fundamentals.
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• Less information translates to higher uncertainty, further discouraging entrepreneurs from choosing to be active,
and so on.

Uncertainty traps stem from a positive externality: high aggregate economic activity levels generates valuable information.

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import numpy as np

73.2 The Model

The original model described in [Fajgelbaum et al., 2015] has many interesting moving parts.

Here we examine a simplified version that nonetheless captures many of the key ideas.

73.2.1 Fundamentals

The evolution of the fundamental process {𝜃𝑡} is given by

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜎𝜃𝑤𝑡+1

where

• 𝜎𝜃 > 0 and 0 < 𝜌 < 1
• {𝑤𝑡} is IID and standard normal

The random variable 𝜃𝑡 is not observable at any time.

73.2.2 Output

There is a total 𝑀̄ of risk-averse entrepreneurs.

Output of the 𝑚-th entrepreneur, conditional on being active in the market at time 𝑡, is equal to

𝑥𝑚 = 𝜃 + 𝜖𝑚 where 𝜖𝑚 ∼ 𝑁 (0, 𝛾−1
𝑥 ) (73.1)

Here the time subscript has been dropped to simplify notation.

The inverse of the shock variance, 𝛾𝑥, is called the shock’s precision.

The higher is the precision, the more informative 𝑥𝑚 is about the fundamental.

Output shocks are independent across time and firms.

73.2.3 Information and Beliefs

All entrepreneurs start with identical beliefs about 𝜃0.

Signals are publicly observable and hence all agents have identical beliefs always.

Dropping time subscripts, beliefs for current 𝜃 are represented by the normal distribution 𝑁(𝜇, 𝛾−1).
Here 𝛾 is the precision of beliefs; its inverse is the degree of uncertainty.

These parameters are updated by Kalman filtering.
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Let

• 𝕄 ⊂ {1, … , 𝑀̄} denote the set of currently active firms.
• 𝑀 ∶= |𝕄| denote the number of currently active firms.
• 𝑋 be the average output 1

𝑀 ∑𝑚∈𝕄 𝑥𝑚 of the active firms.

With this notation and primes for next period values, we can write the updating of the mean and precision via

𝜇′ = 𝜌𝛾𝜇 + 𝑀𝛾𝑥𝑋
𝛾 + 𝑀𝛾𝑥

(73.2)

𝛾′ = ( 𝜌2

𝛾 + 𝑀𝛾𝑥
+ 𝜎2

𝜃)
−1

(73.3)

These are standard Kalman filtering results applied to the current setting.

Exercise 1 provides more details on how (73.2) and (73.3) are derived and then asks you to fill in remaining steps.

The next figure plots the law of motion for the precision in (73.3) as a 45 degree diagram, with one curve for each
𝑀 ∈ {0, … , 6}.
The other parameter values are 𝜌 = 0.99, 𝛾𝑥 = 0.5, 𝜎𝜃 = 0.5
Points where the curves hit the 45 degree lines are long-run steady states for precision for different values of 𝑀 .

Thus, if one of these values for 𝑀 remains fixed, a corresponding steady state is the equilibrium level of precision

• high values of 𝑀 correspond to greater information about the fundamental, and hence more precision in steady
state

• low values of 𝑀 correspond to less information and more uncertainty in steady state

In practice, as we’ll see, the number of active firms fluctuates stochastically.

73.2.4 Participation

Omitting time subscripts once more, entrepreneurs enter the market in the current period if

𝔼[𝑢(𝑥𝑚 − 𝐹𝑚)] > 𝑐 (73.4)

Here

• the mathematical expectation of 𝑥𝑚 is based on (73.1) and beliefs 𝑁(𝜇, 𝛾−1) for 𝜃
• 𝐹𝑚 is a stochastic but pre-visible fixed cost, independent across time and firms

• 𝑐 is a constant reflecting opportunity costs
The statement that 𝐹𝑚 is pre-visible means that it is realized at the start of the period and treated as a constant in (73.4).

The utility function has the constant absolute risk aversion form

𝑢(𝑥) = 1
𝑎 (1 − exp(−𝑎𝑥)) (73.5)

where 𝑎 is a positive parameter.

Combining (73.4) and (73.5), entrepreneur 𝑚 participates in the market (or is said to be active) when

1
𝑎 {1 − 𝔼[exp (−𝑎(𝜃 + 𝜖𝑚 − 𝐹𝑚))]} > 𝑐

Using standard formulas for expectations of lognormal random variables, this is equivalent to the condition

𝜓(𝜇, 𝛾, 𝐹𝑚) ∶= 1
𝑎 (1 − exp(−𝑎𝜇 + 𝑎𝐹𝑚 +

𝑎2 ( 1
𝛾 + 1

𝛾𝑥
)

2 )) − 𝑐 > 0 (73.6)

73.2. The Model 1353

https://en.wikipedia.org/wiki/Log-normal_distribution


Intermediate Quantitative Economics with Python

1354 Chapter 73. Uncertainty Traps



Intermediate Quantitative Economics with Python

73.3 Implementation

We want to simulate this economy.

As a first step, let’s put together a class that bundles

• the parameters, the current value of 𝜃 and the current values of the two belief parameters 𝜇 and 𝛾
• methods to update 𝜃, 𝜇 and 𝛾, as well as to determine the number of active firms and their outputs

The updating methods follow the laws of motion for 𝜃, 𝜇 and 𝛾 given above.

The method to evaluate the number of active firms generates 𝐹1, … , 𝐹𝑀̄ and tests condition (73.6) for each firm.

The init method encodes as default values the parameters we’ll use in the simulations below

class UncertaintyTrapEcon:

def __init__(self,
a=1.5, # Risk aversion
γ_x=0.5, # Production shock precision
ρ=0.99, # Correlation coefficient for θ
σ_θ=0.5, # Standard dev of θ shock
num_firms=100, # Number of firms
σ_F=1.5, # Standard dev of fixed costs
c=-420, # External opportunity cost
μ_init=0, # Initial value for μ
γ_init=4, # Initial value for γ
θ_init=0): # Initial value for θ

# == Record values == #
self.a, self.γ_x, self.ρ, self.σ_θ = a, γ_x, ρ, σ_θ
self.num_firms, self.σ_F, self.c, = num_firms, σ_F, c
self.σ_x = np.sqrt(1/γ_x)

# == Initialize states == #
self.γ, self.μ, self.θ = γ_init, μ_init, θ_init

def ψ(self, F):
temp1 = -self.a * (self.μ - F)
temp2 = self.a**2 * (1/self.γ + 1/self.γ_x) / 2
return (1 / self.a) * (1 - np.exp(temp1 + temp2)) - self.c

def update_beliefs(self, X, M):
"""
Update beliefs (μ, γ) based on aggregates X and M.
"""
# Simplify names
γ_x, ρ, σ_θ = self.γ_x, self.ρ, self.σ_θ
# Update μ
temp1 = ρ * (self.γ * self.μ + M * γ_x * X)
temp2 = self.γ + M * γ_x
self.μ = temp1 / temp2
# Update γ
self.γ = 1 / (ρ**2 / (self.γ + M * γ_x) + σ_θ**2)

def update_θ(self, w):
"""
Update the fundamental state θ given shock w.

(continues on next page)

73.3. Implementation 1355



Intermediate Quantitative Economics with Python

(continued from previous page)

"""
self.θ = self.ρ * self.θ + self.σ_θ * w

def gen_aggregates(self):
"""
Generate aggregates based on current beliefs (μ, γ). This
is a simulation step that depends on the draws for F.
"""
F_vals = self.σ_F * np.random.randn(self.num_firms)
M = np.sum(self.ψ(F_vals) > 0) # Counts number of active firms
if M > 0:

x_vals = self.θ + self.σ_x * np.random.randn(M)
X = x_vals.mean()

else:
X = 0

return X, M

In the results below we use this code to simulate time series for the major variables.

73.4 Results

Let’s look first at the dynamics of 𝜇, which the agents use to track 𝜃

We see that 𝜇 tracks 𝜃 well when there are sufficient firms in the market.
However, there are times when 𝜇 tracks 𝜃 poorly due to insufficient information.
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These are episodes where the uncertainty traps take hold.

During these episodes

• precision is low and uncertainty is high

• few firms are in the market

To get a clearer idea of the dynamics, let’s look at all the main time series at once, for a given set of shocks

Notice how the traps only take hold after a sequence of bad draws for the fundamental.

Thus, the model gives us a propagation mechanism that maps bad random draws into long downturns in economic activity.

73.5 Exercises

Exercise 73.5.1

Fill in the details behind (73.2) and (73.3) based on the following standard result (see, e.g., p. 24 of [Young and
Smith, 2005]).

Fact Let x = (𝑥1, … , 𝑥𝑀) be a vector of IID draws from common distribution 𝑁(𝜃, 1/𝛾𝑥) and let ̄𝑥 be the sample
mean. If 𝛾𝑥 is known and the prior for 𝜃 is 𝑁(𝜇, 1/𝛾), then the posterior distribution of 𝜃 given x is

𝜋(𝜃 | x) = 𝑁(𝜇0, 1/𝛾0)

where

𝜇0 = 𝜇𝛾 + 𝑀 ̄𝑥𝛾𝑥
𝛾 + 𝑀𝛾𝑥

and 𝛾0 = 𝛾 + 𝑀𝛾𝑥

Solution to Exercise 73.5.1

This exercise asked you to validate the laws of motion for 𝛾 and 𝜇 given in the lecture, based on the stated result about
Bayesian updating in a scalar Gaussian setting. The stated result tells us that after observing average output 𝑋 of the
𝑀 firms, our posterior beliefs will be

𝑁(𝜇0, 1/𝛾0)

where

𝜇0 = 𝜇𝛾 + 𝑀𝑋𝛾𝑥
𝛾 + 𝑀𝛾𝑥

and 𝛾0 = 𝛾 + 𝑀𝛾𝑥

If we take a random variable 𝜃 with this distribution and then evaluate the distribution of 𝜌𝜃 + 𝜎𝜃𝑤 where 𝑤 is
independent and standard normal, we get the expressions for 𝜇′ and 𝛾′ given in the lecture.

Exercise 73.5.2

Modulo randomness, replicate the simulation figures shown above.

• Use the parameter values listed as defaults in the init method of the UncertaintyTrapEcon class.
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Solution to Exercise 73.5.2

First, let’s replicate the plot that illustrates the law of motion for precision, which is

𝛾𝑡+1 = ( 𝜌2

𝛾𝑡 + 𝑀𝛾𝑥
+ 𝜎2

𝜃)
−1

Here 𝑀 is the number of active firms. The next figure plots 𝛾𝑡+1 against 𝛾𝑡 on a 45 degree diagram for different
values of 𝑀

econ = UncertaintyTrapEcon()
ρ, σ_θ, γ_x = econ.ρ, econ.σ_θ, econ.γ_x # Simplify names
γ = np.linspace(1e-10, 3, 200) # γ grid
fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(γ, γ, 'k-') # 45 degree line

for M in range(7):
γ_next = 1 / (ρ**2 / (γ + M * γ_x) + σ_θ**2)
label_string = f"$M = {M}$"
ax.plot(γ, γ_next, lw=2, label=label_string)

ax.legend(loc='lower right', fontsize=14)
ax.set_xlabel(r'$\gamma$', fontsize=16)
ax.set_ylabel(r"$\gamma'$", fontsize=16)
ax.grid()
plt.show()
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The points where the curves hit the 45 degree lines are the long-run steady states corresponding to each 𝑀 , if that
value of 𝑀 was to remain fixed. As the number of firms falls, so does the long-run steady state of precision.

Next let’s generate time series for beliefs and the aggregates – that is, the number of active firms and average output
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sim_length=2000

μ_vec = np.empty(sim_length)
θ_vec = np.empty(sim_length)
γ_vec = np.empty(sim_length)
X_vec = np.empty(sim_length)
M_vec = np.empty(sim_length)

μ_vec[0] = econ.μ
γ_vec[0] = econ.γ
θ_vec[0] = 0

w_shocks = np.random.randn(sim_length)

for t in range(sim_length-1):
X, M = econ.gen_aggregates()
X_vec[t] = X
M_vec[t] = M

econ.update_beliefs(X, M)
econ.update_θ(w_shocks[t])

μ_vec[t+1] = econ.μ
γ_vec[t+1] = econ.γ
θ_vec[t+1] = econ.θ

# Record final values of aggregates
X, M = econ.gen_aggregates()
X_vec[-1] = X
M_vec[-1] = M

First, let’s see how well 𝜇 tracks 𝜃 in these simulations

fig, ax = plt.subplots(figsize=(9, 6))
ax.plot(range(sim_length), θ_vec, alpha=0.6, lw=2, label=r"$\theta$")
ax.plot(range(sim_length), μ_vec, alpha=0.6, lw=2, label=r"$\mu$")
ax.legend(fontsize=16)
ax.grid()
plt.show()
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Now let’s plot the whole thing together

fig, axes = plt.subplots(4, 1, figsize=(12, 20))
# Add some spacing
fig.subplots_adjust(hspace=0.3)

series = (θ_vec, μ_vec, γ_vec, M_vec)
names = r'$\theta$', r'$\mu$', r'$\gamma$', r'$M$'

for ax, vals, name in zip(axes, series, names):
# Determine suitable y limits
s_max, s_min = max(vals), min(vals)
s_range = s_max - s_min
y_max = s_max + s_range * 0.1
y_min = s_min - s_range * 0.1
ax.set_ylim(y_min, y_max)
# Plot series
ax.plot(range(sim_length), vals, alpha=0.6, lw=2)
ax.set_title(f"time series for {name}", fontsize=16)
ax.grid()

plt.show()
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If you run the code above you’ll get different plots, of course.

Try experimenting with different parameters to see the effects on the time series.

(It would also be interesting to experiment with non-Gaussian distributions for the shocks, but this is a big exercise
since it takes us outside the world of the standard Kalman filter)
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In addition to what’s included in base Anaconda, we need to install JAX

!pip install quantecon jax

74.1 Overview

In this lecture, we describe the structure of a class of models that build on work by Truman Bewley [Bewley, 1977].

We begin by discussing an example of a Bewley model due to Rao Aiyagari [Aiyagari, 1994].

The model features

• heterogeneous agents

• a single exogenous vehicle for borrowing and lending

• limits on amounts individual agents may borrow

The Aiyagari model has been used to investigate many topics, including

• precautionary savings and the effect of liquidity constraints [Aiyagari, 1994]

• risk sharing and asset pricing [Heaton and Lucas, 1996]

• the shape of the wealth distribution [Benhabib et al., 2015]

• etc., etc., etc.
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74.1.1 Preliminaries

We use the following imports:

import quantecon as qe
import matplotlib.pyplot as plt
import jax
import jax.numpy as jnp
from typing import NamedTuple
from scipy.optimize import bisect

We will use 64-bit floats with JAX in order to increase precision.

jax.config.update("jax_enable_x64", True)

We will use the following function to compute stationary distributions of stochastic matrices (for a reference to the
algorithm, see p. 88 of Economic Dynamics).

@jax.jit
def compute_stationary(P):

n = P.shape[0]
I = jnp.identity(n)
O = jnp.ones((n, n))
A = I - jnp.transpose(P) + O
return jnp.linalg.solve(A, jnp.ones(n))

74.1.2 References

The primary reference for this lecture is [Aiyagari, 1994].

A textbook treatment is available in chapter 18 of [Ljungqvist and Sargent, 2018].

A continuous time version of the model by SeHyoun Ahn and Benjamin Moll can be found here.

74.2 The Economy

74.2.1 Households

Infinitely lived households / consumers face idiosyncratic income shocks.

A unit interval of ex-ante identical households face a common borrowing constraint.

The savings problem faced by a typical household is

max𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to

𝑎𝑡+1 + 𝑐𝑡 ≤ 𝑤𝑧𝑡 + (1 + 𝑟)𝑎𝑡 𝑐𝑡 ≥ 0, and 𝑎𝑡 ≥ −𝐵

where

• 𝑐𝑡 is current consumption

• 𝑎𝑡 is assets
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• 𝑧𝑡 is an exogenous component of labor income capturing stochastic unemployment risk, etc.

• 𝑤 is a wage rate

• 𝑟 is a net interest rate
• 𝐵 is the maximum amount that the agent is allowed to borrow

The exogenous process {𝑧𝑡} follows a finite state Markov chain with given stochastic matrix 𝑃 .

The wage and interest rate are fixed over time.

In this simple version of the model, households supply labor inelastically because they do not value leisure.

74.2.2 Firms

Firms produce output by hiring capital and labor.

Firms act competitively and face constant returns to scale.

Since returns to scale are constant, the number of firms does not matter.

Hence we can consider a single (but nonetheless competitive) representative firm.

The firm’s output is

𝑌 = 𝐴𝐾𝛼𝑁1−𝛼

where

• 𝐴 and 𝛼 are parameters with 𝐴 > 0 and 𝛼 ∈ (0, 1)
• 𝐾 is aggregate capital

• 𝑁 is total labor supply (which is constant in this simple version of the model)

The firm’s problem is

max
𝐾,𝑁

{𝐴𝐾𝛼𝑁1−𝛼 − (𝑟 + 𝛿)𝐾 − 𝑤𝑁}

The parameter 𝛿 is the depreciation rate.
These parameters are stored in the following namedtuple:

class Firm(NamedTuple):
A: float = 1.0 # Total factor productivity
N: float = 1.0 # Total labor supply
α: float = 0.33 # Capital share
δ: float = 0.05 # Depreciation rate

From the first-order condition with respect to capital, the firm’s inverse demand for capital is

𝑟 = 𝐴𝛼 (𝑁
𝐾 )

1−𝛼
− 𝛿 (74.1)

def r_given_k(K, firm):
"""
Inverse demand curve for capital. The interest rate associated with a
given demand for capital K.
"""
A, N, α, δ = firm
return A * α * (N / K)**(1 - α) - δ
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Using this expression and the firm’s first-order condition for labor, we can pin down the equilibriumwage rate as a function
of 𝑟 as

𝑤(𝑟) = 𝐴(1 − 𝛼)(𝐴𝛼/(𝑟 + 𝛿))𝛼/(1−𝛼) (74.2)

def r_to_w(r, firm):
"""
Equilibrium wages associated with a given interest rate r.
"""
A, N, α, δ = firm
return A * (1 - α) * (A * α / (r + δ))**(α / (1 - α))

74.2.3 Equilibrium

We construct a stationary rational expectations equilibrium (SREE).

In such an equilibrium

• prices induce behavior that generates aggregate quantities consistent with the prices

• aggregate quantities and prices are constant over time

In more detail, an SREE lists a set of prices, savings and production policies such that

• households want to choose the specified savings policies taking the prices as given

• firms maximize profits taking the same prices as given

• the resulting aggregate quantities are consistent with the prices; in particular, the demand for capital equals the
supply

• aggregate quantities (defined as cross-sectional averages) are constant

74.3 Implementation

Let’s look at how we might compute such an equilibrium in practice.

Below we provide code to solve the household problem, taking 𝑟 and 𝑤 as fixed.

74.3.1 Primitives and operators

We will solve the household problem using Howard policy iteration (see Ch 5 of Dynamic Programming).

First we set up a NamedTuple to store the parameters that define a household asset accumulation problem, as well as
the grids used to solve it

class Household(NamedTuple):
β: float # Discount factor
a_grid: jnp.ndarray # Asset grid
z_grid: jnp.ndarray # Exogenous states
Π: jnp.ndarray # Transition matrix

def create_household(β=0.96, # Discount factor
Π=[[0.9, 0.1], [0.1, 0.9]], # Markov chain
z_grid=[0.1, 1.0], # Exogenous states

(continues on next page)
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(continued from previous page)

a_min=1e-10, a_max=20, # Asset grid
a_size=200):

"""
Create a Household namedtuple with custom grids.
"""
a_grid = jnp.linspace(a_min, a_max, a_size)
z_grid, Π = map(jnp.array, (z_grid, Π))
return Household(β=β, a_grid=a_grid, z_grid=z_grid, Π=Π)

For now we assume that 𝑢(𝑐) = log(𝑐)
u = jnp.log

Here’s a namedtuple that stores the wage rate and interest rate with default values

class Prices(NamedTuple):
r: float = 0.01 # Interest rate
w: float = 1.0 # Wages

Now we set up a vectorized version of the right-hand side of the Bellman equation (before maximization), which is a 3D
array representing

𝐵(𝑎, 𝑧, 𝑎′) = 𝑢(𝑤𝑧 + (1 + 𝑟)𝑎 − 𝑎′) + 𝛽 ∑
𝑧′

𝑣(𝑎′, 𝑧′)Π(𝑧, 𝑧′)

for all (𝑎, 𝑧, 𝑎′).
@jax.jit
def B(v, household, prices):

# Unpack
β, a_grid, z_grid, Π = household
a_size, z_size = len(a_grid), len(z_grid)
r, w = prices

# Compute current consumption as array c[i, j, ip]
a = jnp.reshape(a_grid, (a_size, 1, 1)) # a[i] -> a[i, j, ip]
z = jnp.reshape(z_grid, (1, z_size, 1)) # z[j] -> z[i, j, ip]
ap = jnp.reshape(a_grid, (1, 1, a_size)) # ap[ip] -> ap[i, j, ip]
c = w * z + (1 + r) * a - ap

# Calculate continuation rewards at all combinations of (a, z, ap)
v = jnp.reshape(v, (1, 1, a_size, z_size)) # v[ip, jp] -> v[i, j, ip, jp]
Π = jnp.reshape(Π, (1, z_size, 1, z_size)) # Π[j, jp] -> Π[i, j, ip, jp]
EV = jnp.sum(v * Π, axis=-1) # sum over last index jp

# Compute the right-hand side of the Bellman equation
return jnp.where(c > 0, u(c) + β * EV, -jnp.inf)

The next function computes greedy policies

@jax.jit
def get_greedy(v, household, prices):

"""
Computes a v-greedy policy σ, returned as a set of indices. If
σ[i, j] equals ip, then a_grid[ip] is the maximizer at i, j.
"""
# argmax over ap
return jnp.argmax(B(v, household, prices), axis=-1)
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The following function computes the array 𝑟𝜎 which gives current rewards given policy 𝜎
@jax.jit
def compute_r_σ(σ, household, prices):

"""
Compute current rewards at each i, j under policy σ. In particular,

r_σ[i, j] = u((1 + r)a[i] + wz[j] - a'[ip])

when ip = σ[i, j].
"""
# Unpack
β, a_grid, z_grid, Π = household
a_size, z_size = len(a_grid), len(z_grid)
r, w = prices

# Compute r_σ[i, j]
a = jnp.reshape(a_grid, (a_size, 1))
z = jnp.reshape(z_grid, (1, z_size))
ap = a_grid[σ]
c = (1 + r) * a + w * z - ap
r_σ = u(c)

return r_σ

The value 𝑣𝜎 of a policy 𝜎 is defined as

𝑣𝜎 = (𝐼 − 𝛽𝑃𝜎)−1𝑟𝜎

(See Ch 5 of Dynamic Programming for notation and background on Howard policy iteration.)

To compute this vector, we set up the linear map 𝑣 → 𝑅𝜎𝑣, where 𝑅𝜎 ∶= 𝐼 − 𝛽𝑃𝜎.

This map can be expressed as

(𝑅𝜎𝑣)(𝑎, 𝑧) = 𝑣(𝑎, 𝑧) − 𝛽 ∑
𝑧′

𝑣(𝜎(𝑎, 𝑧), 𝑧′)Π(𝑧, 𝑧′)

(Notice that 𝑅𝜎 is expressed as a linear operator rather than a matrix—this is much easier and cleaner to code, and also
exploits sparsity.)

@jax.jit
def R_σ(v, σ, household):

# Unpack
β, a_grid, z_grid, Π = household
a_size, z_size = len(a_grid), len(z_grid)

# Set up the array v[σ[i, j], jp]
zp_idx = jnp.arange(z_size)
zp_idx = jnp.reshape(zp_idx, (1, 1, z_size))
σ = jnp.reshape(σ, (a_size, z_size, 1))
V = v[σ, zp_idx]

# Expand Π[j, jp] to Π[i, j, jp]
Π = jnp.reshape(Π, (1, z_size, z_size))

# Compute and return v[i, j] - β Σ_jp v[σ[i, j], jp] * Π[j, jp]
return v - β * jnp.sum(V * Π, axis=-1)

The next function computes the lifetime value of a given policy
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@jax.jit
def get_value(σ, household, prices):

"""
Get the lifetime value of policy σ by computing

v_σ = R_σ^{-1} r_σ
"""
r_σ = compute_r_σ(σ, household, prices)

# Reduce R_σ to a function in v
_R_σ = lambda v: R_σ(v, σ, household)

# Compute v_σ = R_σ^{-1} r_σ using an iterative routine.
return jax.scipy.sparse.linalg.bicgstab(_R_σ, r_σ)[0]

Here’s the Howard policy iteration

def howard_policy_iteration(household, prices,
tol=1e-4, max_iter=10_000, verbose=False):

"""
Howard policy iteration routine.
"""
β, a_grid, z_grid, Π = household
a_size, z_size = len(a_grid), len(z_grid)
σ = jnp.zeros((a_size, z_size), dtype=int)

v_σ = get_value(σ, household, prices)
i = 0
error = tol + 1
while error > tol and i < max_iter:

σ_new = get_greedy(v_σ, household, prices)
v_σ_new = get_value(σ_new, household, prices)
error = jnp.max(jnp.abs(v_σ_new - v_σ))
σ = σ_new
v_σ = v_σ_new
i = i + 1
if verbose:

print(f"iteration {i} with error {error}.")
return σ

As a first example of what we can do, let’s compute and plot an optimal accumulation policy at fixed prices

# Create an instance of Household
household = create_household()
prices = Prices()

r, w = prices
print(f"Interest rate: {r}, Wage: {w}")

Interest rate: 0.01, Wage: 1.0

with qe.Timer():
σ_star = howard_policy_iteration(

household, prices, verbose=True).block_until_ready()

iteration 1 with error 11.366831579022996.

(continues on next page)
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(continued from previous page)

iteration 2 with error 9.574522771860245.
iteration 3 with error 3.9654760004604777.
iteration 4 with error 1.1207075306313232.
iteration 5 with error 0.2524013153055833.
iteration 6 with error 0.12172293662906064.
iteration 7 with error 0.043395682867316765.
iteration 8 with error 0.012132319676439351.
iteration 9 with error 0.005822155404443308.
iteration 10 with error 0.002863165320343697.
iteration 11 with error 0.0016657175376657563.
iteration 12 with error 0.0004143776102245589.
iteration 13 with error 0.0.
1.02 seconds elapsed

The next plot shows asset accumulation policies at different values of the exogenous state

β, a_grid, z_grid, Π = household

fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(a_grid, a_grid, 'k--', label="45 degrees")
for j, z in enumerate(z_grid):

lb = f'$z = {z:.2}$'
policy_vals = a_grid[σ_star[:, j]]
ax.plot(a_grid, policy_vals, lw=2, alpha=0.6, label=lb)
ax.set_xlabel('current assets')
ax.set_ylabel('next period assets')

ax.legend(loc='upper left')
plt.show()
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The plot shows asset accumulation policies at different values of the exogenous state.

74.3.2 Capital supply

To start thinking about equilibrium, we need to know how much capital households supply at a given interest rate 𝑟.
This quantity can be calculated by taking the stationary distribution of assets under the optimal policy and computing the
mean.

The next function computes the stationary distribution for a given policy 𝜎 via the following steps:

• Compute the stationary distribution 𝜓 = (𝜓(𝑎, 𝑧)) of 𝑃𝜎, which defines the Markov chain of the state (𝑎𝑡, 𝑧𝑡)
under policy 𝜎.

• Sum out 𝑧𝑡 to get the marginal distribution for 𝑎𝑡.
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@jax.jit
def compute_asset_stationary(σ, household):

# Unpack
β, a_grid, z_grid, Π = household
a_size, z_size = len(a_grid), len(z_grid)

# Construct P_σ as an array of the form P_σ[i, j, ip, jp]
ap_idx = jnp.arange(a_size)
ap_idx = jnp.reshape(ap_idx, (1, 1, a_size, 1))
σ = jnp.reshape(σ, (a_size, z_size, 1, 1))
A = jnp.where(σ == ap_idx, 1, 0)
Π = jnp.reshape(Π, (1, z_size, 1, z_size))
P_σ = A * Π

# Reshape P_σ into a matrix
n = a_size * z_size
P_σ = jnp.reshape(P_σ, (n, n))

# Get stationary distribution and reshape back onto [i, j] grid
ψ = compute_stationary(P_σ)
ψ = jnp.reshape(ψ, (a_size, z_size))

# Sum along the rows to get the marginal distribution of assets
ψ_a = jnp.sum(ψ, axis=1)
return ψ_a

Let’s give this a test run.

ψ_a = compute_asset_stationary(σ_star, household)

fig, ax = plt.subplots()
ax.bar(household.a_grid, ψ_a)
ax.set_xlabel("asset level")
ax.set_ylabel("probability mass")
plt.show()
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The distribution should sum to one:

ψ_a.sum()

Array(1., dtype=float64)

The next function computes aggregate capital supply by households under policy 𝜎, given wages and interest rates
def capital_supply(σ, household):

"""
Induced level of capital stock under the policy, taking r and w as given.
"""
β, a_grid, z_grid, Π = household
ψ_a = compute_asset_stationary(σ, household)
return float(jnp.sum(ψ_a * a_grid))

74.3.3 Equilibrium

We compute a SREE as follows:

1. Set 𝑛 = 0 and start with an initial guess 𝐾0 for aggregate capital.

2. Determine prices 𝑟, 𝑤 from the firm decision problem, given 𝐾𝑛.

3. Compute the optimal savings policy of households given these prices.

4. Compute aggregate capital 𝐾𝑛+1 as the mean of steady-state capital given this savings policy.

5. If 𝐾𝑛+1 ≈ 𝐾𝑛, stop; otherwise, go to step 2.
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We can write the sequence of operations in steps 2-4 as

𝐾𝑛+1 = 𝐺(𝐾𝑛)

If 𝐾𝑛+1 agrees with 𝐾𝑛 then we have a SREE.

In other words, our problem is to find the fixed point of the one-dimensional map 𝐺.

Here’s 𝐺 expressed as a Python function

def G(K, firm, household):
# Get prices r, w associated with K
r = r_given_k(K, firm)
w = r_to_w(r, firm)

# Generate a household object with these prices, compute
# aggregate capital.
prices = Prices(r=r, w=w)
σ_star = howard_policy_iteration(household, prices)
return capital_supply(σ_star, household)

Let’s inspect visually as a first pass

num_points = 50
firm = Firm()
household = create_household()
k_vals = jnp.linspace(4, 12, num_points)
out = [G(k, firm, household) for k in k_vals]

fig, ax = plt.subplots(figsize=(11, 8))
ax.plot(k_vals, out, lw=2, alpha=0.6, label='$G$')
ax.plot(k_vals, k_vals, 'k--', label="45 degrees")
ax.set_xlabel('capital')
ax.legend()
plt.show()
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Now let’s compute the equilibrium.

Looking at the figure above, we see that a simple iteration scheme 𝐾𝑛+1 = 𝐺(𝐾𝑛) will cycle from high to low values,
leading to slow convergence.

As a result, we use a damped iteration scheme of the form

𝐾𝑛+1 = 𝛼𝐾𝑛 + (1 − 𝛼)𝐺(𝐾𝑛)

def compute_equilibrium(firm, household,
K0=6, α=0.99, max_iter=1_000, tol=1e-4,
print_skip=10, verbose=False):

n = 0
K = K0
error = tol + 1
while error > tol and n < max_iter:

new_K = α * K + (1 - α) * G(K, firm, household)
error = abs(new_K - K)
K = new_K
n += 1
if verbose and n % print_skip == 0:

print(f"At iteration {n} with error {error}")
return K, n

firm = Firm()
household = create_household()

(continues on next page)
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print("\nComputing equilibrium capital stock")
with qe.Timer():

K_star, n = compute_equilibrium(firm, household, K0=6.0)
print(f"Computed equilibrium {K_star:.5} in {n} iterations")

Computing equilibrium capital stock

36.18 seconds elapsed
Computed equilibrium 8.0918 in 176 iterations

This convergence is not very fast, given how quickly we can solve the household problem.

You can try varying 𝛼, but usually this parameter is hard to set a priori.
In the exercises below you will be asked to use bisection instead, which generally performs better.

74.3.4 Supply and demand curves

We can visualize the equilibrium using supply and demand curves.

The following code draws the aggregate supply and demand curves.

The intersection gives the equilibrium interest rate and capital

def prices_to_capital_stock(household, r, firm):
"""
Map prices to the induced level of capital stock.
"""
w = r_to_w(r, firm)
prices = Prices(r=r, w=w)

# Compute the optimal policy
σ_star = howard_policy_iteration(household, prices)

# Compute capital supply
return capital_supply(σ_star, household)

# Create a grid of r values to compute demand and supply of capital
num_points = 20
r_vals = jnp.linspace(0.005, 0.04, num_points)

# Compute supply of capital
k_vals = []
for r in r_vals:

k_vals.append(prices_to_capital_stock(household, r, firm))

# Plot against demand for capital by firms
fig, ax = plt.subplots(figsize=(11, 8))
ax.plot(k_vals, r_vals, lw=2, alpha=0.6,

label='supply of capital')
ax.plot(k_vals, r_given_k(

jnp.array(k_vals), firm), lw=2, alpha=0.6,
label='demand for capital')

# Add marker at equilibrium
r_star = r_given_k(K_star, firm)

(continues on next page)
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(continued from previous page)

ax.plot(K_star, r_star, 'o', markersize=10, label='equilibrium')

ax.set_xlabel('capital')
ax.set_ylabel('interest rate')
ax.legend(loc='upper right')

plt.show()

74.4 Exercises

Exercise 74.4.1

Write a new version ofcompute_equilibrium that usesbisect fromscipy.optimize instead of damped
iteration.

See if you can make it faster than the previous version.

In bisect,

• you should set xtol=1e-4 to have the same error tolerance as the previous version.

• for the lower and upper bounds of the bisection routine try a = 1.0 and b = 20.0.
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Solution to Exercise 74.4.1

We use bisection to find the zero of the function ℎ(𝑘) = 𝑘 − 𝐺(𝑘)
def compute_equilibrium_bisect(firm, household, a=1.0, b=20.0):

K = bisect(lambda k: k - G(k, firm, household), a, b, xtol=1e-4)
return K

firm = Firm()
household = create_household()
print("\nComputing equilibrium capital stock using bisection")
with qe.Timer():

K_star = compute_equilibrium_bisect(firm, household)
print(f"Computed equilibrium capital stock {K_star:.5}")

Computing equilibrium capital stock using bisection

0.83 seconds elapsed
Computed equilibrium capital stock 8.0938

The bisection method is faster than the damped iteration scheme.

Exercise 74.4.2

Show how equilibrium capital stock changes with 𝛽.
Use the following values of 𝛽 and plot the relationship you find.

β_vals = jnp.linspace(0.94, 0.98, 20)

Solution to Exercise 74.4.2

K_vals = []
K = 6.0 # initial guess

for β in β_vals:
household = create_household(β=β)
K = compute_equilibrium_bisect(firm, household, 0.5 * K, 1.5 * K)
print(f"Computed equilibrium {K:.4} at β = {β}")
K_vals.append(K)

fig, ax = plt.subplots()
ax.plot(β_vals, K_vals, ms=2)
ax.set_xlabel(r'$\beta$')
ax.set_ylabel('capital')
plt.show()

Computed equilibrium 6.006 at β = 0.94

Computed equilibrium 6.186 at β = 0.9421052631578948

Computed equilibrium 6.379 at β = 0.9442105263157894

Computed equilibrium 6.577 at β = 0.9463157894736841
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Computed equilibrium 6.786 at β = 0.9484210526315789

Computed equilibrium 7.005 at β = 0.9505263157894737

Computed equilibrium 7.226 at β = 0.9526315789473683

Computed equilibrium 7.461 at β = 0.9547368421052631

Computed equilibrium 7.709 at β = 0.9568421052631579

Computed equilibrium 7.966 at β = 0.9589473684210527

Computed equilibrium 8.231 at β = 0.9610526315789474

Computed equilibrium 8.499 at β = 0.963157894736842

Computed equilibrium 8.787 at β = 0.9652631578947368

Computed equilibrium 9.076 at β = 0.9673684210526317

Computed equilibrium 9.378 at β = 0.9694736842105263

Computed equilibrium 9.687 at β = 0.971578947368421

Computed equilibrium 10.0 at β = 0.9736842105263158

Computed equilibrium 10.34 at β = 0.9757894736842105

Computed equilibrium 10.67 at β = 0.9778947368421053

Computed equilibrium 11.0 at β = 0.98
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CHAPTER

SEVENTYFIVE

A LONG-LIVED, HETEROGENEOUS AGENT, OVERLAPPING
GENERATIONS MODEL

In addition to what’s in Anaconda, this lecture will need the following library

!pip install jax

75.1 Overview

This lecture describes an overlapping generations model with these features:

• A competitive equilibrium with incomplete markets determines prices and quantities

• Agents live many periods as in [Auerbach and Kotlikoff, 1987]

• Agents receive idiosyncratic labor productivity shocks that cannot be fully insured as in [Aiyagari, 1994]

• Government fiscal policy instruments include tax rates, debt, and transfers as in chapter 2 of [Auerbach and Kot-
likoff, 1987] and Transitions in an Overlapping Generations Model

• Among other equilibrium objects, a competitive equilibrium determines a sequence of cross-section densities of
heterogeneous agents’ consumptions, labor incomes, and savings

We use the model to study:

• How fiscal policies affect different generations

• How market incompleteness promotes precautionary savings

• How life-cycle savings and buffer-stock savings motives interact

• How fiscal policies redistribute resources across and within generations

As prerequisites for this lecture, we recommend two quantecon lectures:

1. Discrete State Dynamic Programming

2. Transitions in an Overlapping Generations Model

as well as the optional reading The Aiyagari Model

As usual, let’s start by importing some Python modules

from collections import namedtuple
import numpy as np
import matplotlib.pyplot as plt
import jax.numpy as jnp

(continues on next page)
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(continued from previous page)

import jax.scipy as jsp
import jax

75.2 Environment

We start by introducing the economic environment we are operating in.

75.2.1 Demographics and time

We work in discrete time indexed by 𝑡 = 0, 1, 2, ....
Each agent lives for 𝐽 = 50 periods and faces no mortality risk.
We index age by 𝑗 = 0, 1, ..., 49, and the population size remains fixed at 1/𝐽 .

75.2.2 Individuals’ state variables

Each agent 𝑖 of age 𝑗 at time 𝑡 is characterized by two state variables: asset holdings 𝑎𝑖,𝑗,𝑡 and idiosyncratic labor pro-
ductivity 𝛾𝑖,𝑗,𝑡.

The idiosyncratic labor productivity process follows a two-state Markov chain that takes values 𝛾𝑙 and 𝛾ℎ with transition
matrix Π.
Newborn agents begin with an initial distribution 𝜋 = [0.5, 0.5] over these productivity states.

75.2.3 Labor supply

An agent with productivity 𝛾𝑖,𝑗,𝑡 supplies 𝑙(𝑗)𝛾𝑖,𝑗,𝑡 efficiency units of labor.

𝑙(𝑗) is a deterministic age-specific labor efficiency units profile.
An agent’s effective labor supply depends on a life-cycle efficiency profile and an idiosyncratic stochastic process.

75.2.4 Initial conditions

Newborns start with zero assets 𝑎𝑖,0,𝑡 = 0.
Initial idiosyncratic productivities are drawn from distribution 𝜋.
Agents leave no bequests and have terminal value function 𝑉𝐽(𝑎) = 0.
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75.3 Production

A representative firm operates a constant returns to scale Cobb-Douglas production:

𝑌𝑡 = 𝑍𝑡𝐾𝛼
𝑡 𝐿1−𝛼

𝑡

where:

• 𝐾𝑡 is aggregate capital

• 𝐿𝑡 is aggregate efficiency units of labor

• 𝑍𝑡 is total factor productivity

• 𝛼 is the capital share

75.4 Government

The government follows a fiscal policy that includes debt, taxes, transfers, and government spending.

The government issues one-period debt 𝐷𝑡 to finance its operations and collects revenues through a flat-rate tax 𝜏𝑡 on
both labor and capital income.

The government also implements age-specific lump-sum taxes or transfers 𝛿𝑗,𝑡 that can redistribute resources across
different age groups.

Additionally, it makes government purchases 𝐺𝑡 for public goods and services.

The government budget constraint at time 𝑡 is

𝐷𝑡+1 − 𝐷𝑡 = 𝑟𝑡𝐷𝑡 + 𝐺𝑡 − 𝑇𝑡

where total tax revenues 𝑇𝑡 satisfy

𝑇𝑡 = 𝜏𝑡𝑤𝑡𝐿𝑡 + 𝜏𝑡𝑟𝑡(𝐷𝑡 + 𝐾𝑡) + ∑
𝑗

𝛿𝑗,𝑡

75.5 Activities in factor markets

At each time 𝑡 ≥ 0, agents supply labor and capital.

75.5.1 Age-specific labor supplies

Agents of age 𝑗 ∈ {0, 1, ..., 𝐽 − 1} supply labor according to:
• Their deterministic age-efficiency profile 𝑙(𝑗)
• Their current idiosyncratic productivity shock 𝛾𝑖,𝑗,𝑡

Each agent supplies 𝑙(𝑗)𝛾𝑖,𝑗,𝑡 effective units of labor and earns a competitive wage 𝑤𝑡 per effective unit, subject to a flat
tax rate 𝜏𝑡 on labor earnings.
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75.5.2 Asset market participation

Summarizing activities in the asset market, all agents, regardless of age 𝑗 ∈ {0, 1, ..., 𝐽 − 1}, can:
• Hold assets 𝑎𝑖,𝑗,𝑡 (subject to borrowing constraints)

• Earn a risk-free one-period return 𝑟𝑡 on savings

• Pay capital income taxes at flat rate 𝜏𝑡

• Receive or pay age-specific transfers 𝛿𝑗,𝑡

75.5.3 Key features

Lifecycle patterns shape economic behavior across ages:

• Labor productivity varies systematically with age according to the profile 𝑙(𝑗), while asset holdings typically follow
a lifecycle pattern of accumulation during working years and decumulation during retirement.

• Age-specific fiscal transfers 𝛿𝑗,𝑡 redistribute resources across generations.

Within-cohort heterogeneity creates dispersion among agents of the same age:

• Agents of the same age differ in their asset holdings 𝑎𝑖,𝑗,𝑡 due to different histories of idiosyncratic productivity
shocks, their current productivities 𝛾𝑖,𝑗,𝑡, and consequently their labor incomes and financial wealth.

Cross-cohort interactions determine equilibrium outcomes through market aggregation:

• All cohorts participate together in factor markets, with asset supplies from all cohorts determining aggregate capital
and effective labor supplies from all cohorts determining aggregate labor.

• Equilibrium prices reflect both lifecycle and redistributive forces.

75.6 Representative firm’s problem

A representative firm chooses capital and effective labor to maximize profits

max
𝐾,𝐿

𝑍𝑡𝐾𝛼
𝑡 𝐿1−𝛼

𝑡 − 𝑟𝑡𝐾𝑡 − 𝑤𝑡𝐿𝑡

First-order necessary conditions imply that

𝑤𝑡 = (1 − 𝛼)𝑍𝑡(𝐾𝑡/𝐿𝑡)𝛼

and

𝑟𝑡 = 𝛼𝑍𝑡(𝐾𝑡/𝐿𝑡)𝛼−1

75.7 Households’ problems

A household’s value function satisfies a Bellman equation

𝑉𝑗,𝑡(𝑎, 𝛾) = max
𝑐,𝑎′

{𝑢(𝑐) + 𝛽𝔼[𝑉𝑗+1,𝑡+1(𝑎′, 𝛾′)]}

where maximization is subject to

𝑐 + 𝑎′ = (1 + 𝑟𝑡(1 − 𝜏𝑡))𝑎 + (1 − 𝜏𝑡)𝑤𝑡𝑙(𝑗)𝛾 − 𝛿𝑗,𝑡
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𝑐 ≥ 0
and a terminal condition 𝑉𝐽,𝑡(𝑎, 𝛾) = 0

75.8 Population dynamics

The joint probability density function 𝜇𝑗,𝑡(𝑎, 𝛾) of asset holdings and idiosyncratic labor productivity evolves according
to

• For newborns (𝑗 = 0):

𝜇0,𝑡+1(𝑎′, 𝛾′) = {𝜋(𝛾′) if 𝑎′ = 0,
0, otherwise

• For other cohorts:

𝜇𝑗+1,𝑡+1(𝑎′, 𝛾′) = ∫ 1𝜎𝑗,𝑡(𝑎,𝛾)=𝑎′Π(𝛾, 𝛾′)𝜇𝑗,𝑡(𝑎, 𝛾)𝑑(𝑎, 𝛾)

where 𝜎𝑗,𝑡(𝑎, 𝛾) is the optimal saving policy function.

75.9 Equilibrium

An equilibrium consists of:

• Value functions 𝑉𝑗,𝑡

• Policy functions 𝜎𝑗,𝑡

• Joint probability distributions 𝜇𝑗,𝑡

• Prices 𝑟𝑡, 𝑤𝑡

• Government policies 𝜏𝑡, 𝐷𝑡, 𝛿𝑗,𝑡, 𝐺𝑡

that satisfy the following conditions

• Given prices and government policies, value and policy functions solve households’ problems

• Given prices, the representative firm maximizes profits

• Government budget constraints are satisfied

• Markets clear:

– Asset market: 𝐾𝑡 = ∑𝑗 ∫ 𝑎𝜇𝑗,𝑡(𝑎, 𝛾)𝑑(𝑎, 𝛾) − 𝐷𝑡

– Labor market: 𝐿𝑡 = ∑𝑗 ∫ 𝑙(𝑗)𝛾𝜇𝑗,𝑡(𝑎, 𝛾)𝑑(𝑎, 𝛾)
Relative to the model presented in Transitions in an Overlapping Generations Model, the present model adds

• Heterogeneity within generations due to productivity shocks

• A precautionary savings motive

• More re-distributional effects

• More complicated transition dynamics
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75.10 Implementation

Using tools in Discrete State Dynamic Programming, we solve our model by combining value function iteration with
equilibrium price determination.

A sensible approach is to nest a discrete DP solver inside an outer loop that searches for market-clearing prices.

For a candidate sequence of prices interest rates 𝑟𝑡 and wages 𝑤𝑡, we can solve individual households’ dynamic program-
ming problems using either value function iteration or policy iteration to obtain optimal policy functions.

We then deduce associated stationary joint probability distributions of asset holdings and idiosyncratic labor efficiency
units for each age cohort.

This will give us an aggregate capital supply (from household savings) and a labor supply (from the age-efficiency profile
and productivity shocks).

We can then compare these with capital and labor demand from firms, compute deviations between factor market supplies
and demands, then update price guesses until we find market-clearing prices.

To construct transition dynamics, we can compute sequences of time-varying prices by using backward induction to
compute value and policy functions, and forward iteration for the distributions of agents across states:

1. Outer loop (market clearing)

• Guess initial prices (𝑟𝑡, 𝑤𝑡)

• Iterate until asset and labor markets clear

• Use firms’ first-order necessary conditions to update prices

2. Inner loop (individual dynamic programming)

• For each age cohort:

– Discretize asset and productivity state space

– Use value function iteration or policy iteration

– Solve for optimal savings policies

– Compute stationary distributions

3. Aggregation

• Sum across individual states within each cohort

• Sum across cohorts both

– Aggregate capital supply, and

– Aggregate effective labor supply

• Take into account population weights 1/𝐽
4. Transition dynamics

• Backward induction:

– Start from final steady state

– Solve sequence of value functions

• Forward iteration:

– Start from initial distribution

– Track cohort distributions over time
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• Market clearing in each period:

– Solve for price sequences

– Update until all markets clear in all periods

We start coding by defining helper functions that describe preferences, firms, and government budget constraints.

ϕ, k_bar = 0., 0.

@jax.jit
def V_bar(a):

"Terminal value function depending on the asset holding."

return - ϕ * (a - k_bar) ** 2

ν = 0.5

@jax.jit
def u(c):

"Utility from consumption."

return c ** (1 - ν) / (1 - ν)

l1, l2, l3 = 0.5, 0.05, -0.0008

@jax.jit
def l(j):

"Age-specific wage profile."

return l1 + l2 * j + l3 * j ** 2

Let’s define a Firm namedtuple that contains parameters governing the production technology.

Firm = namedtuple("Firm", ("α", "Z"))

def create_firm(α=0.3, Z=1):

return Firm(α=α, Z=Z)

firm = create_firm()

The following helper functions link aggregates (𝐾, 𝐿) and prices (𝑤, 𝑟) that emerge from the representative firm’s first-
order necessary conditions.

@jax.jit
def KL_to_r(K, L, firm):

α, Z = firm

return Z * α * (K / L) ** (α - 1)

@jax.jit
def KL_to_w(K, L, firm):

α, Z = firm

return Z * (1 - α) * (K / L) ** α

75.10. Implementation 1389



Intermediate Quantitative Economics with Python

We use a function find_τ to find flat tax rates that balance the government budget constraint given other policy variables
that include debt levels, government spending, and transfers.

@jax.jit
def find_τ(policy, price, aggs):

D, D_next, G, δ = policy
r, w = price
K, L = aggs

num = r * D + G - D_next + D - δ.sum(axis=-1)
denom = w * L + r * (D + K)

return num / denom

We use a namedtuple Household to store parameters that characterize households’ problems.

Household = namedtuple("Household", ("j_grid", "a_grid", "γ_grid",
"Π", "β", "init_μ", "VJ"))

def create_household(
a_min=0., a_max=10, a_size=200,
Π=[[0.9, 0.1], [0.1, 0.9]],
γ_grid=[0.5, 1.5],
β=0.96, J=50

):

j_grid = jnp.arange(J)

a_grid = jnp.linspace(a_min, a_max, a_size)

γ_grid, Π = map(jnp.array, (γ_grid, Π))
γ_size = len(γ_grid)

# Population distribution of new borns
init_μ = jnp.zeros((a_size * γ_size))

# Newborns are endowed with zero asset
# and equal probability of γ
init_μ = init_μ.at[:γ_size].set(1 / γ_size)

# Terminal value V_bar(a)
VJ = jnp.empty(a_size * γ_size)
for a_i in range(a_size):

a = a_grid[a_i]
VJ = VJ.at[a_i*γ_size:(a_i+1)*γ_size].set(V_bar(a))

return Household(j_grid=j_grid, a_grid=a_grid, γ_grid=γ_grid,
Π=Π, β=β, init_μ=init_μ, VJ=VJ)

hh = create_household()

We apply discrete state dynamic programming tools.

Initial steps involve preparing rewards and transition matrices 𝑅 and 𝑄 for our discretized Bellman equations.

@jax.jit
def populate_Q(household):

(continues on next page)
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(continued from previous page)

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

num_state = a_grid.size * γ_grid.size
num_action = a_grid.size

Q = jsp.linalg.block_diag(*[Π]*a_grid.size)
Q = Q.reshape((num_state, num_action, γ_grid.size))
Q = jnp.tile(Q, a_grid.size).T

return Q

@jax.jit
def populate_R(j, r, w, τ, δ, household):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

num_state = a_grid.size * γ_grid.size
num_action = a_grid.size

a = jnp.reshape(a_grid, (a_grid.size, 1, 1))
γ = jnp.reshape(γ_grid, (1, γ_grid.size, 1))
ap = jnp.reshape(a_grid, (1, 1, a_grid.size))
c = (1 + r*(1-τ)) * a + (1-τ) * w * l(j) * γ - δ[j] - ap

return jnp.reshape(jnp.where(c > 0, u(c), -jnp.inf),
(num_state, num_action))

75.11 Computing a steady state

We first compute a steady state.

Given guesses of prices and taxes, we can use backwards induction to solve for value functions and optimal consumption
and saving policies at all ages.

The function backwards_opt solves for optimal values by applying the discretized bellman operator backwards.

We use jax.lax.scan to facilitate sequential and recurrent computations efficiently.

@jax.jit
def backwards_opt(prices, taxes, household, Q):

r, w = prices
τ, δ = taxes

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household
J = j_grid.size

num_state = a_grid.size * γ_grid.size
num_action = a_grid.size

def bellman_operator_j(V_next, j):
"Solve household optimization problem at age j given Vj+1"

Rj = populate_R(j, r, w, τ, δ, household)

(continues on next page)
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vals = Rj + β * Q.dot(V_next)
σ_j = jnp.argmax(vals, axis=1)
V_j = vals[jnp.arange(num_state), σ_j]

return V_j, (V_j, σ_j)

js = jnp.arange(J-1, -1, -1)
init_V = VJ

# Iterate from age J to 1
_, outputs = jax.lax.scan(bellman_operator_j, init_V, js)
V, σ = outputs
V = V[::-1]
σ = σ[::-1]

return V, σ

r, w = 0.05, 1
τ, δ = 0.15, np.zeros(hh.j_grid.size)

Q = populate_Q(hh)

V, σ = backwards_opt([r, w], [τ, δ], hh, Q)

Let’s time the computation with block_until_ready() to ensure that all JAX operations are complete

%time backwards_opt([r, w], [τ, δ], hh, Q)[0].block_until_ready();

CPU times: user 1.06 ms, sys: 1.05 ms, total: 2.1 ms
Wall time: 50.7 ms

From the optimal consumption and saving choices by each cohort, we can compute a joint probability distribution of
asset levels and idiosyncratic productivity levels in a steady state.

@jax.jit
def popu_dist(σ, household, Q):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

J = hh.j_grid.size
num_state = hh.a_grid.size * hh.γ_grid.size

def update_popu_j(μ_j, j):
"Update population distribution from age j to j+1"

Qσ = Q[jnp.arange(num_state), σ[j]]
μ_next = μ_j @ Qσ

return μ_next, μ_next

js = jnp.arange(J-1)

# iterate from age 1 to J
_, μ = jax.lax.scan(update_popu_j, init_μ, js)
μ = jnp.concatenate([init_μ[jnp.newaxis], μ], axis=0)

(continues on next page)
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return μ

μ = popu_dist(σ, hh, Q)

Let’s time the computation

%time popu_dist(σ, hh, Q)[0].block_until_ready();

CPU times: user 40.2 ms, sys: 962 μs, total: 41.1 ms
Wall time: 53.8 ms

Below we plot the marginal distribution of savings for each age group.

for j in [0, 5, 20, 45, 49]:
plt.plot(hh.a_grid, jnp.sum(μ[j].reshape((hh.a_grid.size, hh.γ_grid.size)),␣

↪axis=1), label=f'j={j}')

plt.legend()
plt.xlabel('a')

plt.title(r'marginal distribution over a, $\sum_\gamma \mu_j(a, \gamma)$')
plt.xlim([0, 8])
plt.ylim([0, 0.1])

plt.show()
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These marginal distributions confirm that new agents enter the economy with no asset holdings.

• the blue 𝑗 = 0 distribution has mass only at 𝑎 = 0.
As agents age, at first they gradually accumulate assets.

• the orange 𝑗 = 5 distribution puts positive mass on positive but low asset levels

• the green 𝑗 = 20 distribution puts positive mass on a much wider range of asset levels.
• the red 𝑗 = 45 distribution is even wider

At a later age, they gradually deplete their asset holdings.

• the purple 𝑗 = 49 distribution illustrates this
At the end of life, they will have drawn down all of their assets.

Let’s now look at age-specific optimal saving policies that generate the preceding marginal distributions of assets at
different ages.

We’ll plot some saving functions with the following Python code.

σ_reshaped = σ.reshape(hh.j_grid.size, hh.a_grid.size, hh.γ_grid.size)
j_labels = [f'j={j}' for j in [0, 5, 20, 45, 49]]

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

axs[0].plot(hh.a_grid, hh.a_grid[σ_reshaped[[0, 5, 20, 45, 49], :, 0].T])
axs[0].plot(hh.a_grid, hh.a_grid, '--')

(continues on next page)
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axs[0].set_xlabel("$a_{j}$")
axs[0].set_ylabel("$a^*_{j+1}$")
axs[0].legend(j_labels+['45 degree line'])
axs[0].set_title(r"Optimal saving policy, low $\gamma$")

axs[1].plot(hh.a_grid, hh.a_grid[σ_reshaped[[0, 5, 20, 45, 49], :, 1].T])
axs[1].plot(hh.a_grid, hh.a_grid, '--')
axs[1].set_xlabel("$a_{j}$")
axs[1].set_ylabel("$a^*_{j+1}$")
axs[1].legend(j_labels+['45 degree line'])
axs[1].set_title(r"Optimal saving policy, high $\gamma$")

plt.show()

From an implied stationary population distribution, we can compute the aggregate labor supply 𝐿 and private savings 𝐴.
@jax.jit
def compute_aggregates(μ, household):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

J, a_size, γ_size = j_grid.size, a_grid.size, γ_grid.size

μ = μ.reshape((J, hh.a_grid.size, hh.γ_grid.size))

# Compute private savings
a = a_grid.reshape((1, a_size, 1))
A = (a * μ).sum() / J

γ = γ_grid.reshape((1, 1, γ_size))
lj = l(j_grid).reshape((J, 1, 1))
L = (lj * γ * μ).sum() / J

return A, L

A, L = compute_aggregates(μ, hh)
A, L
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(Array(1.8594263, dtype=float32), Array(1.0781993, dtype=float32))

The capital stock in this economy equals 𝐴 − 𝐷.

D = 0
K = A - D

The firm’s optimality conditions imply interest rate 𝑟 and wage rate 𝑤.
KL_to_r(K, L, firm), KL_to_w(K, L, firm)

(Array(0.20485441, dtype=float32), Array(0.8243317, dtype=float32))

The implied prices (𝑟, 𝑤) differ from our guesses, so we must update our guesses and iterate until we find a fixed point.

This is our outer loop.

@jax.jit
def find_ss(household, firm, pol_target, Q, tol=1e-6, verbose=False):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household
J = j_grid.size
num_state = a_grid.size * γ_grid.size

D, G, δ = pol_target

# Initial guesses of prices
r, w = 0.05, 1.

# Initial guess of τ
τ = 0.15

def cond_fn(state):
"The convergence criteria."

V, σ, μ, K, L, r, w, τ, D, G, δ, r_old, w_old = state

error = (r - r_old) ** 2 + (w - w_old) ** 2

return error > tol

def body_fn(state):
"The main body of iteration."

V, σ, μ, K, L, r, w, τ, D, G, δ, r_old, w_old = state
r_old, w_old, τ_old = r, w, τ

# Household optimal decisions and values
V, σ = backwards_opt([r, w], [τ, δ], hh, Q)

# Compute the stationary distribution
μ = popu_dist(σ, hh, Q)

# Compute aggregates
A, L = compute_aggregates(μ, hh)
K = A - D

(continues on next page)
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# Update prices
r, w = KL_to_r(K, L, firm), KL_to_w(K, L, firm)

# Find τ
D_next = D
τ = find_τ([D, D_next, G, δ],

[r, w],
[K, L])

r = (r + r_old) / 2
w = (w + w_old) / 2

return V, σ, μ, K, L, r, w, τ, D, G, δ, r_old, w_old

# Initial state
V = jnp.empty((J, num_state), dtype=float)
σ = jnp.empty((J, num_state), dtype=int)
μ = jnp.empty((J, num_state), dtype=float)

K, L = 1., 1.
initial_state = (V, σ, μ, K, L, r, w, τ, D, G, δ, r-1, w-1)
V, σ, μ, K, L, r, w, τ, D, G, δ, _, _ = jax.lax.while_loop(

cond_fn, body_fn, initial_state)

return V, σ, μ, K, L, r, w, τ, D, G, δ

ss1 = find_ss(hh, firm, [0, 0.1, np.zeros(hh.j_grid.size)], Q, verbose=True)

Let’s time the computation

%time find_ss(hh, firm, [0, 0.1, np.zeros(hh.j_grid.size)], Q)[0].block_until_ready();

CPU times: user 668 ms, sys: 14.7 ms, total: 683 ms
Wall time: 747 ms

hh_out_ss1 = ss1[:3]
quant_ss1 = ss1[3:5]
price_ss1 = ss1[5:7]
policy_ss1 = ss1[7:11]

# V, σ, μ
V_ss1, σ_ss1, μ_ss1 = hh_out_ss1

# K, L
K_ss1, L_ss1 = quant_ss1

K_ss1, L_ss1

(Array(6.6221957, dtype=float32), Array(1.0781994, dtype=float32))

# r, w
r_ss1, w_ss1 = price_ss1

r_ss1, w_ss1
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(Array(0.08430456, dtype=float32), Array(1.2056923, dtype=float32))

# τ, D, G, δ
τ_ss1, D_ss1, G_ss1, δ_ss1 = policy_ss1

τ_ss1, D_ss1, G_ss1, δ_ss1

(Array(0.05380344, dtype=float32),
Array(0, dtype=int32, weak_type=True),
Array(0.1, dtype=float32, weak_type=True),
Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], ␣

↪dtype=float32))

75.12 Transition dynamics

We compute transition dynamics using a function path_iteration.

In an outer loop, we iterate over guesses of prices and taxes.

In an inner loop, we compute the optimal consumption and saving choices by each cohort 𝑗 in each time 𝑡, then find the
implied evolution of the joint distribution of assets and productivities.

We then update our guesses of prices and taxes given the aggregate labor supply and capital stock in the economy.

We use solve_backwards to solve for optimal saving choices given price and tax sequences and simu-
late_forward to compute the evolution of the joint distributions.

We require two steady states as inputs: the initial steady state to provide the initial condition for simulate_forward,
and the final steady state to provide continuation values for solve_backwards.

@jax.jit
def bellman_operator(prices, taxes, V_next, household, Q):

r, w = prices
τ, δ = taxes

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household
J = j_grid.size

num_state = a_grid.size * γ_grid.size
num_action = a_grid.size

def bellman_operator_j(j):
Rj = populate_R(j, r, w, τ, δ, household)
vals = Rj + β * Q.dot(V_next[j+1])
σ_j = jnp.argmax(vals, axis=1)
V_j = vals[jnp.arange(num_state), σ_j]

return V_j, σ_j

V, σ = jax.vmap(bellman_operator_j, (0,))(jnp.arange(J-1))

# The last life stage

(continues on next page)
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j = J-1
Rj = populate_R(j, r, w, τ, δ, household)
vals = Rj + β * Q.dot(VJ)
σ = jnp.concatenate([σ, jnp.argmax(vals, axis=1)[jnp.newaxis]])
V = jnp.concatenate([V, vals[jnp.arange(num_state), σ[j]][jnp.newaxis]])

return V, σ

@jax.jit
def solve_backwards(V_ss2, σ_ss2, household, firm, price_seq, pol_seq, Q):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household
J = j_grid.size
num_state = a_grid.size * γ_grid.size

τ_seq, D_seq, G_seq, δ_seq = pol_seq
r_seq, w_seq = price_seq

T = r_seq.size

def solve_backwards_t(V_next, t):

prices = (r_seq[t], w_seq[t])
taxes = (τ_seq[t], δ_seq[t])
V, σ = bellman_operator(prices, taxes, V_next, household, Q)

return V, (V,σ)

ts = jnp.arange(T-2, -1, -1)
init_V = V_ss2

_, outputs = jax.lax.scan(solve_backwards_t, init_V, ts)
V_seq, σ_seq = outputs
V_seq = V_seq[::-1]
σ_seq = σ_seq[::-1]

V_seq = jnp.concatenate([V_seq, V_ss2[jnp.newaxis]])
σ_seq = jnp.concatenate([σ_seq, σ_ss2[jnp.newaxis]])

return V_seq, σ_seq

@jax.jit
def population_evolution(σt, μt, household, Q):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

J = hh.j_grid.size
num_state = hh.a_grid.size * hh.γ_grid.size

def population_evolution_j(j):

Qσ = Q[jnp.arange(num_state), σt[j]]
μ_next = μt[j] @ Qσ

return μ_next

(continues on next page)
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μ_next = jax.vmap(population_evolution_j, (0,))(jnp.arange(J-1))
μ_next = jnp.concatenate([init_μ[jnp.newaxis], μ_next])

return μ_next

@jax.jit
def simulate_forwards(σ_seq, D_seq, μ_ss1, K_ss1, L_ss1, household, Q):

j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household

J, num_state = μ_ss1.shape

T = σ_seq.shape[0]

def simulate_forwards_t(μ, t):

μ_next = population_evolution(σ_seq[t], μ, household, Q)

A, L = compute_aggregates(μ_next, household)
K = A - D_seq[t+1]

return μ_next, (μ_next, K, L)

ts = jnp.arange(T-1)
init_μ = μ_ss1

_, outputs = jax.lax.scan(simulate_forwards_t, init_μ, ts)
μ_seq, K_seq, L_seq = outputs

μ_seq = jnp.concatenate([μ_ss1[jnp.newaxis], μ_seq])
K_seq = jnp.concatenate([K_ss1[jnp.newaxis], K_seq])
L_seq = jnp.concatenate([L_ss1[jnp.newaxis], L_seq])

return μ_seq, K_seq, L_seq

The following algorithm describes the path iteration procedure:

Algorithm 75.12.1 (AK-Aiyagari transition path algorithm)

Inputs Given initial steady state 𝑠𝑠1, final steady state 𝑠𝑠2, time horizon 𝑇 , and policy sequences (𝐷, 𝐺, 𝛿)
Output Compute equilibrium transition paths for value functions 𝑉 , policy functions 𝜎, distributions 𝜇, and prices
(𝑟, 𝑤, 𝜏)

1. Initialize from steady states:

• (𝑉1, 𝜎1, 𝜇1) ← 𝑠𝑠1 (Initial steady state)

• (𝑉2, 𝜎2, 𝜇2) ← 𝑠𝑠2 (Final steady state)

• (𝑟, 𝑤, 𝜏) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑟𝑖𝑐𝑒𝑠(𝑇 ) (Linear interpolation)

• 𝑒𝑟𝑟𝑜𝑟 ← ∞, 𝑖 ← 0
2. While 𝑒𝑟𝑟𝑜𝑟 > 𝜀 or 𝑖 ≤ 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟:

1. 𝑖 ← 𝑖 + 1
2. (𝑟old, 𝑤old, 𝜏old) ← (𝑟, 𝑤, 𝜏)
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3. Backward induction: For 𝑡 ∈ [𝑇 , 1]:
• For 𝑗 ∈ [0, 𝐽 − 1] (age groups):

– 𝑉 [𝑡, 𝑗] ← max𝑎′{𝑢(𝑐) + 𝛽𝔼[𝑉 [𝑡 + 1, 𝑗 + 1]]}
– 𝜎[𝑡, 𝑗] ← argmax𝑎′{𝑢(𝑐) + 𝛽𝔼[𝑉 [𝑡 + 1, 𝑗 + 1]]}

4. Forward simulation: For 𝑡 ∈ [1, 𝑇 ]:
• 𝜇[𝑡] ← Γ(𝜎[𝑡], 𝜇[𝑡 − 1]) (Distribution evolution)

• 𝐾[𝑡] ← ∫ 𝑎 𝑑𝜇[𝑡] − 𝐷[𝑡] (Aggregate capital)
• 𝐿[𝑡] ← ∫ 𝑙(𝑗)𝛾 𝑑𝜇[𝑡] (Aggregate labor)
• 𝑟[𝑡] ← 𝛼𝑍(𝐾[𝑡]/𝐿[𝑡])𝛼−1 (Interest rate)

• 𝑤[𝑡] ← (1 − 𝛼)𝑍(𝐾[𝑡]/𝐿[𝑡])𝛼 (Wage rate)

• 𝜏[𝑡] ← 𝑠𝑜𝑙𝑣𝑒_𝑏𝑢𝑑𝑔𝑒𝑡(𝑟[𝑡], 𝑤[𝑡], 𝐾[𝑡], 𝐿[𝑡], 𝐷[𝑡], 𝐺[𝑡])
5. Compute convergence metric:

• 𝑒𝑟𝑟𝑜𝑟 ← ‖𝑟 − 𝑟old‖ + ‖𝑤 − 𝑤old‖ + ‖𝜏 − 𝜏old‖
6. Update prices with dampening:

• 𝑟 ← 𝜆𝑟 + (1 − 𝜆)𝑟old
• 𝑤 ← 𝜆𝑤 + (1 − 𝜆)𝑤old

• 𝜏 ← 𝜆𝜏 + (1 − 𝜆)𝜏old
3. Return (𝑉 , 𝜎, 𝜇, 𝑟, 𝑤, 𝜏)

def path_iteration(ss1, ss2, pol_target, household, firm, Q, tol=1e-4, verbose=False):

# Starting point: initial steady state
V_ss1, σ_ss1, μ_ss1 = ss1[:3]
K_ss1, L_ss1 = ss1[3:5]
r_ss1, w_ss1 = ss1[5:7]
τ_ss1, D_ss1, G_ss1, δ_ss1 = ss1[7:11]

# Ending point: converging new steady state
V_ss2, σ_ss2, μ_ss2 = ss2[:3]
K_ss2, L_ss2 = ss2[3:5]
r_ss2, w_ss2 = ss2[5:7]
τ_ss2, D_ss2, G_ss2, δ_ss2 = ss2[7:11]

# The given policies: D, G, δ
D_seq, G_seq, δ_seq = pol_target
T = G_seq.shape[0]

# Initial guesses of prices
r_seq = jnp.linspace(0, 1, T) * (r_ss2 - r_ss1) + r_ss1
w_seq = jnp.linspace(0, 1, T) * (w_ss2 - w_ss1) + w_ss1

# Initial guess of policy
τ_seq = jnp.linspace(0, 1, T) * (τ_ss2 - τ_ss1) + τ_ss1

error = 1
num_iter = 0

(continues on next page)
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if verbose:
fig, axs = plt.subplots(1, 3, figsize=(14, 3))
axs[0].plot(jnp.arange(T), r_seq)
axs[1].plot(jnp.arange(T), w_seq)
axs[2].plot(jnp.arange(T), τ_seq, label=f'iter {num_iter}')

while error > tol:
# Repeat until finding the fixed point

r_old, w_old, τ_old = r_seq, w_seq, τ_seq

pol_seq = (τ_seq, D_seq, G_seq, δ_seq)
price_seq = (r_seq, w_seq)

# Solve optimal policies backwards
V_seq, σ_seq = solve_backwards(

V_ss2, σ_ss2, hh, firm, price_seq, pol_seq, Q)

# Compute population evolution forwards
μ_seq, K_seq, L_seq = simulate_forwards(

σ_seq, D_seq, μ_ss1, K_ss1, L_ss1, household, Q)

# Update prices by aggregate capital and labor supply
r_seq = KL_to_r(K_seq, L_seq, firm)
w_seq = KL_to_w(K_seq, L_seq, firm)

# Find taxes that balance the government budget constraint
τ_seq = find_τ([D_seq[:-1], D_seq[1:], G_seq, δ_seq],

[r_seq, w_seq],
[K_seq, L_seq])

# Distance between new and old guesses
error = jnp.sum((r_old - r_seq) ** 2) + \

jnp.sum((w_old - w_seq) ** 2) + \
jnp.sum((τ_old - τ_seq) ** 2)

num_iter += 1
if verbose:

print(f"Iteration {num_iter:3d}: error = {error:.6e}")
axs[0].plot(jnp.arange(T), r_seq)
axs[1].plot(jnp.arange(T), w_seq)
axs[2].plot(jnp.arange(T), τ_seq, label=f'iter {num_iter}')

r_seq = (r_seq + r_old) / 2
w_seq = (w_seq + w_old) / 2
τ_seq = (τ_seq + τ_old) / 2

if verbose:
axs[0].set_xlabel('t')
axs[1].set_xlabel('t')
axs[2].set_xlabel('t')

axs[0].set_title('r')
axs[1].set_title('w')
axs[2].set_title('τ')

(continues on next page)
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axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5))

return V_seq, σ_seq, μ_seq, K_seq, L_seq, r_seq, w_seq, \
τ_seq, D_seq, G_seq, δ_seq

We can now compute equilibrium transitions that are ignited by fiscal policy reforms.

75.13 Experiment 1: Immediate tax cut

Assume that the government cuts the tax rate and immediately balances its budget by issuing debt.

At 𝑡 = 0, the government unexpectedly announces an immediate tax cut.
From 𝑡 = 0 to 19, the government issues debt, so debt 𝐷𝑡+1 increases linearly for 20 periods.
The government sets a target for its new debt level 𝐷20 = 𝐷0 + 1 = 𝐷̄ + 1.
Government spending ̄𝐺 and transfers ̄𝛿𝑗 remain constant.

The government adjusts 𝜏𝑡 to balance the budget along the transition.

We want to compute the equilibrium transition path.

Our first step is to prepare appropriate policy variable arrays D_seq, G_seq, δ_seq

We’ll compute a τ_seq that balances government budgets.

T = 150

D_seq = jnp.ones(T+1) * D_ss1
D_seq = D_seq.at[:21].set(D_ss1 + jnp.linspace(0, 1, 21))
D_seq = D_seq.at[21:].set(D_seq[20])

G_seq = jnp.ones(T) * G_ss1

δ_seq = jnp.repeat(δ_ss1, T).reshape((T, δ_ss1.size))

In order to iterate the path, we need to first find its destination, which is the new steady state under the new fiscal policy.

ss2 = find_ss(hh, firm, [D_seq[-1], G_seq[-1], δ_seq[-1]], Q)

We can use path_iteration to find equilibrium transition dynamics.

Setting the key argument verbose=True tells the function path_iteration to display convergence information.

paths = path_iteration(ss1, ss2, [D_seq, G_seq, δ_seq], hh, firm, Q, verbose=True)

Iteration 1: error = 2.075169e-01

Iteration 2: error = 3.733911e-02

Iteration 3: error = 7.672485e-03

Iteration 4: error = 1.819943e-03
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Iteration 5: error = 4.734877e-04

Iteration 6: error = 1.216737e-04

Iteration 7: error = 2.955517e-05

Having successfully computed transition dynamics, let’s study them.

V_seq, σ_seq, μ_seq = paths[:3]
K_seq, L_seq = paths[3:5]
r_seq, w_seq = paths[5:7]
τ_seq, D_seq, G_seq, δ_seq = paths[7:11]

ap = hh.a_grid[σ_seq[0]]

j = jnp.reshape(hh.j_grid, (hh.j_grid.size, 1, 1))
lj = l(j)
a = jnp.reshape(hh.a_grid, (1, hh.a_grid.size, 1))
γ = jnp.reshape(hh.γ_grid, (1, 1, hh.γ_grid.size))

t = 0

ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a \
+ (1-τ_seq[t]) * w_seq[t] * lj * γ - δ

inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

c_mean0 = (c * μ_seq[t]).sum(axis=1)

We care about how the policy change affects consumption across cohorts and across time.

We can study age-specific average consumption levels.

for t in [1, 10, 20, 50, 149]:

ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a + (1-τ_seq[t]) * w_seq[t] * lj * γ - δ
inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

(continues on next page)
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c = inc - ap

c_mean = (c * μ_seq[t]).sum(axis=1)

plt.plot(range(hh.j_grid.size), c_mean-c_mean0, label=f't={t}')

plt.legend()
plt.xlabel(r'j')
plt.title(r'$\Delta mean(C(j))$')
plt.show()

To summarize the transition, we can plot paths as we did in Transitions in an Overlapping Generations Model.

But unlike the setup in that two-period lived overlapping generations model, we no longer have representative old and
young agents.

• now we have 50 cohorts of different ages at each time

To proceed, we construct two age groups of equal size – young and old.

• at age 25, someone moves from being young to becoming old

ap = hh.a_grid[σ_ss1]
J = hh.j_grid.size
δ = δ_ss1.reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_ss1*(1-τ_ss1)) * a + (1-τ_ss1) * w_ss1 * lj * γ - δ

(continues on next page)
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inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

Cy_ss1 = (c[:J//2] * μ_ss1[:J//2]).sum() / (J // 2)
Co_ss1 = (c[J//2:] * μ_ss1[J//2:]).sum() / (J // 2)

T = σ_seq.shape[0]
J = σ_seq.shape[1]

Cy_seq = np.empty(T)
Co_seq = np.empty(T)

for t in range(T):
ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a + (1-τ_seq[t]) * w_seq[t] * lj * γ - δ
inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

Cy_seq[t] = (c[:J//2] * μ_seq[t, :J//2]).sum() / (J // 2)
Co_seq[t] = (c[J//2:] * μ_seq[t, J//2:]).sum() / (J // 2)

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# Cy (j=0-24)
axs[0, 0].plot(Cy_seq)
axs[0, 0].hlines(Cy_ss1, 0, T, color='r', linestyle='--')
axs[0, 0].set_title('Cy (j < 25)')

# Cy (j=25-49)
axs[0, 1].plot(Co_seq)
axs[0, 1].hlines(Co_ss1, 0, T, color='r', linestyle='--')
axs[0, 1].set_title(r'Co (j $\geq$ 25)')

names = ['K', 'L', 'r', 'w', 'τ', 'D', 'G']
for i in range(len(names)):

i_var = i + 3
i_axes = i + 2

row_i = i_axes // 3
col_i = i_axes % 3

axs[row_i, col_i].plot(paths[i_var])
axs[row_i, col_i].hlines(ss1[i_var], 0, T, color='r', linestyle='--')
axs[row_i, col_i].set_title(names[i])

# ylims
axs[1, 0].set_ylim([ss1[4]-0.1, ss1[4]+0.1])
axs[2, 2].set_ylim([ss1[9]-0.1, ss1[9]+0.1])

plt.show()
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Now let’s compute the mean and variance of consumption conditional on age at each time 𝑡.
Cmean_seq = np.empty((T, J))
Cvar_seq = np.empty((T, J))

for t in range(T):
ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a + (1-τ_seq[t]) * w_seq[t] * lj * γ - δ
inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

Cmean_seq[t] = (c * μ_seq[t]).sum(axis=1)
Cvar_seq[t] = ((c - Cmean_seq[t].reshape((J, 1))) ** 2 * μ_seq[t]).sum(axis=1)

J_seq, T_range = np.meshgrid(np.arange(J), np.arange(T))

fig = plt.figure(figsize=[20, 20])

# Plot the consumption mean over age and time
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(T_range, J_seq, Cmean_seq, rstride=1, cstride=1,

cmap='viridis', edgecolor='none')
ax1.set_title(r"Mean of consumption")
ax1.set_xlabel(r"t")

(continues on next page)
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ax1.set_ylabel(r"j")

# plot the consumption variance over age and time
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot_surface(T_range, J_seq, Cvar_seq, rstride=1, cstride=1,

cmap='viridis', edgecolor='none')
ax2.set_title(r"Variance of consumption")
ax2.set_xlabel(r"t")
ax2.set_ylabel(r"j")

plt.show()

75.14 Experiment 2: Preannounced tax cut

Now the government announces a permanent tax rate cut at time 0 but implements it only after 20 periods.
We will use the same key toolkit path_iteration.

We must specify D_seq appropriately.

T = 150

D_t = 20
D_seq = jnp.ones(T+1) * D_ss1
D_seq = D_seq.at[D_t:D_t+21].set(D_ss1 + jnp.linspace(0, 1, 21))
D_seq = D_seq.at[D_t+21:].set(D_seq[D_t+20])

G_seq = jnp.ones(T) * G_ss1

δ_seq = jnp.repeat(δ_ss1, T).reshape((T, δ_ss1.size))

ss2 = find_ss(hh, firm, [D_seq[-1], G_seq[-1], δ_seq[-1]], Q)
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paths = path_iteration(ss1, ss2, [D_seq, G_seq, δ_seq],
hh, firm, Q, verbose=True)

Iteration 1: error = 1.300627e-01

Iteration 2: error = 2.349870e-02

Iteration 3: error = 4.931191e-03

Iteration 4: error = 1.196040e-03

Iteration 5: error = 3.122933e-04

Iteration 6: error = 7.865898e-05

V_seq, σ_seq, μ_seq = paths[:3]
K_seq, L_seq = paths[3:5]
r_seq, w_seq = paths[5:7]
τ_seq, D_seq, G_seq, δ_seq = paths[7:11]

T = σ_seq.shape[0]
J = σ_seq.shape[1]

Cy_seq = np.empty(T)
Co_seq = np.empty(T)

for t in range(T):
ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a + (1-τ_seq[t]) * w_seq[t] * lj * γ - δ
inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

Cy_seq[t] = (c[:J//2] * μ_seq[t, :J//2]).sum() / (J // 2)
Co_seq[t] = (c[J//2:] * μ_seq[t, J//2:]).sum() / (J // 2)

Below we plot the transition paths of the economy.

fig, axs = plt.subplots(3, 3, figsize=(14, 10))

# Cy (j=0-24)

(continues on next page)
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axs[0, 0].plot(Cy_seq)
axs[0, 0].hlines(Cy_ss1, 0, T, color='r', linestyle='--')
axs[0, 0].set_title('Cy (j < 25)')

# Cy (j=25-49)
axs[0, 1].plot(Co_seq)
axs[0, 1].hlines(Co_ss1, 0, T, color='r', linestyle='--')
axs[0, 1].set_title(r'Co (j $\geq$ 25)')

names = ['K', 'L', 'r', 'w', 'τ', 'D', 'G']
for i in range(len(names)):

i_var = i + 3
i_axes = i + 2

row_i = i_axes // 3
col_i = i_axes % 3

axs[row_i, col_i].plot(paths[i_var])
axs[row_i, col_i].hlines(ss1[i_var], 0, T, color='r', linestyle='--')
axs[row_i, col_i].set_title(names[i])

# ylims
axs[1, 0].set_ylim([ss1[4]-0.1, ss1[4]+0.1])
axs[2, 2].set_ylim([ss1[9]-0.1, ss1[9]+0.1])

plt.show()
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Notice how prices and quantities respond immediately to the anticipated tax rate increase.

Let’s zoom in on how the capital stock responds.

# K
i_var = 3

plt.plot(paths[i_var][:25])
plt.hlines(ss1[i_var], 0, 25, color='r', linestyle='--')
plt.vlines(20, 6, 7, color='k', linestyle='--', linewidth=0.5)
plt.text(17, 6.56, r'tax cut')
plt.ylim([6.52, 6.65])
plt.title("K")
plt.xlabel("t")
plt.show()

After the tax cut policy is implemented at 𝑡 = 20, the aggregate capital will decrease because of the crowding out effect.
Having foreseen an increase in the interest rate, individuals a few periods before 𝑡 = 20 start saving more.
Because that increases the capital, a temporary decrease in the interest rate ensues.

For agents living in much earlier periods, that lower interest rate causes them to save less.

We can also plot evolutions of means and variances of consumption by different cohorts along a transition path.

Cmean_seq = np.empty((T, J))
Cvar_seq = np.empty((T, J))

(continues on next page)
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(continued from previous page)

for t in range(T):
ap = hh.a_grid[σ_seq[t]]
δ = δ_seq[t].reshape((hh.j_grid.size, 1, 1))

inc = (1 + r_seq[t]*(1-τ_seq[t])) * a + (1-τ_seq[t]) * w_seq[t] * lj * γ - δ
inc = inc.reshape((hh.j_grid.size, hh.a_grid.size * hh.γ_grid.size))

c = inc - ap

Cmean_seq[t] = (c * μ_seq[t]).sum(axis=1)
Cvar_seq[t] = (

(c - Cmean_seq[t].reshape((J, 1))) ** 2 * μ_seq[t]).sum(axis=1)

J_seq, T_range = np.meshgrid(np.arange(J), np.arange(T))

fig = plt.figure(figsize=[20, 20])

# Plot the consumption mean over age and time
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(T_range, J_seq, Cmean_seq, rstride=1, cstride=1,

cmap='viridis', edgecolor='none')
ax1.set_title(r"Mean of consumption")
ax1.set_xlabel(r"t")
ax1.set_ylabel(r"j")

# Plot the consumption variance over age and time
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot_surface(T_range, J_seq, Cvar_seq, rstride=1, cstride=1,

cmap='viridis', edgecolor='none')
ax2.set_title(r"Variance of consumption")
ax2.set_xlabel(r"t")
ax2.set_ylabel(r"j")

plt.show()
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CHAPTER

SEVENTYSIX

ASSET PRICING: FINITE STATE MODELS

Contents

• Asset Pricing: Finite State Models

– Overview

– Pricing Models

– Prices in the Risk-Neutral Case

– Risk Aversion and Asset Prices

– Exercises

“A little knowledge of geometric series goes a long way” – Robert E. Lucas, Jr.

“Asset pricing is all about covariances” – Lars Peter Hansen

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

76.1 Overview

An asset is a claim on one or more future payoffs.

The spot price of an asset depends primarily on

• the anticipated income stream

• attitudes about risk

• rates of time preference

In this lecture, we consider some standard pricing models and dividend stream specifications.

We study how prices and dividend-price ratios respond in these different scenarios.

We also look at creating and pricing derivative assets that repackage income streams.

Key tools for the lecture are

• Markov processses

• formulas for predicting future values of functions of a Markov state
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• a formula for predicting the discounted sum of future values of a Markov state

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from numpy.linalg import eigvals, solve

76.2 Pricing Models

Let {𝑑𝑡}𝑡≥0 be a stream of dividends

• A time-𝑡 cum-dividend asset is a claim to the stream 𝑑𝑡, 𝑑𝑡+1, ….

• A time-𝑡 ex-dividend asset is a claim to the stream 𝑑𝑡+1, 𝑑𝑡+2, ….

Let’s look at some equations that we expect to hold for prices of assets under ex-dividend contracts (we will consider
cum-dividend pricing in the exercises).

76.2.1 Risk-Neutral Pricing

Our first scenario is risk-neutral pricing.

Let 𝛽 = 1/(1 + 𝜌) be an intertemporal discount factor, where 𝜌 is the rate at which agents discount the future.

The basic risk-neutral asset pricing equation for pricing one unit of an ex-dividend asset is

𝑝𝑡 = 𝛽𝔼𝑡[𝑑𝑡+1 + 𝑝𝑡+1] (76.1)

This is a simple “cost equals expected benefit” relationship.

Here 𝔼𝑡[𝑦] denotes the best forecast of 𝑦, conditioned on information available at time 𝑡.
More precisely, 𝔼𝑡[𝑦] is the mathematical expectation of 𝑦 conditional on information available at time 𝑡.

76.2.2 Pricing with Random Discount Factor

What happens if for some reason traders discount payouts differently depending on the state of the world?

Michael Harrison and David Kreps [Harrison and Kreps, 1979] and Lars Peter Hansen and Scott Richard [Hansen and
Richard, 1987] showed that in quite general settings the price of an ex-dividend asset obeys

𝑝𝑡 = 𝔼𝑡 [𝑚𝑡+1(𝑑𝑡+1 + 𝑝𝑡+1)] (76.2)

for some stochastic discount factor 𝑚𝑡+1.

Here the fixed discount factor 𝛽 in (76.1) has been replaced by the random variable 𝑚𝑡+1.

How anticipated future payoffs are evaluated now depends on statistical properties of 𝑚𝑡+1.

The stochastic discount factor can be specified to capture the idea that assets that tend to have good payoffs in bad states
of the world are valued more highly than other assets whose payoffs don’t behave that way.

This is because such assets pay well when funds are more urgently wanted.

We give examples of how the stochastic discount factor has been modeled below.
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76.2.3 Asset Pricing and Covariances

Recall that, from the definition of a conditional covariance cov𝑡(𝑥𝑡+1, 𝑦𝑡+1), we have

𝔼𝑡(𝑥𝑡+1𝑦𝑡+1) = cov𝑡(𝑥𝑡+1, 𝑦𝑡+1) + 𝔼𝑡𝑥𝑡+1𝔼𝑡𝑦𝑡+1 (76.3)

If we apply this definition to the asset pricing equation (76.2) we obtain

𝑝𝑡 = 𝔼𝑡𝑚𝑡+1𝔼𝑡(𝑑𝑡+1 + 𝑝𝑡+1) + cov𝑡(𝑚𝑡+1, 𝑑𝑡+1 + 𝑝𝑡+1) (76.4)

It is useful to regard equation (76.4) as a generalization of equation (76.1)

• In equation (76.1), the stochastic discount factor 𝑚𝑡+1 = 𝛽, a constant.
• In equation (76.1), the covariance term cov𝑡(𝑚𝑡+1, 𝑑𝑡+1 + 𝑝𝑡+1) is zero because 𝑚𝑡+1 = 𝛽.
• In equation (76.1), 𝔼𝑡𝑚𝑡+1 can be interpreted as the reciprocal of the one-period risk-free gross interest rate.

• When 𝑚𝑡+1 covaries more negatively with the payout 𝑝𝑡+1 + 𝑑𝑡+1, the price of the asset is lower.

Equation (76.4) asserts that the covariance of the stochastic discount factor with the one period payout 𝑑𝑡+1 + 𝑝𝑡+1 is an
important determinant of the price 𝑝𝑡.

We give examples of some models of stochastic discount factors that have been proposed later in this lecture and also in
a later lecture.

76.2.4 The Price-Dividend Ratio

Aside from prices, another quantity of interest is the price-dividend ratio 𝑣𝑡 ∶= 𝑝𝑡/𝑑𝑡.

Let’s write down an expression that this ratio should satisfy.

We can divide both sides of (76.2) by 𝑑𝑡 to get

𝑣𝑡 = 𝔼𝑡 [𝑚𝑡+1
𝑑𝑡+1
𝑑𝑡

(1 + 𝑣𝑡+1)] (76.5)

Below we’ll discuss the implication of this equation.

76.3 Prices in the Risk-Neutral Case

What can we say about price dynamics on the basis of the models described above?

The answer to this question depends on

1. the process we specify for dividends

2. the stochastic discount factor and how it correlates with dividends

For now we’ll study the risk-neutral case in which the stochastic discount factor is constant.

We’ll focus on how an asset price depends on a dividend process.
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76.3.1 Example 1: Constant Dividends

The simplest case is risk-neutral price of a constant, non-random dividend stream 𝑑𝑡 = 𝑑 > 0.
Removing the expectation from (76.1) and iterating forward gives

𝑝𝑡 = 𝛽(𝑑 + 𝑝𝑡+1)
= 𝛽(𝑑 + 𝛽(𝑑 + 𝑝𝑡+2))

⋮
= 𝛽(𝑑 + 𝛽𝑑 + 𝛽2𝑑 + ⋯ + 𝛽𝑘−2𝑑 + 𝛽𝑘−1𝑝𝑡+𝑘)

If lim𝑘→+∞ 𝛽𝑘−1𝑝𝑡+𝑘 = 0, this sequence converges to

̄𝑝 ∶= 𝛽𝑑
1 − 𝛽 (76.6)

This is the equilibrium price in the constant dividend case.

Indeed, simple algebra shows that setting 𝑝𝑡 = ̄𝑝 for all 𝑡 satisfies the difference equation 𝑝𝑡 = 𝛽(𝑑 + 𝑝𝑡+1).

76.3.2 Example 2: Dividends with Deterministic Growth Paths

Consider a growing, non-random dividend process 𝑑𝑡+1 = 𝑔𝑑𝑡 where 0 < 𝑔𝛽 < 1.
While prices are not usually constant when dividends grow over time, a price dividend-ratio can be.

If we guess this, substituting 𝑣𝑡 = 𝑣 into (76.5) as well as our other assumptions, we get 𝑣 = 𝛽𝑔(1 + 𝑣).
Since 𝛽𝑔 < 1, we have a unique positive solution:

𝑣 = 𝛽𝑔
1 − 𝛽𝑔

The price is then

𝑝𝑡 = 𝛽𝑔
1 − 𝛽𝑔 𝑑𝑡

If, in this example, we take 𝑔 = 1 + 𝜅 and let 𝜌 ∶= 1/𝛽 − 1, then the price becomes

𝑝𝑡 = 1 + 𝜅
𝜌 − 𝜅𝑑𝑡

This is called the Gordon formula.

76.3.3 Example 3: Markov Growth, Risk-Neutral Pricing

Next, we consider a dividend process

𝑑𝑡+1 = 𝑔𝑡+1𝑑𝑡 (76.7)

The stochastic growth factor {𝑔𝑡} is given by

𝑔𝑡 = 𝑔(𝑋𝑡), 𝑡 = 1, 2, …

where
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1. {𝑋𝑡} is a finite Markov chain with state space 𝑆 and transition probabilities

𝑃(𝑥, 𝑦) ∶= ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} (𝑥, 𝑦 ∈ 𝑆)

2. 𝑔 is a given function on 𝑆 taking nonnegative values

You can think of

• 𝑆 as 𝑛 possible “states of the world” and 𝑋𝑡 as the current state.

• 𝑔 as a function that maps a given state 𝑋𝑡 into a growth of dividends factor 𝑔𝑡 = 𝑔(𝑋𝑡).
• ln 𝑔𝑡 = ln(𝑑𝑡+1/𝑑𝑡) is the growth rate of dividends.

(For a refresher on notation and theory for finite Markov chains see this lecture)

The next figure shows a simulation, where

• {𝑋𝑡} evolves as a discretized AR1 process produced using Tauchen’s method.

• 𝑔𝑡 = exp(𝑋𝑡), so that ln 𝑔𝑡 = 𝑋𝑡 is the growth rate.

n = 7
mc = qe.tauchen(n, 0.96, 0.25)
sim_length = 80

x_series = mc.simulate(sim_length, init=np.median(mc.state_values))
g_series = np.exp(x_series)
d_series = np.cumprod(g_series) # Assumes d_0 = 1

series = [x_series, g_series, d_series, np.log(d_series)]
labels = ['$X_t$', '$g_t$', '$d_t$', r'$\log \, d_t$']

fig, axes = plt.subplots(2, 2)
for ax, s, label in zip(axes.flatten(), series, labels):

ax.plot(s, 'b-', lw=2, label=label)
ax.legend(loc='upper left', frameon=False)

plt.tight_layout()
plt.show()
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Pricing Formula

To obtain asset prices in this setting, let’s adapt our analysis from the case of deterministic growth.

In that case, we found that 𝑣 is constant.
This encourages us to guess that, in the current case, 𝑣𝑡 is a fixed function of the state 𝑋𝑡.

We seek a function 𝑣 such that the price-dividend ratio satisfies 𝑣𝑡 = 𝑣(𝑋𝑡).
We can substitute this guess into (76.5) to get

𝑣(𝑋𝑡) = 𝛽𝔼𝑡[𝑔(𝑋𝑡+1)(1 + 𝑣(𝑋𝑡+1))]
If we condition on 𝑋𝑡 = 𝑥, this becomes

𝑣(𝑥) = 𝛽 ∑
𝑦∈𝑆

𝑔(𝑦)(1 + 𝑣(𝑦))𝑃 (𝑥, 𝑦)

or

𝑣(𝑥) = 𝛽 ∑
𝑦∈𝑆

𝐾(𝑥, 𝑦)(1 + 𝑣(𝑦)) where 𝐾(𝑥, 𝑦) ∶= 𝑔(𝑦)𝑃 (𝑥, 𝑦) (76.8)

Suppose that there are 𝑛 possible states 𝑥1, … , 𝑥𝑛.

We can then think of (76.8) as 𝑛 stacked equations, one for each state, and write it in matrix form as

𝑣 = 𝛽𝐾(𝟙 + 𝑣) (76.9)

Here
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• 𝑣 is understood to be the column vector (𝑣(𝑥1), … , 𝑣(𝑥𝑛))′.

• 𝐾 is the matrix (𝐾(𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑛.

• 𝟙 is a column vector of ones.

When does equation (76.9) have a unique solution?

From the Neumann series lemma and Gelfand’s formula, equation (76.9) has a unique solution when 𝛽𝐾 has spectral
radius strictly less than one.

Thus, we require that the eigenvalues of 𝐾 be strictly less than 𝛽−1 in modulus.

The solution is then

𝑣 = (𝐼 − 𝛽𝐾)−1𝛽𝐾𝟙 (76.10)

76.3.4 Code

Let’s calculate and plot the price-dividend ratio at some parameters.

As before, we’ll generate {𝑋𝑡} as a discretized AR1 process and set 𝑔𝑡 = exp(𝑋𝑡).
Here’s the code, including a test of the spectral radius condition

n = 25 # Size of state space
β = 0.9
mc = qe.tauchen(n, 0.96, 0.02)

K = mc.P * np.exp(mc.state_values)

warning_message = "Spectral radius condition fails"
assert np.max(np.abs(eigvals(K))) < 1 / β, warning_message

I = np.identity(n)
v = solve(I - β * K, β * K @ np.ones(n))

fig, ax = plt.subplots()
ax.plot(mc.state_values, v, 'g-o', lw=2, alpha=0.7, label='$v$')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper left')
plt.show()
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Why does the price-dividend ratio increase with the state?

The reason is that this Markov process is positively correlated, so high current states suggest high future states.

Moreover, dividend growth is increasing in the state.

The anticipation of high future dividend growth leads to a high price-dividend ratio.

76.4 Risk Aversion and Asset Prices

Now let’s turn to the case where agents are risk averse.

We’ll price several distinct assets, including

• An endowment stream

• A consol (a type of bond issued by the UK government in the 19th century)

• Call options on a consol
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76.4.1 Pricing a Lucas Tree

Let’s start with a version of the celebrated asset pricing model of Robert E. Lucas, Jr. [Lucas, 1978].

Lucas considered an abstract pure exchange economy with these features:

• a single non-storable consumption good

• a Markov process that governs the total amount of the consumption good available each period

• a single tree that each period yields fruit that equals the total amount of consumption available to the economy

• a competitive market in shares in the tree that entitles their owners to corresponding shares of the dividend stream,
i.e., the fruit stream, yielded by the tree

• a representative consumer who in a competitive equilibrium

– consumes the economy’s entire endowment each period

– owns 100 percent of the shares in the tree

As in [Lucas, 1978], we suppose that the stochastic discount factor takes the form

𝑚𝑡+1 = 𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

(76.11)

where 𝑢 is a concave utility function and 𝑐𝑡 is time 𝑡 consumption of a representative consumer.
(A derivation of this expression is given in a later lecture)

Assume the existence of an endowment that follows growth process (76.7).

The asset being priced is a claim on the endowment process, i.e., the Lucas tree described above.

Following [Lucas, 1978], we suppose that in equilibrium the representative consumer’s consumption equals the aggregate
endowment, so that 𝑑𝑡 = 𝑐𝑡 for all 𝑡.
For utility, we’ll assume the constant relative risk aversion (CRRA) specification

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾 with 𝛾 > 0 (76.12)

When 𝛾 = 1 we let 𝑢(𝑐) = ln 𝑐.
Inserting the CRRA specification into (76.11) and using 𝑐𝑡 = 𝑑𝑡 gives

𝑚𝑡+1 = 𝛽 (𝑐𝑡+1
𝑐𝑡

)
−𝛾

= 𝛽𝑔−𝛾
𝑡+1 (76.13)

Substituting this into (76.5) gives the price-dividend ratio formula

𝑣(𝑋𝑡) = 𝛽𝔼𝑡 [𝑔(𝑋𝑡+1)1−𝛾(1 + 𝑣(𝑋𝑡+1))] (76.14)

Conditioning on 𝑋𝑡 = 𝑥, we can write this as

𝑣(𝑥) = 𝛽 ∑
𝑦∈𝑆

𝑔(𝑦)1−𝛾(1 + 𝑣(𝑦))𝑃 (𝑥, 𝑦)

If we let

𝐽(𝑥, 𝑦) ∶= 𝑔(𝑦)1−𝛾𝑃(𝑥, 𝑦)

then we can rewrite equation (76.14) in vector form as

𝑣 = 𝛽𝐽(𝟙 + 𝑣)
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Assuming that the spectral radius of 𝐽 is strictly less than 𝛽−1, this equation has the unique solution

𝑣 = (𝐼 − 𝛽𝐽)−1𝛽𝐽𝟙 (76.15)

We will define a function tree_price to compute 𝑣 given parameters stored in the class AssetPriceModel

class AssetPriceModel:
"""
A class that stores the primitives of the asset pricing model.

Parameters
----------
β : scalar, float

Discount factor
mc : MarkovChain

Contains the transition matrix and set of state values for the state
process

γ : scalar(float)
Coefficient of risk aversion

g : callable
The function mapping states to growth rates

"""
def __init__(self, β=0.96, mc=None, γ=2.0, g=np.exp):

self.β, self.γ = β, γ
self.g = g

# A default process for the Markov chain
if mc is None:

self.ρ = 0.9
self.σ = 0.02
self.mc = qe.tauchen(n, self.ρ, self.σ)

else:
self.mc = mc

self.n = self.mc.P.shape[0]

def test_stability(self, Q):
"""
Stability test for a given matrix Q.
"""
sr = np.max(np.abs(eigvals(Q)))
if not sr < 1 / self.β:

msg = f"Spectral radius condition failed with radius = {sr}"
raise ValueError(msg)

def tree_price(ap):
"""
Computes the price-dividend ratio of the Lucas tree.

Parameters
----------
ap: AssetPriceModel

An instance of AssetPriceModel containing primitives

Returns
-------

(continues on next page)
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(continued from previous page)

v : array_like(float)
Lucas tree price-dividend ratio

"""
# Simplify names, set up matrices
β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
J = P * ap.g(y)**(1 - γ)

# Make sure that a unique solution exists
ap.test_stability(J)

# Compute v
I = np.identity(ap.n)
Ones = np.ones(ap.n)
v = solve(I - β * J, β * J @ Ones)

return v

Here’s a plot of 𝑣 as a function of the state for several values of 𝛾, with a positively correlated Markov process and
𝑔(𝑥) = exp(𝑥)
γs = [1.2, 1.4, 1.6, 1.8, 2.0]
ap = AssetPriceModel()
states = ap.mc.state_values

fig, ax = plt.subplots()

for γ in γs:
ap.γ = γ
v = tree_price(ap)
ax.plot(states, v, lw=2, alpha=0.6, label=rf"$\gamma = {γ}$")

ax.set_title('Price-dividend ratio as a function of the state')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()
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Notice that 𝑣 is decreasing in each case.
This is because, with a positively correlated state process, higher states indicate higher future consumption growth.

With the stochastic discount factor (76.13), higher growth decreases the discount factor, lowering the weight placed on
future dividends.

Special Cases

In the special case 𝛾 = 1, we have 𝐽 = 𝑃 .

Recalling that 𝑃 𝑖𝟙 = 𝟙 for all 𝑖 and applying Neumann’s geometric series lemma, we are led to

𝑣 = 𝛽(𝐼 − 𝛽𝑃)−1𝟙 = 𝛽
∞

∑
𝑖=0

𝛽𝑖𝑃 𝑖𝟙 = 𝛽 1
1 − 𝛽 𝟙

Thus, with log preferences, the price-dividend ratio for a Lucas tree is constant.

Alternatively, if 𝛾 = 0, then 𝐽 = 𝐾 and we recover the risk-neutral solution (76.10).

This is as expected, since 𝛾 = 0 implies 𝑢(𝑐) = 𝑐 (and hence agents are risk-neutral).
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76.4.2 A Risk-Free Consol

Consider the same pure exchange representative agent economy.

A risk-free consol promises to pay a constant amount 𝜁 > 0 each period.
Recycling notation, let 𝑝𝑡 now be the price of an ex-coupon claim to the consol.

An ex-coupon claim to the consol entitles an owner at the end of period 𝑡 to
• 𝜁 in period 𝑡 + 1, plus
• the right to sell the claim for 𝑝𝑡+1 next period

The price satisfies (76.2) with 𝑑𝑡 = 𝜁, or

𝑝𝑡 = 𝔼𝑡 [𝑚𝑡+1(𝜁 + 𝑝𝑡+1)]

With the stochastic discount factor (76.13), this becomes

𝑝𝑡 = 𝔼𝑡 [𝛽𝑔−𝛾
𝑡+1(𝜁 + 𝑝𝑡+1)] (76.16)

Guessing a solution of the form 𝑝𝑡 = 𝑝(𝑋𝑡) and conditioning on 𝑋𝑡 = 𝑥, we get

𝑝(𝑥) = 𝛽 ∑
𝑦∈𝑆

𝑔(𝑦)−𝛾(𝜁 + 𝑝(𝑦))𝑃 (𝑥, 𝑦)

Letting 𝑀(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦)𝑔(𝑦)−𝛾 and rewriting in vector notation yields the solution

𝑝 = (𝐼 − 𝛽𝑀)−1𝛽𝑀𝜁𝟙 (76.17)

The above is implemented in the function consol_price.

def consol_price(ap, ζ):
"""
Computes price of a consol bond with payoff ζ

Parameters
----------
ap: AssetPriceModel

An instance of AssetPriceModel containing primitives

ζ : scalar(float)
Coupon of the console

Returns
-------
p : array_like(float)

Console bond prices

"""
# Simplify names, set up matrices
β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
M = P * ap.g(y)**(- γ)

# Make sure that a unique solution exists
ap.test_stability(M)

# Compute price
I = np.identity(ap.n)

(continues on next page)
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(continued from previous page)

Ones = np.ones(ap.n)
p = solve(I - β * M, β * ζ * M @ Ones)

return p

76.4.3 Pricing an Option to Purchase the Consol

Let’s now price options of various maturities.

We’ll study an option that gives the owner the right to purchase a consol at a price 𝑝𝑆 .

An Infinite Horizon Call Option

We want to price an infinite horizon option to purchase a consol at a price 𝑝𝑆 .

The option entitles the owner at the beginning of a period either

1. to purchase the bond at price 𝑝𝑆 now, or

2. not to exercise the option to purchase the asset now but to retain the right to exercise it later

Thus, the owner either exercises the option now or chooses not to exercise and wait until next period.

This is termed an infinite-horizon call option with strike price 𝑝𝑆 .

The owner of the option is entitled to purchase the consol at price 𝑝𝑆 at the beginning of any period, after the coupon
has been paid to the previous owner of the bond.

The fundamentals of the economy are identical with the one above, including the stochastic discount factor and the process
for consumption.

Let𝑤(𝑋𝑡, 𝑝𝑆) be the value of the option when the time 𝑡 growth state is known to be𝑋𝑡 but before the owner has decided
whether to exercise the option at time 𝑡 (i.e., today).
Recalling that 𝑝(𝑋𝑡) is the value of the consol when the initial growth state is 𝑋𝑡, the value of the option satisfies

𝑤(𝑋𝑡, 𝑝𝑆) = max{𝛽 𝔼𝑡
𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

𝑤(𝑋𝑡+1, 𝑝𝑆), 𝑝(𝑋𝑡) − 𝑝𝑆}

The first term on the right is the value of waiting, while the second is the value of exercising now.

We can also write this as

𝑤(𝑥, 𝑝𝑆) = max{𝛽 ∑
𝑦∈𝑆

𝑃(𝑥, 𝑦)𝑔(𝑦)−𝛾𝑤(𝑦, 𝑝𝑆), 𝑝(𝑥) − 𝑝𝑆} (76.18)

With 𝑀(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦)𝑔(𝑦)−𝛾 and 𝑤 as the vector of values (𝑤(𝑥𝑖), 𝑝𝑆)𝑛
𝑖=1, we can express (76.18) as the nonlinear

vector equation

𝑤 = max{𝛽𝑀𝑤, 𝑝 − 𝑝𝑆𝟙} (76.19)

To solve (76.19), form an operator 𝑇 that maps vector 𝑤 into vector 𝑇 𝑤 via

𝑇 𝑤 = max{𝛽𝑀𝑤, 𝑝 − 𝑝𝑆𝟙}

Start at some initial 𝑤 and iterate with 𝑇 to convergence .

We can find the solution with the following function call_option
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def call_option(ap, ζ, p_s, ϵ=1e-7):
"""
Computes price of a call option on a consol bond.

Parameters
----------
ap: AssetPriceModel

An instance of AssetPriceModel containing primitives

ζ : scalar(float)
Coupon of the console

p_s : scalar(float)
Strike price

ϵ : scalar(float), optional(default=1e-8)
Tolerance for infinite horizon problem

Returns
-------
w : array_like(float)

Infinite horizon call option prices

"""
# Simplify names, set up matrices
β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
M = P * ap.g(y)**(- γ)

# Make sure that a unique consol price exists
ap.test_stability(M)

# Compute option price
p = consol_price(ap, ζ)
w = np.zeros(ap.n)
error = ϵ + 1
while error > ϵ:

# Maximize across columns
w_new = np.maximum(β * M @ w, p - p_s)
# Find maximal difference of each component and update
error = np.amax(np.abs(w - w_new))
w = w_new

return w

Here’s a plot of 𝑤 compared to the consol price when 𝑃𝑆 = 40
ap = AssetPriceModel(β=0.9)
ζ = 1.0
strike_price = 40

x = ap.mc.state_values
p = consol_price(ap, ζ)
w = call_option(ap, ζ, strike_price)

fig, ax = plt.subplots()
ax.plot(x, p, 'b-', lw=2, label='consol price')
ax.plot(x, w, 'g-', lw=2, label='value of call option')

(continues on next page)
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(continued from previous page)

ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()

In high values of the Markov growth state, the value of the option is close to zero.

This is despite the facts that the Markov chain is irreducible and that low states — where the consol prices are high —
will be visited recurrently.

The reason for low valuations in high Markov growth states is that 𝛽 = 0.9, so future payoffs are discounted substantially.

76.4.4 Risk-Free Rates

Let’s look at risk-free interest rates over different periods.

The One-period Risk-free Interest Rate

As before, the stochastic discount factor is 𝑚𝑡+1 = 𝛽𝑔−𝛾
𝑡+1.

It follows that the reciprocal 𝑅−1
𝑡 of the gross risk-free interest rate 𝑅𝑡 in state 𝑥 is

𝔼𝑡𝑚𝑡+1 = 𝛽 ∑
𝑦∈𝑆

𝑃(𝑥, 𝑦)𝑔(𝑦)−𝛾

We can write this as

𝑚1 = 𝛽𝑀𝟙
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where the 𝑖-th element of 𝑚1 is the reciprocal of the one-period gross risk-free interest rate in state 𝑥𝑖.

Other Terms

Let 𝑚𝑗 be an 𝑛 × 1 vector whose 𝑖 th component is the reciprocal of the 𝑗 -period gross risk-free interest rate in state 𝑥𝑖.

Then 𝑚1 = 𝛽𝑀 , and 𝑚𝑗+1 = 𝑀𝑚𝑗 for 𝑗 ≥ 1.

76.5 Exercises

Exercise 76.5.1

In the lecture, we considered ex-dividend assets.

A cum-dividend asset is a claim to the stream 𝑑𝑡, 𝑑𝑡+1, ….

Following (76.1), find the risk-neutral asset pricing equation for one unit of a cum-dividend asset.

With a constant, non-random dividend stream 𝑑𝑡 = 𝑑 > 0, what is the equilibrium price of a cum-dividend asset?

With a growing, non-random dividend process 𝑑𝑡 = 𝑔𝑑𝑡 where 0 < 𝑔𝛽 < 1, what is the equilibrium price of a
cum-dividend asset?

Solution to Exercise 76.5.1

For a cum-dividend asset, the basic risk-neutral asset pricing equation is

𝑝𝑡 = 𝑑𝑡 + 𝛽𝔼𝑡[𝑝𝑡+1]

With constant dividends, the equilibrium price is

𝑝𝑡 = 1
1 − 𝛽 𝑑𝑡

With a growing, non-random dividend process, the equilibrium price is

𝑝𝑡 = 1
1 − 𝛽𝑔 𝑑𝑡

Exercise 76.5.2

Consider the following primitives

n = 5 # Size of State Space
P = np.full((n, n), 0.0125)
P[range(n), range(n)] += 1 - P.sum(1)
# State values of the Markov chain
s = np.array([0.95, 0.975, 1.0, 1.025, 1.05])
γ = 2.0
β = 0.94

Let 𝑔 be defined by 𝑔(𝑥) = 𝑥 (that is, 𝑔 is the identity map).
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Compute the price of the Lucas tree.

Do the same for

• the price of the risk-free consol when 𝜁 = 1
• the call option on the consol when 𝜁 = 1 and 𝑝𝑆 = 150.0

Solution to Exercise 76.5.2

First, let’s enter the parameters:

n = 5
P = np.full((n, n), 0.0125)
P[range(n), range(n)] += 1 - P.sum(1)
s = np.array([0.95, 0.975, 1.0, 1.025, 1.05]) # State values
mc = qe.MarkovChain(P, state_values=s)

γ = 2.0
β = 0.94
ζ = 1.0
p_s = 150.0

Next, we’ll create an instance of AssetPriceModel to feed into the functions

apm = AssetPriceModel(β=β, mc=mc, γ=γ, g=lambda x: x)

Now we just need to call the relevant functions on the data:

tree_price(apm)

array([29.47401578, 21.93570661, 17.57142236, 14.72515002, 12.72221763])

consol_price(apm, ζ)

array([753.87100476, 242.55144082, 148.67554548, 109.25108965,
87.56860139])

call_option(apm, ζ, p_s)

array([603.87100476, 176.8393343 , 108.67734499, 80.05179254,
64.30843748])

Let’s show the last two functions as a plot

fig, ax = plt.subplots()
ax.plot(s, consol_price(apm, ζ), label='consol')
ax.plot(s, call_option(apm, ζ, p_s), label='call option')
ax.legend()
plt.show()
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Exercise 76.5.3

Let’s consider finite horizon call options, which are more common than infinite horizon ones.

Finite horizon options obey functional equations closely related to (76.18).

A 𝑘 period option expires after 𝑘 periods.

If we view today as date zero, a 𝑘 period option gives the owner the right to exercise the option to purchase the
risk-free consol at the strike price 𝑝𝑆 at dates 0, 1, … , 𝑘 − 1.
The option expires at time 𝑘.
Thus, for 𝑘 = 1, 2, …, let 𝑤(𝑥, 𝑘) be the value of a 𝑘-period option.
It obeys

𝑤(𝑥, 𝑘) = max{𝛽 ∑
𝑦∈𝑆

𝑃(𝑥, 𝑦)𝑔(𝑦)−𝛾𝑤(𝑦, 𝑘 − 1), 𝑝(𝑥) − 𝑝𝑆}

where 𝑤(𝑥, 0) = 0 for all 𝑥.
We can express this as a sequence of nonlinear vector equations

𝑤𝑘 = max{𝛽𝑀𝑤𝑘−1, 𝑝 − 𝑝𝑆𝟙} 𝑘 = 1, 2, … with 𝑤0 = 0

Write a function that computes 𝑤𝑘 for any given 𝑘.
Compute the value of the option with k = 5 and k = 25 using parameter values as in Exercise 76.5.1.

Is one higher than the other? Can you give intuition?

Solution to Exercise 76.5.3

Here’s a suitable function:

def finite_horizon_call_option(ap, ζ, p_s, k):
"""
Computes k period option value.
"""
# Simplify names, set up matrices
β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
M = P * ap.g(y)**(- γ)

# Make sure that a unique solution exists
ap.test_stability(M)

# Compute option price
p = consol_price(ap, ζ)
w = np.zeros(ap.n)
for i in range(k):

# Maximize across columns
w = np.maximum(β * M @ w, p - p_s)

return w

Now let’s compute the option values at k=5 and k=25
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fig, ax = plt.subplots()
for k in [5, 25]:

w = finite_horizon_call_option(apm, ζ, p_s, k)
ax.plot(s, w, label=rf'$k = {k}$')

ax.legend()
plt.show()

Not surprisingly, options with larger 𝑘 are worth more.

This is because an owner has a longer horizon over which the option can be exercised.
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CHAPTER

SEVENTYSEVEN

COMPETITIVE EQUILIBRIA WITH ARROW SECURITIES

77.1 Introduction

This lecture presents Python code for experimenting with competitive equilibria of an infinite-horizon pure exchange
economy with

• Heterogeneous agents

• Endowments of a single consumption that are person-specific functions of a common Markov state

• Complete markets in one-period Arrow state-contingent securities

• Discounted expected utility preferences of a kind often used in macroeconomics and finance

• Common expected utility preferences across agents

• Common beliefs among agents

• A constant relative risk aversion (CRRA) one-period utility function that implies the existence of a representative
consumer whose consumption process can be plugged into a formula for the pricing kernel for one-step Arrow
securities and thereby determine equilibrium prices before determining an equilibrium distribution of wealth

• Differences in their endowments make individuals want to reallocate consumption goods across time and Markov
states

We impose restrictions that allow us to Bellmanize competitive equilibrium prices and quantities

We use Bellman equations to describe

• asset prices

• continuation wealth levels for each person

• state-by-state natural debt limits for each person

In the course of presenting the model we shall encounter these important ideas

• a resolvent operator widely used in this class of models

• absence of borrowing limits in finite horizon economies

• state-by-state borrowing limits required in infinite horizon economies

• a counterpart of the law of iterated expectations known as a law of iterated values

• a state-variable degeneracy that prevails within a competitive equilibrium and that opens the way to various
appearances of resolvent operators
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77.2 The setting

In effect, this lecture implements a Python version of the model presented in section 9.3.3 of Ljungqvist and Sargent
[Ljungqvist and Sargent, 2018].

77.2.1 Preferences and endowments

In each period 𝑡 ≥ 0, a stochastic event 𝑠𝑡 ∈ S is realized.

Let the history of events up until time 𝑡 be denoted 𝑠𝑡 = [𝑠0, 𝑠1, … , 𝑠𝑡−1, 𝑠𝑡].
(Sometimes we inadvertently reverse the recording order and denote a history as 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠1, 𝑠0].)
The unconditional probability of observing a particular sequence of events 𝑠𝑡 is given by a probability measure 𝜋𝑡(𝑠𝑡).
For 𝑡 > 𝜏 , we write the probability of observing 𝑠𝑡 conditional on the realization of 𝑠𝜏as 𝜋𝑡(𝑠𝑡|𝑠𝜏).
We assume that trading occurs after observing 𝑠0, which we capture by setting 𝜋0(𝑠0) = 1 for the initially given value
of 𝑠0.

In this lecture we shall follow much macroeconomics and econometrics and assume that 𝜋𝑡(𝑠𝑡) is induced by a Markov
process.

There are 𝐾 consumers named 𝑘 = 1, … , 𝐾.

Consumer 𝑘 owns a stochastic endowment of one good 𝑦𝑘
𝑡 (𝑠𝑡) that depends on the history 𝑠𝑡.

The history 𝑠𝑡 is publicly observable.

Consumer 𝑘 purchases a history-dependent consumption plan 𝑐𝑘 = {𝑐𝑘
𝑡 (𝑠𝑡)}∞

𝑡=0

Consumer 𝑘 orders consumption plans by

𝑈𝑘(𝑐𝑘) =
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝑢𝑘[𝑐𝑘
𝑡 (𝑠𝑡)]𝜋𝑡(𝑠𝑡),

where 0 < 𝛽 < 1.
The right side is equal to 𝐸0 ∑∞

𝑡=0 𝛽𝑡𝑢𝑘(𝑐𝑘
𝑡 ), where 𝐸0 is the mathematical expectation operator, conditioned on 𝑠0.

Here 𝑢𝑘(𝑐) is an increasing, twice continuously differentiable, strictly concave function of consumption 𝑐 ≥ 0 of one
good.

The utility function of person 𝑘 satisfies the Inada condition

lim
𝑐↓0

𝑢′
𝑘(𝑐) = +∞.

This condition implies that each agent chooses strictly positive consumption for every date-history pair (𝑡, 𝑠𝑡).
Those interior solutions enable us to confine our analysis to Euler equations that hold with equality and also guarantee
that natural debt limits don’t bind in economies like ours with sequential trading of Arrow securities.

We adopt the assumption, routinely employed in much of macroeconomics, that consumers share probabilities 𝜋𝑡(𝑠𝑡) for
all 𝑡 and 𝑠𝑡.

A feasible allocation satisfies

∑
𝑖

𝑐𝑘
𝑡 (𝑠𝑡) ≤ ∑

𝑖
𝑦𝑘

𝑡 (𝑠𝑡)

for all 𝑡 and for all 𝑠𝑡.
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77.3 Recursive Formulation

Following descriptions in section 9.3.3 of Ljungqvist and Sargent [Ljungqvist and Sargent, 2018] chapter 9, we set up a
competitive equilibrium of a pure exchange economy with complete markets in one-period Arrow securities.

When endowments 𝑦𝑘(𝑠) are all functions of a common Markov state 𝑠, the pricing kernel takes the form 𝑄(𝑠′|𝑠), where
𝑄(𝑠′|𝑠) is the price of one unit of consumption in state 𝑠′ at date 𝑡 + 1 when the Markov state at date 𝑡 is 𝑠.
These enable us to provide a recursive formulation of a consumer’s optimization problem.

Consumer 𝑘’s state at time 𝑡 is its financial wealth 𝑎𝑘
𝑡 and Markov state 𝑠𝑡.

Let 𝑣𝑘(𝑎, 𝑠) be the optimal value of consumer 𝑘’s problem starting from state (𝑎, 𝑠).
• 𝑣𝑘(𝑎, 𝑠) is the maximum expected discounted utility that consumer 𝑘 with current financial wealth 𝑎 can attain in
Markov state 𝑠.

The optimal value function satisfies the Bellman equation

𝑣𝑘(𝑎, 𝑠) = max
𝑐,𝑎̂(𝑠′)

{𝑢𝑘(𝑐) + 𝛽 ∑
𝑠′

𝑣𝑘[ ̂𝑎(𝑠′), 𝑠′]𝜋(𝑠′|𝑠)}

where maximization is subject to the budget constraint

𝑐 + ∑
𝑠′

̂𝑎(𝑠′)𝑄(𝑠′|𝑠) ≤ 𝑦𝑘(𝑠) + 𝑎

and also the constraints

𝑐 ≥ 0,
− ̂𝑎(𝑠′) ≤ ̄𝐴𝑘(𝑠′), ∀𝑠′ ∈ S

with the second constraint evidently being a set of state-by-state debt limits.

Note that the value function and decision rule that solve the Bellman equation implicitly depend on the pricing kernel
𝑄(⋅|⋅) because it appears in the agent’s budget constraint.
Use the first-order conditions for the problem on the right of the Bellman equation and a Benveniste-Scheinkman formula
and rearrange to get

𝑄(𝑠𝑡+1|𝑠𝑡) = 𝛽𝑢′
𝑘(𝑐𝑘

𝑡+1)𝜋(𝑠𝑡+1|𝑠𝑡)
𝑢′

𝑘(𝑐𝑘
𝑡 ) ,

where it is understood that 𝑐𝑘
𝑡 = 𝑐𝑘(𝑠𝑡) and 𝑐𝑘

𝑡+1 = 𝑐𝑘(𝑠𝑡+1).
A recursive competitive equilibrium is an initial distribution of wealth ⃗𝑎0, a set of borrowing limits { ̄𝐴𝑘(𝑠)}𝐾

𝑘=1, a
pricing kernel 𝑄(𝑠′|𝑠), sets of value functions {𝑣𝑘(𝑎, 𝑠)}𝐾

𝑘=1, and decision rules {𝑐𝑘(𝑠), ̂𝑎𝑘(𝑠)}𝐾
𝑘=1 such that

• The state-by-state borrowing constraints satisfy the recursion

̄𝐴𝑘(𝑠) = 𝑦𝑘(𝑠) + ∑
𝑠′

𝑄(𝑠′|𝑠) ̄𝐴𝑘(𝑠′)

• For all 𝑘, given 𝑎𝑘
0 , ̄𝐴𝑘(𝑠), and the pricing kernel, the value functions and decision rules solve the consumers’

problems;

• For all realizations of {𝑠𝑡}∞
𝑡=0, the consumption and asset portfolios {{𝑐𝑘

𝑡 , { ̂𝑎𝑘
𝑡+1(𝑠′)}𝑠′}𝑘}𝑡 satisfy ∑𝑘 𝑐𝑘

𝑡 =
∑𝑘 𝑦𝑘(𝑠𝑡) and ∑𝑘 ̂𝑎𝑘

𝑡+1(𝑠′) = 0 for all 𝑡 and 𝑠′.

• The initial financial wealth vector ⃗𝑎0 satisfies ∑𝐾
𝑘=1 𝑎𝑘

0 = 0.
The third condition asserts that there are zero net aggregate claims in all Markov states.

The fourth condition asserts that the economy is closed and starts from a situation in which there are zero net aggregate
claims.
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77.4 State Variable Degeneracy

Please see Ljungqvist and Sargent [Ljungqvist and Sargent, 2018] for a description of timing protocol for trades consistent
with an Arrow-Debreu vision in which

• at time 0 there are complete markets in a complete menu of history 𝑠𝑡-contingent claims on consumption at all
dates that all trades occur at time zero

• all trades occur once and for all at time 0
If an allocation and pricing kernel 𝑄 in a recursive competitive equilibrium are to be consistent with the equilibrium
allocation and price system that prevail in a corresponding complete markets economy with such history-contingent
commodities and all trades occurring at time 0, we must impose that 𝑎𝑘

0 = 0 for 𝑘 = 1, … , 𝐾.

That is what assures that at time 0 the present value of each agent’s consumption equals the present value of his endowment
stream, the single budget constraint in arrangement with all trades occurring at time 0.
Starting the system with 𝑎𝑘

0 = 0 for all 𝑖 has a striking implication that we call state variable degeneracy.
Here is what we mean by state variable degeneracy:

Although two state variables 𝑎, 𝑠 appear in the value function 𝑣𝑘(𝑎, 𝑠), within a recursive competitive equilibrium starting
from 𝑎𝑘

0 = 0 ∀𝑖 at initial Markov state 𝑠0, two outcomes prevail:

• 𝑎𝑘
0 = 0 for all 𝑖 whenever the Markov state 𝑠𝑡 returns to 𝑠0.

• Financial wealth 𝑎 is an exact function of the Markov state 𝑠.
The first finding asserts that each household recurrently visits the zero financial wealth state with which it began life.

The second finding asserts that within a competitive equilibrium the exogenous Markov state is all we require to track an
individual.

Financial wealth turns out to be redundant because it is an exact function of the Markov state for each individual.

This outcome depends critically on there being complete markets in Arrow securities.

For example, it does not prevail in the incomplete markets setting of this lecture The Aiyagari Model

77.5 Markov Asset Prices

Let’s start with a brief summary of formulas for computing asset prices in a Markov setting.

The setup assumes the following infrastructure

• Markov states: 𝑠 ∈ 𝑆 = [ ̄𝑠1, … , ̄𝑠𝑛] governed by an 𝑛-state Markov chain with transition probability

𝑃𝑖𝑗 = Pr{𝑠𝑡+1 = ̄𝑠𝑗 ∣ 𝑠𝑡 = ̄𝑠𝑖}
• A collection ℎ = 1, … , 𝐻 of 𝑛 × 1 vectors of 𝐻 assets that pay off 𝑑ℎ (𝑠) in state 𝑠
• An 𝑛 × 𝑛 matrix pricing kernel 𝑄 for one-period Arrow securities, where 𝑄𝑖𝑗 = price at time 𝑡 in state 𝑠𝑡 = ̄𝑠𝑖 of
one unit of consumption when 𝑠𝑡+1 = ̄𝑠𝑗 at time 𝑡 + 1:

𝑄𝑖𝑗 = Price{𝑠𝑡+1 = ̄𝑠𝑗 ∣ 𝑠𝑡 = ̄𝑠𝑖}
• The price of risk-free one-period bond in state 𝑖 is 𝑅−1

𝑖 = ∑𝑗 𝑄𝑖,𝑗

• The gross rate of return on a one-period risk-free bond Markov state ̄𝑠𝑖 is 𝑅𝑖 = (∑𝑗 𝑄𝑖,𝑗)−1
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77.5.1 Exogenous Pricing Kernel

At this point, we’ll take the pricing kernel 𝑄 as exogenous, i.e., determined outside the model

Two examples would be

• 𝑄 = 𝛽𝑃 where 𝛽 ∈ (0, 1)
• 𝑄 = 𝑆𝑃 where 𝑆 is an 𝑛 × 𝑛 matrix of stochastic discount factors

We’ll write down implications of Markov asset pricing in a nutshell for two types of assets

• the price in Markov state 𝑠 at time 𝑡 of a cum dividend stock that entitles the owner at the beginning of time
𝑡 to the time 𝑡 dividend and the option to sell the asset at time 𝑡 + 1. The price evidently satisfies 𝑝ℎ( ̄𝑠𝑖) =
𝑑ℎ( ̄𝑠𝑖) + ∑𝑗 𝑄𝑖𝑗𝑝ℎ( ̄𝑠𝑗), which implies that the vector 𝑝ℎ satisfies 𝑝ℎ = 𝑑ℎ + 𝑄𝑝ℎ which implies the formula

𝑝ℎ = (𝐼 − 𝑄)−1𝑑ℎ

• the price in Markov state 𝑠 at time 𝑡 of an ex dividend stock that entitles the owner at the end of time 𝑡 to the time
𝑡 + 1 dividend and the option to sell the stock at time 𝑡 + 1. The price is

𝑝ℎ = (𝐼 − 𝑄)−1𝑄𝑑ℎ

Note

The matrix geometric sum (𝐼 − 𝑄)−1 = 𝐼 + 𝑄 + 𝑄2 + ⋯ is an example of a resolvent operator.

Below, we describe an equilibrium model with trading of one-period Arrow securities in which the pricing kernel is
endogenous.

In constructing our model, we’ll repeatedly encounter formulas that remind us of our asset pricing formulas.

77.5.2 Multi-Step-Forward Transition Probabilities and Pricing Kernels

The (𝑖, 𝑗) component of the ℓ-step ahead transition probability 𝑃 ℓ is

𝑃𝑟𝑜𝑏(𝑠𝑡+ℓ = ̄𝑠𝑗|𝑠𝑡 = ̄𝑠𝑖) = 𝑃 ℓ
𝑖,𝑗

The (𝑖, 𝑗) component of the ℓ-step ahead pricing kernel 𝑄ℓ is

𝑄(ℓ)(𝑠𝑡+ℓ = ̄𝑠𝑗|𝑠𝑡 = ̄𝑠𝑖) = 𝑄ℓ
𝑖,𝑗

We’ll use these objects to state a useful property in asset pricing theory.

77.5.3 Laws of Iterated Expectations and Iterated Values

A law of iterated values has a mathematical structure that parallels a law of iterated expectations

We can describe its structure readily in the Markov setting of this lecture

Recall the following recursion satisfied by 𝑗 step ahead transition probabilites for our finite state Markov chain:

𝑃𝑗(𝑠𝑡+𝑗|𝑠𝑡) = ∑
𝑠𝑡+1

𝑃𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)𝑃 (𝑠𝑡+1|𝑠𝑡)
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We can use this recursion to verify the law of iterated expectations applied to computing the conditional expectation of
a random variable 𝑑(𝑠𝑡+𝑗) conditioned on 𝑠𝑡 via the following string of equalities

𝐸 [𝐸𝑑(𝑠𝑡+𝑗)|𝑠𝑡+1] |𝑠𝑡 = ∑
𝑠𝑡+1

⎡⎢
⎣

∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗)𝑃𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)⎤⎥
⎦

𝑃(𝑠𝑡+1|𝑠𝑡)

= ∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗) [∑
𝑠𝑡+1

𝑃𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)𝑃 (𝑠𝑡+1|𝑠𝑡)]

= ∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗)𝑃𝑗(𝑠𝑡+𝑗|𝑠𝑡)

= 𝐸𝑑(𝑠𝑡+𝑗)|𝑠𝑡

The pricing kernel for 𝑗 step ahead Arrow securities satisfies the recursion

𝑄𝑗(𝑠𝑡+𝑗|𝑠𝑡) = ∑
𝑠𝑡+1

𝑄𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)𝑄(𝑠𝑡+1|𝑠𝑡)

The time 𝑡 value in Markov state 𝑠𝑡 of a time 𝑡 + 𝑗 payout 𝑑(𝑠𝑡+𝑗) is

𝑉 (𝑑(𝑠𝑡+𝑗)|𝑠𝑡) = ∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗)𝑄𝑗(𝑠𝑡+𝑗|𝑠𝑡)

The law of iterated values states

𝑉 [𝑉 (𝑑(𝑠𝑡+𝑗)|𝑠𝑡+1)] |𝑠𝑡 = 𝑉 (𝑑(𝑠𝑡+𝑗))|𝑠𝑡

We verify it by pursuing the following a string of inequalities that are counterparts to those we used to verify the law of
iterated expectations:

𝑉 [𝑉 (𝑑(𝑠𝑡+𝑗)|𝑠𝑡+1)] |𝑠𝑡 = ∑
𝑠𝑡+1

⎡⎢
⎣

∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗)𝑄𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)⎤⎥
⎦

𝑄(𝑠𝑡+1|𝑠𝑡)

= ∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗) [∑
𝑠𝑡+1

𝑄𝑗−1(𝑠𝑡+𝑗|𝑠𝑡+1)𝑄(𝑠𝑡+1|𝑠𝑡)]

= ∑
𝑠𝑡+𝑗

𝑑(𝑠𝑡+𝑗)𝑄𝑗(𝑠𝑡+𝑗|𝑠𝑡)

= 𝐸𝑉 (𝑑(𝑠𝑡+𝑗))|𝑠𝑡

77.6 General Equilibrium

Now we are ready to do some fun calculations.

We find it interesting to think in terms of analytical inputs into and outputs from our general equilibrium theorizing.

77.6.1 Inputs

• Markov states: 𝑠 ∈ 𝑆 = [ ̄𝑠1, … , ̄𝑠𝑛] governed by an 𝑛-state Markov chain with transition probability

𝑃𝑖𝑗 = Pr{𝑠𝑡+1 = ̄𝑠𝑗 ∣ 𝑠𝑡 = ̄𝑠𝑖}
• A collection of 𝐾 × 1 vectors of individual 𝑘 endowments: 𝑦𝑘 (𝑠) , 𝑘 = 1, … , 𝐾
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• An 𝑛 × 1 vector of aggregate endowment: 𝑦 (𝑠) ≡ ∑𝐾
𝑘=1 𝑦𝑘 (𝑠)

• A collection of 𝐾 × 1 vectors of individual 𝑘 consumptions: 𝑐𝑘 (𝑠) , 𝑘 = 1, … , 𝐾
• A collection of restrictions on feasible consumption allocations for 𝑠 ∈ 𝑆:

𝑐 (𝑠) =
𝐾

∑
𝑘=1

𝑐𝑘 (𝑠) ≤ 𝑦 (𝑠)

• Preferences: a common utility functional across agents 𝐸0 ∑∞
𝑡=0 𝛽𝑡𝑢(𝑐𝑘

𝑡 ) with CRRA one-period utility function
𝑢 (𝑐) and discount factor 𝛽 ∈ (0, 1)

The one-period utility function is

𝑢 (𝑐) = 𝑐1−𝛾

1 − 𝛾
so that

𝑢′ (𝑐) = 𝑐−𝛾

77.6.2 Outputs

• An 𝑛 × 𝑛 matrix pricing kernel 𝑄 for one-period Arrow securities, where 𝑄𝑖𝑗 = price at time 𝑡 in state 𝑠𝑡 = ̄𝑠𝑖 of
one unit of consumption when 𝑠𝑡+1 = ̄𝑠𝑗 at time 𝑡 + 1

• pure exchange so that 𝑐 (𝑠) = 𝑦 (𝑠)
• a 𝐾 × 1 vector distribution of wealth vector 𝛼, 𝛼𝑘 ≥ 0, ∑𝐾

𝑘=1 𝛼𝑘 = 1
• A collection of 𝑛 × 1 vectors of individual 𝑘 consumptions: 𝑐𝑘 (𝑠) , 𝑘 = 1, … , 𝐾

77.6.3 𝑄 is the Pricing Kernel

For any agent 𝑘 ∈ [1, … , 𝐾], at the equilibrium allocation, the one-period Arrow securities pricing kernel satisfies

𝑄𝑖𝑗 = 𝛽 (𝑐𝑘 ( ̄𝑠𝑗)
𝑐𝑘 ( ̄𝑠𝑖)

)
−𝛾

𝑃𝑖𝑗

where 𝑄 is an 𝑛 × 𝑛 matrix

This follows from agent 𝑘’s first-order necessary conditions.
But with the CRRA preferences that we have assumed, individual consumptions vary proportionately with aggregate
consumption and therefore with the aggregate endowment.

• This is a consequence of our preference specification implying that Engle curves are affine in wealth and therefore
satisfy conditions for Gorman aggregation

Thus,

𝑐𝑘 (𝑠) = 𝛼𝑘𝑐 (𝑠) = 𝛼𝑘𝑦 (𝑠)

for an arbitrary distribution of wealth in the form of an 𝐾 × 1 vector 𝛼 that satisfies

𝛼𝑘 ∈ (0, 1) ,
𝐾

∑
𝑘=1

𝛼𝑘 = 1
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This means that we can compute the pricing kernel from

𝑄𝑖𝑗 = 𝛽 (𝑦𝑗
𝑦𝑖

)
−𝛾

𝑃𝑖𝑗 (77.1)

Note that 𝑄𝑖𝑗 is independent of vector 𝛼.
Key finding: We can compute competitive equilibrium prices prior to computing a distribution of wealth.

77.6.4 Values

Having computed an equilibrium pricing kernel 𝑄, we can compute several values that are required to pose or represent
the solution of an individual household’s optimum problem.

We denote an 𝐾 × 1 vector of state-dependent values of agents’ endowments in Markov state 𝑠 as

𝐴 (𝑠) = ⎡⎢
⎣

𝐴1 (𝑠)
⋮

𝐴𝐾 (𝑠)
⎤⎥
⎦

, 𝑠 ∈ [ ̄𝑠1, … , ̄𝑠𝑛]

and an 𝑛 × 1 vector of continuation endowment values for each individual 𝑘 as

𝐴𝑘 = ⎡⎢
⎣

𝐴𝑘 ( ̄𝑠1)
⋮

𝐴𝑘 ( ̄𝑠𝑛)
⎤⎥
⎦

, 𝑘 ∈ [1, … , 𝐾]

𝐴𝑘 of consumer 𝑘 satisfies

𝐴𝑘 = [𝐼 − 𝑄]−1 [𝑦𝑘]

where

𝑦𝑘 = ⎡⎢
⎣

𝑦𝑘 ( ̄𝑠1)
⋮

𝑦𝑘 ( ̄𝑠𝑛)
⎤⎥
⎦

≡ ⎡⎢
⎣

𝑦𝑘
1
⋮

𝑦𝑘
𝑛

⎤⎥
⎦

In a competitive equilibrium of an infinite horizon economy with sequential trading of one-period Arrow securities,
𝐴𝑘(𝑠) serves as a state-by-state vector of debt limits on the quantities of one-period Arrow securities paying off in state
𝑠 at time 𝑡 + 1 that individual 𝑘 can issue at time 𝑡.
These are often called natural debt limits.

Evidently, they equal the maximum amount that it is feasible for individual 𝑘 to repay even if he consumes zero goods
forevermore.

Remark: If we have an Inada condition at zero consumption or just impose that consumption be nonnegative, then in a
finite horizon economy with sequential trading of one-period Arrow securities there is no need to impose natural debt
limits. See the section on a Finite Horizon Economy below.

77.6.5 Continuation Wealth

Continuation wealth plays an important role in Bellmanizing a competitive equilibrium with sequential trading of a com-
plete set of one-period Arrow securities.

We denote an 𝐾 × 1 vector of state-dependent continuation wealths in Markov state 𝑠 as

𝜓 (𝑠) = ⎡⎢
⎣

𝜓1 (𝑠)
⋮

𝜓𝐾 (𝑠)
⎤⎥
⎦

, 𝑠 ∈ [ ̄𝑠1, … , ̄𝑠𝑛]
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and an 𝑛 × 1 vector of continuation wealths for each individual 𝑘 as

𝜓𝑘 = ⎡⎢
⎣

𝜓𝑘 ( ̄𝑠1)
⋮

𝜓𝑘 ( ̄𝑠𝑛)
⎤⎥
⎦

, 𝑘 ∈ [1, … , 𝐾]

Continuation wealth 𝜓𝑘 of consumer 𝑘 satisfies

𝜓𝑘 = [𝐼 − 𝑄]−1 [𝛼𝑘𝑦 − 𝑦𝑘] (77.2)

where

𝑦𝑘 = ⎡⎢
⎣

𝑦𝑘 ( ̄𝑠1)
⋮

𝑦𝑘 ( ̄𝑠𝑛)
⎤⎥
⎦

, 𝑦 = ⎡⎢
⎣

𝑦 ( ̄𝑠1)
⋮

𝑦 ( ̄𝑠𝑛)
⎤⎥
⎦

Note that ∑𝐾
𝑘=1 𝜓𝑘 = 0𝑛×1.

Remark: At the initial state 𝑠0 ∈ [ ̄𝑠1, … , ̄𝑠𝑛], the continuation wealth 𝜓𝑘(𝑠0) = 0 for all agents 𝑘 = 1, … , 𝐾. This
indicates that the economy begins with all agents being debt-free and financial-asset-free at time 0, state 𝑠0.

Remark: Note that all agents’ continuation wealths recurrently return to zero when the Markov state returns to whatever
value 𝑠0 it had at time 0.

77.6.6 Optimal Portfolios

A nifty feature of the model is that an optimal portfolio of a type 𝑘 agent equals the continuation wealth that we just
computed.

Thus, agent 𝑘’s state-by-state purchases of Arrow securities next period depend only on next period’s Markov state and
equal

𝑎𝑘(𝑠) = 𝜓𝑘(𝑠), 𝑠 ∈ [ ̄𝑠1, … , ̄𝑠𝑛] (77.3)

77.6.7 Equilibrium Wealth Distribution 𝛼

With the initial state being a particular state 𝑠0 ∈ [ ̄𝑠1, … , ̄𝑠𝑛], we must have

𝜓𝑘 (𝑠0) = 0, 𝑘 = 1, … , 𝐾

which means the equilibrium distribution of wealth satisfies

𝛼𝑘 = 𝑉𝑧𝑦𝑘

𝑉𝑧𝑦 (77.4)

where 𝑉 ≡ [𝐼 − 𝑄]−1 and 𝑧 is the row index corresponding to the initial state 𝑠0.

Since ∑𝐾
𝑘=1 𝑉𝑧𝑦𝑘 = 𝑉𝑧𝑦, ∑𝐾

𝑘=1 𝛼𝑘 = 1.
In summary, here is the logical flow of an algorithm to compute a competitive equilibrium:

• compute 𝑄 from the aggregate allocation and formula (77.1)

• compute the distribution of wealth 𝛼 from the formula (77.4)

• Using 𝛼 assign each consumer 𝑘 the share 𝛼𝑘 of the aggregate endowment at each state

• return to the 𝛼-dependent formula (77.2) and compute continuation wealths
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• via formula (77.3) equate agent 𝑘’s portfolio to its continuation wealth state by state
We can also add formulas for optimal value functions in a competitive equilibrium with trades in a complete set of
one-period state-contingent Arrow securities.

Call the optimal value functions 𝐽𝑘 for consumer 𝑘.
For the infinite horizon economy now under study, the formula is

𝐽𝑘 = (𝐼 − 𝛽𝑃)−1𝑢(𝛼𝑘𝑦), 𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
where it is understood that 𝑢(𝛼𝑘𝑦) is a vector.

77.7 Finite Horizon

We now describe a finite-horizon version of the economy that operates for 𝑇 + 1 periods 𝑡 ∈ T = {0, 1, … , 𝑇 }.
Consequently, we’ll want 𝑇 + 1 counterparts to objects described above, with one important exception: we won’t need
borrowing limits.

• borrowing limits aren’t required for a finite horizon economy in which a one-period utility function 𝑢(𝑐) satisfies
an Inada condition that sets the marginal utility of consumption at zero consumption to zero.

• Nonnegativity of consumption choices at all 𝑡 ∈ T automatically limits borrowing.

77.7.1 Continuation Wealths

We denote a 𝐾 × 1 vector of state-dependent continuation wealths in Markov state 𝑠 at time 𝑡 as

𝜓𝑡 (𝑠) = ⎡⎢
⎣

𝜓1 (𝑠)
⋮

𝜓𝐾 (𝑠)
⎤⎥
⎦

, 𝑠 ∈ [ ̄𝑠1, … , ̄𝑠𝑛]

and an 𝑛 × 1 vector of continuation wealths for each individual 𝑘 as

𝜓𝑘
𝑡 = ⎡⎢

⎣

𝜓𝑘
𝑡 ( ̄𝑠1)

⋮
𝜓𝑘

𝑡 ( ̄𝑠𝑛)
⎤⎥
⎦

, 𝑘 ∈ [1, … , 𝐾]

Continuation wealths 𝜓𝑘 of consumer 𝑘 satisfy

𝜓𝑘
𝑇 = [𝛼𝑘𝑦 − 𝑦𝑘]

𝜓𝑘
𝑇 −1 = [𝐼 + 𝑄] [𝛼𝑘𝑦 − 𝑦𝑘]
⋮ ⋮
𝜓𝑘

0 = [𝐼 + 𝑄 + 𝑄2 + ⋯ + 𝑄𝑇 ] [𝛼𝑘𝑦 − 𝑦𝑘]

(77.5)

where

𝑦𝑘 = ⎡⎢
⎣

𝑦𝑘 ( ̄𝑠1)
⋮

𝑦𝑘 ( ̄𝑠𝑛)
⎤⎥
⎦

, 𝑦 = ⎡⎢
⎣

𝑦 ( ̄𝑠1)
⋮

𝑦 ( ̄𝑠𝑛)
⎤⎥
⎦

Note that ∑𝐾
𝑘=1 𝜓𝑘

𝑡 = 0𝑛×1 for all 𝑡 ∈ T.

Remark: At the initial state 𝑠0 ∈ [ ̄𝑠1, … , ̄𝑠𝑛], for all agents 𝑘 = 1, … , 𝐾, continuation wealth 𝜓𝑘
0(𝑠0) = 0. This

indicates that the economy begins with all agents being debt-free and financial-asset-free at time 0, state 𝑠0.
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Remark: Note that all agents’ continuation wealths return to zero when the Markov state returns to whatever value 𝑠0 it
had at time 0. This will recur if the Markov chain makes the initial state 𝑠0 recurrent.

With the initial state being a particular state 𝑠0 ∈ [ ̄𝑠1, … , ̄𝑠𝑛], we must have

𝜓𝑘
0 (𝑠0) = 0, 𝑘 = 1, … , 𝐾

which means the equilibrium distribution of wealth satisfies

𝛼𝑘 = 𝑉𝑧𝑦𝑘

𝑉𝑧𝑦 (77.6)

where now in our finite-horizon economy

𝑉 = [𝐼 + 𝑄 + 𝑄2 + ⋯ + 𝑄𝑇 ] (77.7)

and 𝑧 is the row index corresponding to the initial state 𝑠0.

Since ∑𝐾
𝑘=1 𝑉𝑧𝑦𝑘 = 𝑉𝑧𝑦, ∑𝐾

𝑘=1 𝛼𝑘 = 1.
In summary, here is the logical flow of an algorithm to compute a competitive equilibrium with Arrow securities in our
finite-horizon Markov economy:

• compute 𝑄 from the aggregate allocation and formula (77.1)

• compute the distribution of wealth 𝛼 from formulas (77.6) and (77.7)

• using 𝛼, assign each consumer 𝑘 the share 𝛼𝑘 of the aggregate endowment at each state

• return to the 𝛼-dependent formula (77.5) for continuation wealths and compute continuation wealths
• equate agent 𝑘’s portfolio to its continuation wealth state by state

While for the infinite horizon economy, the formula for value functions is

𝐽𝑘 = (𝐼 − 𝛽𝑃)−1𝑢(𝛼𝑘𝑦), 𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
for the finite horizon economy the formula is

𝐽𝑘
0 = (𝐼 + 𝛽𝑃 + ⋯ + 𝛽𝑇 𝑃 𝑇 )𝑢(𝛼𝑘𝑦),

where it is understood that 𝑢(𝛼𝑘𝑦) is a vector.

77.8 Python Code

We are ready to dive into some Python code.

As usual, we start with Python imports.

import numpy as np
import matplotlib.pyplot as plt

np.set_printoptions(suppress=True)

First, we create a Python class to compute the objects that comprise a competitive equilibrium with sequential trading of
one-period Arrow securities.

In addition to infinite-horizon economies, the code is set up to handle finite-horizon economies indexed by horizon 𝑇 .
We’ll study examples of finite horizon economies after we first look at some infinite-horizon economies.
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class RecurCompetitive:
"""
A class that represents a recursive competitive economy
with one-period Arrow securities.
"""

def __init__(self,
s, # state vector
P, # transition matrix
ys, # endowments ys = [y1, y2, .., yI]
γ=0.5, # risk aversion
β=0.98, # discount rate
T=None): # time horizon, none if infinite

# preference parameters
self.γ = γ
self.β = β

# variables dependent on state
self.s = s
self.P = P
self.ys = ys
self.y = np.sum(ys, 1)

# dimensions
self.n, self.K = ys.shape

# compute pricing kernel
self.Q = self.pricing_kernel()

# compute price of risk-free one-period bond
self.PRF = self.price_risk_free_bond()

# compute risk-free rate
self.R = self.risk_free_rate()

# V = [I - Q]^{-1} (infinite case)
if T is None:

self.T = None
self.V = np.empty((1, n, n))
self.V[0] = np.linalg.inv(np.eye(n) - self.Q)

# V = [I + Q + Q^2 + ... + Q^T] (finite case)
else:

self.T = T
self.V = np.empty((T+1, n, n))
self.V[0] = np.eye(n)

Qt = np.eye(n)
for t in range(1, T+1):

Qt = Qt.dot(self.Q)
self.V[t] = self.V[t-1] + Qt

# natural debt limit
self.A = self.V[-1] @ ys

def u(self, c):
"The CRRA utility"

(continues on next page)
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return c ** (1 - self.γ) / (1 - self.γ)

def u_prime(self, c):
"The first derivative of CRRA utility"

return c ** (-self.γ)

def pricing_kernel(self):
"Compute the pricing kernel matrix Q"

c = self.y

n = self.n
Q = np.empty((n, n))
for i in range(n):

for j in range(n):
ratio = self.u_prime(c[j]) / self.u_prime(c[i])
Q[i, j] = self.β * ratio * P[i, j]

self.Q = Q

return Q

def wealth_distribution(self, s0_idx):
"Solve for wealth distribution α"

# set initial state
self.s0_idx = s0_idx

# simplify notations
n = self.n
Q = self.Q
y, ys = self.y, self.ys

# row of V corresponding to s0
Vs0 = self.V[-1, s0_idx, :]
α = Vs0 @ self.ys / (Vs0 @ self.y)

self.α = α

return α

def continuation_wealths(self):
"Given α, compute the continuation wealths ψ"

diff = np.empty((n, K))
for k in range(K):

diff[:, k] = self.α[k] * self.y - self.ys[:, k]

ψ = self.V @ diff
self.ψ = ψ

return ψ

def price_risk_free_bond(self):
"Give Q, compute price of one-period risk free bond"

(continues on next page)
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PRF = np.sum(self.Q, axis=1)
self.PRF = PRF

return PRF

def risk_free_rate(self):
"Given Q, compute one-period gross risk-free interest rate R"

R = np.sum(self.Q, axis=1)
R = np.reciprocal(R)
self.R = R

return R

def value_functionss(self):
"Given α, compute the optimal value functions J in equilibrium"

n, T = self.n, self.T
β = self.β
P = self.P

# compute (I - βP)^(-1) in infinite case
if T is None:

P_seq = np.empty((1, n, n))
P_seq[0] = np.linalg.inv(np.eye(n) - β * P)

# and (I + βP + ... + β^T P^T) in finite case
else:

P_seq = np.empty((T+1, n, n))
P_seq[0] = np.eye(n)

Pt = np.eye(n)
for t in range(1, T+1):

Pt = Pt.dot(P)
P_seq[t] = P_seq[t-1] + Pt * β ** t

# compute the matrix [u(α_1 y), ..., u(α_K, y)]
flow = np.empty((n, K))
for k in range(K):

flow[:, k] = self.u(self.α[k] * self.y)

J = P_seq @ flow

self.J = J

return J
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77.9 Examples

We’ll use our code to construct equilibrium objects in several example economies.

Our first several examples will be infinite horizon economies.

Our final example will be a finite horizon economy.

77.9.1 Example 1

Please read the preceding class for default parameter values and the following Python code for the fundamentals of the
economy.

Here goes.

# dimensions
K, n = 2, 2

# states
s = np.array([0, 1])

# transition
P = np.array([[.5, .5], [.5, .5]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = 1 - s # y1
ys[:, 1] = s # y2

ex1 = RecurCompetitive(s, P, ys)

# endowments
ex1.ys

array([[1., 0.],
[0., 1.]])

# pricing kernal
ex1.Q

array([[0.49, 0.49],
[0.49, 0.49]])

# Risk free rate R
ex1.R

array([1.02040816, 1.02040816])

# natural debt limit, A = [A1, A2, ..., AI]
ex1.A

array([[25.5, 24.5],
[24.5, 25.5]])
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# when the initial state is state 1
print(f'α = {ex1.wealth_distribution(s0_idx=0)}')
print(f'ψ = \n{ex1.continuation_wealths()}')
print(f'J = \n{ex1.value_functionss()}')

α = [0.51 0.49]
ψ =
[[[ 0. -0.]
[ 1. -1.]]]

J =
[[[71.41428429 70. ]

[71.41428429 70. ]]]

# when the initial state is state 2
print(f'α = {ex1.wealth_distribution(s0_idx=1)}')
print(f'ψ = \n{ex1.continuation_wealths()}')
print(f'J = \n{ex1.value_functionss()}')

α = [0.49 0.51]
ψ =
[[[-1. 1.]
[ 0. -0.]]]

J =
[[[70. 71.41428429]
[70. 71.41428429]]]

77.9.2 Example 2

# dimensions
K, n = 2, 2

# states
s = np.array([1, 2])

# transition
P = np.array([[.5, .5], [.5, .5]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = 1.5 # y1
ys[:, 1] = s # y2

ex2 = RecurCompetitive(s, P, ys)

# endowments

print("ys = \n", ex2.ys)

# pricing kernal
print ("Q = \n", ex2.Q)

# Risk free rate R
print("R = ", ex2.R)
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ys =
[[1.5 1. ]
[1.5 2. ]]

Q =
[[0.49 0.41412558]
[0.57977582 0.49 ]]

R = [1.10604104 0.93477529]

# pricing kernal
ex2.Q

array([[0.49 , 0.41412558],
[0.57977582, 0.49 ]])

Note that the pricing kernal in example economies 1 and 2 differ.

This comes from differences in the aggregate endowments in state 1 and 2 in example 1.

ex2.β * ex2.u_prime(3.5) / ex2.u_prime(2.5) * ex2.P[0,1]

np.float64(0.4141255848169731)

ex2.β * ex2.u_prime(2.5) / ex2.u_prime(3.5) * ex2.P[1,0]

np.float64(0.5797758187437624)

# Risk free rate R
ex2.R

array([1.10604104, 0.93477529])

# natural debt limit, A = [A1, A2, ..., AI]
ex2.A

array([[69.30941886, 66.91255848],
[81.73318641, 79.98879094]])

# when the initial state is state 1
print(f'α = {ex2.wealth_distribution(s0_idx=0)}')
print(f'ψ = \n{ex2.continuation_wealths()}')
print(f'J = \n{ex2.value_functionss()}')

α = [0.50879763 0.49120237]
ψ =
[[[-0. -0. ]
[ 0.55057195 -0.55057195]]]

J =
[[[122.907875 120.76397493]

[123.32114686 121.17003803]]]

# when the initial state is state 1
print(f'α = {ex2.wealth_distribution(s0_idx=1)}')
print(f'ψ = \n{ex2.continuation_wealths()}')
print(f'J = \n{ex2.value_functionss()}')
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α = [0.50539319 0.49460681]
ψ =
[[[-0.46375886 0.46375886]
[ 0. -0. ]]]

J =
[[[122.49598809 121.18174895]

[122.907875 121.58921679]]]

77.9.3 Example 3

# dimensions
K, n = 2, 2

# states
s = np.array([1, 2])

# transition
λ = 0.9
P = np.array([[1-λ, λ], [0, 1]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = [1, 0] # y1
ys[:, 1] = [0, 1] # y2

ex3 = RecurCompetitive(s, P, ys)

# endowments

print("ys = ", ex3.ys)

# pricing kernel
print ("Q = ", ex3.Q)

# Risk free rate R
print("R = ", ex3.R)

ys = [[1. 0.]
[0. 1.]]

Q = [[0.098 0.882]
[0. 0.98 ]]

R = [1.02040816 1.02040816]

# pricing kernel
ex3.Q

array([[0.098, 0.882],
[0. , 0.98 ]])

# natural debt limit, A = [A1, A2, ..., AI]
ex3.A
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array([[ 1.10864745, 48.89135255],
[ 0. , 50. ]])

Note that the natural debt limit for agent 1 in state 2 is 0.
# when the initial state is state 1
print(f'α = {ex3.wealth_distribution(s0_idx=0)}')
print(f'ψ = \n{ex3.continuation_wealths()}')
print(f'J = \n{ex3.value_functionss()}')

α = [0.02217295 0.97782705]
ψ =
[[[ 0. -0. ]
[ 1.10864745 -1.10864745]]]

J =
[[[14.89058394 98.88513796]

[14.89058394 98.88513796]]]

# when the initial state is state 1
print(f'α = {ex3.wealth_distribution(s0_idx=1)}')
print(f'ψ = \n{ex3.continuation_wealths()}')
print(f'J = \n{ex3.value_functionss()}')

α = [0. 1.]
ψ =
[[[-1.10864745 1.10864745]
[ 0. 0. ]]]

J =
[[[ 0. 100.]

[ 0. 100.]]]

For the specification of the Markov chain in example 3, let’s take a look at how the equilibrium allocation changes as a
function of transition probability 𝜆.
λ_seq = np.linspace(0, 0.99, 100)

# prepare containers
αs0_seq = np.empty((len(λ_seq), 2))
αs1_seq = np.empty((len(λ_seq), 2))

for i, λ in enumerate(λ_seq):
P = np.array([[1-λ, λ], [0, 1]])
ex3 = RecurCompetitive(s, P, ys)

# initial state s0 = 1
α = ex3.wealth_distribution(s0_idx=0)
αs0_seq[i, :] = α

# initial state s0 = 2
α = ex3.wealth_distribution(s0_idx=1)
αs1_seq[i, :] = α

fig, axs = plt.subplots(1, 2, figsize=(12, 4))

for i, αs_seq in enumerate([αs0_seq, αs1_seq]):
for j in range(2):

(continues on next page)
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axs[i].plot(λ_seq, αs_seq[:, j], label=f'α{j+1}')
axs[i].set_xlabel('λ')
axs[i].set_title(f'initial state s0 = {s[i]}')
axs[i].legend()

plt.show()

77.9.4 Example 4

# dimensions
K, n = 2, 3

# states
s = np.array([1, 2, 3])

# transition
λ = .9
μ = .9
δ = .05

# prosperous, moderate, and recession states
P = np.array([[1-λ, λ, 0], [μ/2, μ, μ/2], [(1-δ)/2, (1-δ)/2, δ]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = [.25, .75, .2] # y1
ys[:, 1] = [1.25, .25, .2] # y2

ex4 = RecurCompetitive(s, P, ys)

# endowments
print("ys = \n", ex4.ys)

# pricing kernal
print ("Q = \n", ex4.Q)

# Risk free rate R

(continues on next page)
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print("R = ", ex4.R)

# natural debt limit, A = [A1, A2, ..., AI]
print("A = \n", ex4.A)

print('')

for i in range(1, 4):
# when the initial state is state i
print(f"when the initial state is state {i}")
print(f'α = {ex4.wealth_distribution(s0_idx=i-1)}')
print(f'ψ = \n{ex4.continuation_wealths()}')
print(f'J = \n{ex4.value_functionss()}\n')

ys =
[[0.25 1.25]
[0.75 0.25]
[0.2 0.2 ]]

Q =
[[0.098 1.08022498 0. ]
[0.36007499 0.882 0.69728222]
[0.24038317 0.29440805 0.049 ]]

R = [0.84873434 0.51563476 1.71294115]
A =
[[-1.4141307 -0.45854174]
[-1.4122483 -1.54005386]
[-0.58434331 -0.3823659 ]]

when the initial state is state 1
α = [0.75514045 0.24485955]
ψ =
[[[ 0. 0. ]

[-0.81715447 0.81715447]
[-0.14565791 0.14565791]]]

J =
[[[-2.65741909 -1.51322919]

[-5.13103133 -2.92179221]
[-2.65649938 -1.51270548]]]

when the initial state is state 2
α = [0.47835493 0.52164507]
ψ =
[[[ 0.5183286 -0.5183286 ]

[ 0. -0. ]
[ 0.12191319 -0.12191319]]]

J =
[[[-2.11505328 -2.20868477]

[-4.08381377 -4.26460049]
[-2.11432128 -2.20792037]]]

when the initial state is state 3
α = [0.60446648 0.39553352]
ψ =
[[[ 0.28216299 -0.28216299]

[-0.37231938 0.37231938]
[ 0. -0. ]]]

(continues on next page)
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J =
[[[-2.37756442 -1.92325926]
[-4.59067883 -3.71349163]
[-2.37674158 -1.92259365]]]

77.9.5 Finite Horizon Example

We now revisit the economy defined in example 1, but set the time horizon to be 𝑇 = 10.
# dimensions
K, n = 2, 2

# states
s = np.array([0, 1])

# transition
P = np.array([[.5, .5], [.5, .5]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = 1 - s # y1
ys[:, 1] = s # y2

ex1_finite = RecurCompetitive(s, P, ys, T=10)

# (I + Q + Q^2 + ... + Q^T)
ex1_finite.V[-1]

array([[5.48171623, 4.48171623],
[4.48171623, 5.48171623]])

# endowments
ex1_finite.ys

array([[1., 0.],
[0., 1.]])

# pricing kernal
ex1_finite.Q

array([[0.49, 0.49],
[0.49, 0.49]])

# Risk free rate R
ex1_finite.R

array([1.02040816, 1.02040816])

In the finite time horizon case, ψ and J are returned as sequences.

Components are ordered from 𝑡 = 𝑇 to 𝑡 = 0.
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# when the initial state is state 2
print(f'α = {ex1_finite.wealth_distribution(s0_idx=0)}')
print(f'ψ = \n{ex1_finite.continuation_wealths()}\n')
print(f'J = \n{ex1_finite.value_functionss()}')

α = [0.55018351 0.44981649]
ψ =
[[[-0.44981649 0.44981649]
[ 0.55018351 -0.55018351]]

[[-0.40063665 0.40063665]
[ 0.59936335 -0.59936335]]

[[-0.35244041 0.35244041]
[ 0.64755959 -0.64755959]]

[[-0.30520809 0.30520809]
[ 0.69479191 -0.69479191]]

[[-0.25892042 0.25892042]
[ 0.74107958 -0.74107958]]

[[-0.21355851 0.21355851]
[ 0.78644149 -0.78644149]]

[[-0.16910383 0.16910383]
[ 0.83089617 -0.83089617]]

[[-0.12553824 0.12553824]
[ 0.87446176 -0.87446176]]

[[-0.08284397 0.08284397]
[ 0.91715603 -0.91715603]]

[[-0.04100358 0.04100358]
[ 0.95899642 -0.95899642]]

[[-0. -0. ]
[ 1. -1. ]]]

J =
[[[ 1.48348712 1.3413672 ]

[ 1.48348712 1.3413672 ]]

[[ 2.9373045 2.65590706]
[ 2.9373045 2.65590706]]

[[ 4.36204553 3.94415611]
[ 4.36204553 3.94415611]]

[[ 5.75829174 5.20664019]
[ 5.75829174 5.20664019]]

[[ 7.12661302 6.44387459]
[ 7.12661302 6.44387459]]

[[ 8.46756788 7.6563643 ]

(continues on next page)
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[ 8.46756788 7.6563643 ]]

[[ 9.78170364 8.84460421]
[ 9.78170364 8.84460421]]

[[11.06955669 10.00907933]
[11.06955669 10.00907933]]

[[12.33165268 11.15026494]
[12.33165268 11.15026494]]

[[13.56850674 12.26862684]
[13.56850674 12.26862684]]

[[14.78062373 13.3646215 ]
[14.78062373 13.3646215 ]]]

# when the initial state is state 2
print(f'α = {ex1_finite.wealth_distribution(s0_idx=1)}')
print(f'ψ = \n{ex1_finite.continuation_wealths()}\n')
print(f'J = \n{ex1_finite.value_functionss()}')

α = [0.44981649 0.55018351]
ψ =
[[[-0.55018351 0.55018351]
[ 0.44981649 -0.44981649]]

[[-0.59936335 0.59936335]
[ 0.40063665 -0.40063665]]

[[-0.64755959 0.64755959]
[ 0.35244041 -0.35244041]]

[[-0.69479191 0.69479191]
[ 0.30520809 -0.30520809]]

[[-0.74107958 0.74107958]
[ 0.25892042 -0.25892042]]

[[-0.78644149 0.78644149]
[ 0.21355851 -0.21355851]]

[[-0.83089617 0.83089617]
[ 0.16910383 -0.16910383]]

[[-0.87446176 0.87446176]
[ 0.12553824 -0.12553824]]

[[-0.91715603 0.91715603]
[ 0.08284397 -0.08284397]]

[[-0.95899642 0.95899642]
[ 0.04100358 -0.04100358]]

[[-1. 1. ]
[-0. -0. ]]]

(continues on next page)
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J =
[[[ 1.3413672 1.48348712]
[ 1.3413672 1.48348712]]

[[ 2.65590706 2.9373045 ]
[ 2.65590706 2.9373045 ]]

[[ 3.94415611 4.36204553]
[ 3.94415611 4.36204553]]

[[ 5.20664019 5.75829174]
[ 5.20664019 5.75829174]]

[[ 6.44387459 7.12661302]
[ 6.44387459 7.12661302]]

[[ 7.6563643 8.46756788]
[ 7.6563643 8.46756788]]

[[ 8.84460421 9.78170364]
[ 8.84460421 9.78170364]]

[[10.00907933 11.06955669]
[10.00907933 11.06955669]]

[[11.15026494 12.33165268]
[11.15026494 12.33165268]]

[[12.26862684 13.56850674]
[12.26862684 13.56850674]]

[[13.3646215 14.78062373]
[13.3646215 14.78062373]]]

We can check the results with finite horizon converges to the ones with infinite horizon as 𝑇 → ∞.

ex1_large = RecurCompetitive(s, P, ys, T=10000)
ex1_large.wealth_distribution(s0_idx=1)

array([0.49, 0.51])

ex1.V, ex1_large.V[-1]

(array([[[25.5, 24.5],
[24.5, 25.5]]]),

array([[25.5, 24.5],
[24.5, 25.5]]))

ex1_large.continuation_wealths()
ex1.ψ, ex1_large.ψ[-1]

(array([[[-1., 1.],
[ 0., -0.]]]),

array([[-1., 1.],

(continues on next page)
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[ 0., -0.]]))

ex1_large.value_functionss()
ex1.J, ex1_large.J[-1]

(array([[[70. , 71.41428429],
[70. , 71.41428429]]]),

array([[70. , 71.41428429],
[70. , 71.41428429]]))
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HETEROGENEOUS BELIEFS AND BUBBLES

Contents

• Heterogeneous Beliefs and Bubbles

– Overview

– Structure of the Model

– Solving the Model

In addition to what’s in Anaconda, this lecture uses following libraries:

!pip install quantecon

78.1 Overview

This lecture describes a version of a model of Harrison and Kreps [Harrison and Kreps, 1978].

The model determines the price of a dividend-yielding asset that is traded by two types of self-interested investors.

The model features

• heterogeneous beliefs

• incomplete markets

• short sales constraints, and possibly …
• (leverage) limits on an investor’s ability to borrow in order to finance purchases of a risky asset

Let’s start with some standard imports:

import numpy as np
import quantecon as qe
import scipy.linalg as la
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78.1.1 References

Prior to reading the following, you might like to review our lectures on

• Markov chains

• Asset pricing with finite state space

78.1.2 Bubbles

Economists differ in how they define a bubble.

The Harrison-Kreps model illustrates the following notion of a bubble that attracts many economists:

A component of an asset price can be interpreted as a bubble when all investors agree that the current price of
the asset exceeds what they believe the asset’s underlying dividend stream justifies.

78.2 Structure of the Model

The model simplifies things by ignoring alterations in the distribution of wealth among investors who have hard-wired
different beliefs about the fundamentals that determine asset payouts.

There is a fixed number 𝐴 of shares of an asset.

Each share entitles its owner to a stream of dividends {𝑑𝑡} governed by aMarkov chain defined on a state space𝑆 ∈ {0, 1}.
The dividend obeys

𝑑𝑡 = {0 if 𝑠𝑡 = 0
1 if 𝑠𝑡 = 1

An owner of a share at the end of time 𝑡 and the beginning of time 𝑡 + 1 is entitled to the dividend paid at time 𝑡 + 1.
Thus, the stock is traded ex dividend.

An owner of a share at the beginning of time 𝑡 + 1 is also entitled to sell the share to another investor during time 𝑡 + 1.
Two types ℎ = 𝑎, 𝑏 of investors differ only in their beliefs about a Markov transition matrix 𝑃 with typical element

𝑃(𝑖, 𝑗) = ℙ{𝑠𝑡+1 = 𝑗 ∣ 𝑠𝑡 = 𝑖}

Investors of type 𝑎 believe the transition matrix

𝑃𝑎 = [
1
2

1
22

3
1
3
]

Investors of type 𝑏 think the transition matrix is

𝑃𝑏 = [
2
3

1
31

4
3
4
]

Thus, in state 0, a type 𝑎 investor is more optimistic about next period’s dividend than is investor 𝑏.
But in state 1, a type 𝑎 investor is more pessimistic about next period’s dividend than is investor 𝑏.
The stationary (i.e., invariant) distributions of these two matrices can be calculated as follows:
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qa = np.array([[1/2, 1/2], [2/3, 1/3]])
qb = np.array([[2/3, 1/3], [1/4, 3/4]])
mca = qe.MarkovChain(qa)
mcb = qe.MarkovChain(qb)
mca.stationary_distributions

array([[0.57142857, 0.42857143]])

mcb.stationary_distributions

array([[0.42857143, 0.57142857]])

The stationary distribution of 𝑃𝑎 is approximately 𝜋𝑎 = [.57 .43].
The stationary distribution of 𝑃𝑏 is approximately 𝜋𝑏 = [.43 .57].
Thus, a type 𝑎 investor is more pessimistic on average.

78.2.1 Ownership Rights

An owner of the asset at the end of time 𝑡 is entitled to the dividend at time 𝑡 + 1 and also has the right to sell the asset
at time 𝑡 + 1.
Both types of investors are risk-neutral and both have the same fixed discount factor 𝛽 ∈ (0, 1).
In our numerical example, we’ll set 𝛽 = .75, just as Harrison and Kreps [Harrison and Kreps, 1978] did.
We’ll eventually study the consequences of two alternative assumptions about the number of shares 𝐴 relative to the
resources that our two types of investors can invest in the stock.

1. Both types of investors have enough resources (either wealth or the capacity to borrow) so that they can purchase
the entire available stock of the asset1.

2. No single type of investor has sufficient resources to purchase the entire stock.

Case 1 is the case studied in Harrison and Kreps.

In case 2, both types of investors always hold at least some of the asset.

78.2.2 Short Sales Prohibited

No short sales are allowed.

This matters because it limits how pessimists can express their opinions.

• They can express themselves by selling their shares.

• They cannot express themsevles more loudly by artificially “manufacturing shares” – that is, they cannot borrow
shares from more optimistic investors and then immediately sell them.

1 By assuming that both types of agents always have “deep enough pockets” to purchase all of the asset, the model takes wealth dynamics off the
table. The Harrison-Kreps model generates high trading volume when the state changes either from 0 to 1 or from 1 to 0.
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78.2.3 Optimism and Pessimism

The above specifications of the perceived transition matrices 𝑃𝑎 and 𝑃𝑏, taken directly from Harrison and Kreps, build
in stochastically alternating temporary optimism and pessimism.

Remember that state 1 is the high dividend state.
• In state 0, a type 𝑎 agent is more optimistic about next period’s dividend than a type 𝑏 agent.
• In state 1, a type 𝑏 agent is more optimistic about next period’s dividend than a type 𝑎 agaub is.

However, the stationary distributions 𝜋𝑎 = [.57 .43] and 𝜋𝑏 = [.43 .57] tell us that a type 𝑏 person is more optimistic
about the dividend process in the long run than is a type 𝑎 person.

78.2.4 Information

Investors know a price function mapping the state 𝑠𝑡 at 𝑡 into the equilibrium price 𝑝(𝑠𝑡) that prevails in that state.
This price function is endogenous and to be determined below.

When investors choose whether to purchase or sell the asset at 𝑡, they also know 𝑠𝑡.

78.3 Solving the Model

Now let’s turn to solving the model.

We’ll determine equilibrium prices under a particular specification of beliefs and constraints on trading selected from one
of the specifications described above.

We shall compare equilibrium price functions under the following alternative assumptions about beliefs:

1. There is only one type of agent, either 𝑎 or 𝑏.
2. There are two types of agents differentiated only by their beliefs. Each type of agent has sufficient resources to

purchase all of the asset (Harrison and Kreps’s setting).

3. There are two types of agents with different beliefs, but because of limited wealth and/or limited leverage, both
types of investors hold the asset each period.

78.3.1 Summary Table

The following table gives a summary of the findings obtained in the remainder of the lecture (in an exercise you will be
asked to recreate the table and also reinterpret parts of it).

The table reports implications of Harrison and Kreps’s specifications of 𝑃𝑎, 𝑃𝑏, 𝛽.

𝑠𝑡 0 1

𝑝𝑎 1.33 1.22
𝑝𝑏 1.45 1.91
𝑝𝑜 1.85 2.08
𝑝𝑝 1 1
̂𝑝𝑎 1.85 1.69
̂𝑝𝑏 1.69 2.08

Here
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• 𝑝𝑎 is the equilibrium price function under homogeneous beliefs 𝑃𝑎

• 𝑝𝑏 is the equilibrium price function under homogeneous beliefs 𝑃𝑏

• 𝑝𝑜 is the equilibrium price function under heterogeneous beliefs with optimistic marginal investors

• 𝑝𝑝 is the equilibrium price function under heterogeneous beliefs with pessimistic marginal investors

• ̂𝑝𝑎 is the amount type 𝑎 investors are willing to pay for the asset

• ̂𝑝𝑏 is the amount type 𝑏 investors are willing to pay for the asset
We’ll explain these values and how they are calculated one row at a time.

The row corresponding to 𝑝𝑜 applies when both types of investor have enough resources to purchase the entire stock of
the asset and strict short sales constraints prevail so that temporarily optimistic investors always price the asset.

The row corresponding to 𝑝𝑝 would apply if neither type of investor has enough resources to purchase the entire stock of
the asset and both types must hold the asset.

The row corresponding to 𝑝𝑝 would also apply if both types have enough resources to buy the entire stock of the asset
but short sales are also possible so that temporarily pessimistic investors price the asset.

78.3.2 Single Belief Prices

We’ll start by pricing the asset under homogeneous beliefs.

(This is the case treated in the lecture on asset pricing with finite Markov states)

Suppose that there is only one type of investor, either of type 𝑎 or 𝑏, and that this investor always “prices the asset”.

Let 𝑝ℎ = [𝑝ℎ(0)
𝑝ℎ(1)] be the equilibrium price vector when all investors are of type ℎ.

The price today equals the expected discounted value of tomorrow’s dividend and tomorrow’s price of the asset:

𝑝ℎ(𝑠) = 𝛽 (𝑃ℎ(𝑠, 0)(0 + 𝑝ℎ(0)) + 𝑃ℎ(𝑠, 1)(1 + 𝑝ℎ(1))) , 𝑠 = 0, 1 (78.1)

These equations imply that the equilibrium price vector is

[𝑝ℎ(0)
𝑝ℎ(1)] = 𝛽[𝐼 − 𝛽𝑃ℎ]−1𝑃ℎ [0

1] (78.2)

The first two rows of the table report 𝑝𝑎(𝑠) and 𝑝𝑏(𝑠).
Here’s a function that can be used to compute these values

def price_single_beliefs(transition, dividend_payoff, β=.75):
"""
Function to Solve Single Beliefs
"""
# First compute inverse piece
imbq_inv = la.inv(np.eye(transition.shape[0]) - β * transition)

# Next compute prices
prices = β * imbq_inv @ transition @ dividend_payoff

return prices

78.3. Solving the Model 1467



Intermediate Quantitative Economics with Python

Single Belief Prices as Benchmarks

These equilibrium prices under homogeneous beliefs are important benchmarks for the subsequent analysis.

• 𝑝ℎ(𝑠) tells what a type ℎ investor thinks is the “fundamental value” of the asset.

• Here “fundamental value” means the expected discounted present value of future dividends.

We will compare these fundamental values of the asset with equilibrium values when traders have different beliefs.

78.3.3 Pricing under Heterogeneous Beliefs

There are several cases to consider.

The first is when both types of agents have sufficient wealth to purchase all of the asset themselves.

In this case, the marginal investor who prices the asset is the more optimistic type so that the equilibrium price ̄𝑝 satisfies
Harrison and Kreps’s key equation:

̄𝑝(𝑠) = 𝛽max {𝑃𝑎(𝑠, 0) ̄𝑝(0) + 𝑃𝑎(𝑠, 1)(1 + ̄𝑝(1)), 𝑃𝑏(𝑠, 0) ̄𝑝(0) + 𝑃𝑏(𝑠, 1)(1 + ̄𝑝(1))} (78.3)

for 𝑠 = 0, 1.
In the above equation, the 𝑚𝑎𝑥 on the right side is over the two prospective values of next period’s payout from owning
the asset.

The marginal investor who prices the asset in state 𝑠 is of type 𝑎 if

𝑃𝑎(𝑠, 0) ̄𝑝(0) + 𝑃𝑎(𝑠, 1)(1 + ̄𝑝(1)) > 𝑃𝑏(𝑠, 0) ̄𝑝(0) + 𝑃𝑏(𝑠, 1)(1 + ̄𝑝(1))

The marginal investor is of type 𝑏 if

𝑃𝑎(𝑠, 1) ̄𝑝(0) + 𝑃𝑎(𝑠, 1)(1 + ̄𝑝(1)) < 𝑃𝑏(𝑠, 1) ̄𝑝(0) + 𝑃𝑏(𝑠, 1)(1 + ̄𝑝(1))

Thus the marginal investor is the (temporarily) optimistic type.

Equation (78.3) is a functional equation that, like a Bellman equation, can be solved by

• starting with a guess for the price vector ̄𝑝 and
• iterating to convergence on the operator that maps a guess ̄𝑝𝑗 into an updated guess ̄𝑝𝑗+1 defined by the right side
of (78.3), namely

̄𝑝𝑗+1(𝑠) = 𝛽max {𝑃𝑎(𝑠, 0) ̄𝑝𝑗(0) + 𝑃𝑎(𝑠, 1)(1 + ̄𝑝𝑗(1)), 𝑃𝑏(𝑠, 0) ̄𝑝𝑗(0) + 𝑃𝑏(𝑠, 1)(1 + ̄𝑝𝑗(1))} (78.4)

for 𝑠 = 0, 1.
The third row of the table labeled 𝑝𝑜 reports equilibrium prices that solve the functional equation when 𝛽 = .75.
Here the type that is optimistic about 𝑠𝑡+1 prices the asset in state 𝑠𝑡.

It is instructive to compare these prices with the equilibrium prices for the homogeneous belief economies that solve
under beliefs 𝑃𝑎 and 𝑃𝑏 reported in the rows labeled 𝑝𝑎 and 𝑝𝑏, respectively.

Equilibrium prices 𝑝𝑜 in the heterogeneous beliefs economy evidently exceed what any prospective investor regards as
the fundamental value of the asset in each possible state.

Nevertheless, the economy recurrently visits a state that makes each investor want to purchase the asset for more than he
believes its future dividends are worth.

An investor is willing to pay more than what he believes is warranted by fundamental value of the prospective dividend
stream because he expects to have the option later to sell the asset to another investor who will value the asset more highly
than he will then.
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• Investors of type 𝑎 are willing to pay the following price for the asset

̂𝑝𝑎(𝑠) = { ̄𝑝(0) if 𝑠𝑡 = 0
𝛽(𝑃𝑎(1, 0) ̄𝑝(0) + 𝑃𝑎(1, 1)(1 + ̄𝑝(1))) if 𝑠𝑡 = 1

• Investors of type 𝑏 are willing to pay the following price for the asset

̂𝑝𝑏(𝑠) = {𝛽(𝑃𝑏(0, 0) ̄𝑝(0) + 𝑃𝑏(0, 1)(1 + ̄𝑝(1))) if 𝑠𝑡 = 0
̄𝑝(1) if 𝑠𝑡 = 1

Evidently, ̂𝑝𝑎(1) < ̄𝑝(1) and ̂𝑝𝑏(0) < ̄𝑝(0).
Investors of type 𝑎 want to sell the asset in state 1 while investors of type 𝑏 want to sell it in state 0.

• The asset changes hands whenever the state changes from 0 to 1 or from 1 to 0.
• The valuations ̂𝑝𝑎(𝑠) and ̂𝑝𝑏(𝑠) are displayed in the fourth and fifth rows of the table.
• Even pessimistic investors who don’t buy the asset think that it is worth more than they think future dividends are
worth.

Here’s code to solve for ̄𝑝, ̂𝑝𝑎 and ̂𝑝𝑏 using the iterative method described above

def price_optimistic_beliefs(transitions, dividend_payoff, β=.75,
max_iter=50000, tol=1e-16):

"""
Function to Solve Optimistic Beliefs
"""
# We will guess an initial price vector of [0, 0]
p_new = np.array([[0], [0]])
p_old = np.array([[10.], [10.]])

# We know this is a contraction mapping, so we can iterate to conv
for i in range(max_iter):

p_old = p_new
p_new = β * np.max([q @ p_old

+ q @ dividend_payoff for q in transitions],
axis=0)

# If we succeed in converging, break out of for loop
if np.max(np.sqrt((p_new - p_old)**2)) < tol:

break

ptwiddle = β * np.min([q @ p_old
+ q @ dividend_payoff for q in transitions],
axis=0)

phat_a = np.array([p_new[0], ptwiddle[1]])
phat_b = np.array([ptwiddle[0], p_new[1]])

return p_new, phat_a, phat_b
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78.3.4 Insufficient Funds

Outcomes differ when the more optimistic type of investor has insufficient wealth — or insufficient ability to borrow
enough — to hold the entire stock of the asset.

In this case, the asset price must adjust to attract pessimistic investors.

Instead of equation (78.3), the equilibrium price satisfies

̌𝑝(𝑠) = 𝛽min {𝑃𝑎(𝑠, 0) ̌𝑝(0) + 𝑃𝑎(𝑠, 1)(1 + ̌𝑝(1)), 𝑃𝑏(𝑠, 0) ̌𝑝(0) + 𝑃𝑏(𝑠, 1)(1 + ̌𝑝(1))} (78.5)

and the marginal investor who prices the asset is always the one that values it less highly than does the other type.

Now the marginal investor is always the (temporarily) pessimistic type.

Notice from the sixth row of that the pessimistic price 𝑝𝑜 is lower than the homogeneous belief prices 𝑝𝑎 and 𝑝𝑏 in both
states.

When pessimistic investors price the asset according to (78.5), optimistic investors think that the asset is underpriced.

If they could, optimistic investors would willingly borrow at a one-period risk-free gross interest rate 𝛽−1 to purchase
more of the asset.

Implicit constraints on leverage prohibit them from doing so.

When optimistic investors price the asset as in equation (78.3), pessimistic investors think that the asset is overpriced and
would like to sell the asset short.

Constraints on short sales prevent that.

Here’s code to solve for ̌𝑝 using iteration
def price_pessimistic_beliefs(transitions, dividend_payoff, β=.75,

max_iter=50000, tol=1e-16):
"""
Function to Solve Pessimistic Beliefs
"""
# We will guess an initial price vector of [0, 0]
p_new = np.array([[0], [0]])
p_old = np.array([[10.], [10.]])

# We know this is a contraction mapping, so we can iterate to conv
for i in range(max_iter):

p_old = p_new
p_new = β * np.min([q @ p_old

+ q @ dividend_payoff for q in transitions],
axis=0)

# If we succeed in converging, break out of for loop
if np.max(np.sqrt((p_new - p_old)**2)) < tol:

break

return p_new
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78.3.5 Further Interpretation

Jose Scheinkman [Scheinkman, 2014] interprets the Harrison-Kreps model as a model of a bubble— a situation in which
an asset price exceeds what every investor thinks is merited by his or her beliefs about the value of the asset’s underlying
dividend stream.

Scheinkman stresses these features of the Harrison-Kreps model:

• High volume occurs when the Harrison-Kreps pricing formula (78.3) prevails.

• Type 𝑎 investors sell the entire stock of the asset to type 𝑏 investors every time the state switches from 𝑠𝑡 = 0 to
𝑠𝑡 = 1.

• Type 𝑏 investors sell the asset to type 𝑎 investors every time the state switches from 𝑠𝑡 = 1 to 𝑠𝑡 = 0.
Scheinkman takes this as a strength of the model because he observes high volume during famous bubbles.

• If the supply of the asset is increased sufficiently either physically (more “houses” are built) or artificially (ways
are invented to short sell “houses”), bubbles end when the asset supply has grown enough to outstrip optimistic
investors’ resources for purchasing the asset.

• If optimistic investors finance their purchases by borrowing, tightening leverage constraints can extinguish a bubble.

Scheinkman extracts insights about the effects of financial regulations on bubbles.

He emphasizes how limiting short sales and limiting leverage have opposite effects.
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Exercise 78.3.1

This exercise invites you to recreate the summary table using the functions we have built above.

𝑠𝑡 0 1

𝑝𝑎 1.33 1.22
𝑝𝑏 1.45 1.91
𝑝𝑜 1.85 2.08
𝑝𝑝 1 1
̂𝑝𝑎 1.85 1.69
̂𝑝𝑏 1.69 2.08

You will want first to define the transition matrices and dividend payoff vector.

In addition, below we’ll add an interpretation of the row corresponding to 𝑝𝑜 by inventing two additional types of
agents, one of whom is permanently optimistic, the other who is permanently pessimistic.

We construct subjective transition probability matrices for our permanently optimistic and permanently pessimistic
investors as follows.

The permanently optimistic investors(i.e., the investor with the most optimistic beliefs in each state) believes the
transition matrix

𝑃𝑜 = [
1
2

1
21

4
3
4
]

The permanently pessimistic investor believes the transition matrix

𝑃𝑝 = [
2
3

1
32

3
1
3
]

We’ll use these transition matrices when we present our solution of exercise 1 below.

Solution to Exercise 78.3.1

First, we will obtain equilibrium price vectors with homogeneous beliefs, including when all investors are optimistic
or pessimistic.

qa = np.array([[1/2, 1/2], [2/3, 1/3]]) # Type a transition matrix
qb = np.array([[2/3, 1/3], [1/4, 3/4]]) # Type b transition matrix
# Optimistic investor transition matrix
qopt = np.array([[1/2, 1/2], [1/4, 3/4]])
# Pessimistic investor transition matrix
qpess = np.array([[2/3, 1/3], [2/3, 1/3]])

dividendreturn = np.array([[0], [1]])

transitions = [qa, qb, qopt, qpess]
labels = ['p_a', 'p_b', 'p_optimistic', 'p_pessimistic']

for transition, label in zip(transitions, labels):
print(label)
print("=" * 20)
s0, s1 = np.round(price_single_beliefs(transition, dividendreturn), 2)
print(f"State 0: {s0}")
print(f"State 1: {s1}")
print("-" * 20)
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p_a
====================
State 0: [1.33]
State 1: [1.22]
--------------------
p_b
====================
State 0: [1.45]
State 1: [1.91]
--------------------
p_optimistic
====================
State 0: [1.85]
State 1: [2.08]
--------------------
p_pessimistic
====================
State 0: [1.]
State 1: [1.]
--------------------

We will use the price_optimistic_beliefs function to find the price under heterogeneous beliefs.

opt_beliefs = price_optimistic_beliefs([qa, qb], dividendreturn)
labels = ['p_optimistic', 'p_hat_a', 'p_hat_b']

for p, label in zip(opt_beliefs, labels):
print(label)
print("=" * 20)
s0, s1 = np.round(p, 2)
print(f"State 0: {s0}")
print(f"State 1: {s1}")
print("-" * 20)

p_optimistic
====================
State 0: [1.85]
State 1: [2.08]
--------------------
p_hat_a
====================
State 0: [1.85]
State 1: [1.69]
--------------------
p_hat_b
====================
State 0: [1.69]
State 1: [2.08]
--------------------

Notice that the equilibrium price with heterogeneous beliefs is equal to the price under single beliefs with perma-
nently optimistic investors - this is due to the marginal investor in the heterogeneous beliefs equilibrium always
being the type who is temporarily optimistic.
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CHAPTER

SEVENTYNINE

SPECULATIVE BEHAVIOR WITH BAYESIAN LEARNING

Contents

• Speculative Behavior with Bayesian Learning

– Overview

– Structure of the model

– Information and beliefs

– Source of heterogeneous priors

– Beta priors

– Market prices with learning

– Two Traders

– Concluding remarks

– Exercise

79.1 Overview

This lecture describes howMorris [1996] extended the Harrison–Kreps model [Harrison and Kreps, 1978] of speculative
asset pricing.

Like Harrison and Kreps’s model, Morris’s model determines the price of a dividend-yielding asset that is traded by
risk-neutral investors who have heterogeneous beliefs.

The Harrison-Kreps model assumes that the traders have dogmatic, hard-wired beliefs about the asset’s dividend stream.

Morris replaced Harrison and Kreps’s traders with hard-wired beliefs about the dividend stream with traders who use
Bayes’ Law to update their beliefs about prospective dividends as new dividend data arrive.

Note

Morris’s traders don’t use data on past prices of the asset to update their beliefs about the dividend process.

Key features of the environment in Morris’s model include:

• All traders share a set of statistical models for prospective dividends

1475



Intermediate Quantitative Economics with Python

• A single parameter indexes the set of statistical models

• All traders observe the same dividend history

• All traders use Bayes’ Law to update beliefs

• Traders have different initial prior distributions over the parameter

• Traders’ posterior distributions over the parameter eventually merge

• Before their posterior distributions merge, traders disagree about the predictive density over prospective dividends

– therefore they disagree about the value of the asset

Just as in the hard-wired beliefs model of Harrison and Kreps, those differences of opinion induce investors to engage in
speculative behavior in the following sense:

• sometimes they are willing to pay more for the asset than what they think is its “fundamental” value, i.e., the
expected discounted value of its prospective dividend stream

Prior to reading this lecture, you might want to review the following quantecon lectures:

• Harrison-Kreps model

• Likelihood ratio processes

• Bayesian versus frequentist statistics

Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt

79.2 Structure of the model

There is a fixed supply of shares of an asset.

Each share entitles its owner to a stream of binary i.i.d. dividends {𝑑𝑡} where

𝑑𝑡+1 ∈ {0, 1}

The dividend at time 𝑡 equals 1 with unknown probability 𝜃 ∈ (0, 1) and equals 0 with probability 1 − 𝜃.
Unlike [Harrison and Kreps, 1978] where traders have hard-wired beliefs about a Markov transition matrix, in Morris’s
model:

• The true dividend probability 𝜃 is unknown
• Traders have prior beliefs about 𝜃
• Traders observe dividend realizations and update beliefs via Bayes’ Law

There is a finite set ℐ of risk-neutral traders.

All traders have the same discount factor 𝛽 ∈ (0, 1).
• You can think of 𝛽 as being related to a net risk-free interest rate 𝑟 by 𝛽 = 1/(1 + 𝑟).

Owning the asset at the end of period 𝑡 entitles the owner to dividends at time 𝑡 + 1, 𝑡 + 2, ….

Because the dividend process is i.i.d., trader 𝑖 thinks that the fundamental value of the asset is the capitalized value of
the dividend stream, namely, ∑∞

𝑗=1 𝛽𝑗 ̂𝜃𝑖 = ̂𝜃𝑖
𝑟 , where ̂𝜃𝑖 is the mean of the trader’s posterior distribution over 𝜃.
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79.2.1 Possible trades

Traders buy and sell the risky asset in competitive markets each period 𝑡 = 0, 1, 2, … after dividends are paid.

As in Harrison-Kreps:

• The asset is traded ex dividend

• An owner of a share at the end of time 𝑡 is entitled to the dividend at time 𝑡 + 1
• An owner of a share at the end of period 𝑡 also has the right to sell the share at time 𝑡 + 1 after having received the
dividend at time 𝑡 + 1.

Short sales are prohibited.

This matters because it limits how pessimists can express their opinions:

• They can express themselves by selling their shares

• They cannot express themselves more emphatically by borrowing shares and immediately selling them

All traders have sufficient wealth to purchase the risky asset.

79.3 Information and beliefs

At time 𝑡 ≥ 1, all traders observe (𝑑1, 𝑑2, … , 𝑑𝑡).
All traders update their subjective distribution over 𝜃 by applying Bayes’ rule.
Traders have heterogeneous priors over the unknown dividend probability 𝜃.
This heterogeneity in priors produces heterogeneous posterior beliefs.

79.4 Source of heterogeneous priors

Imputing different statistical models to agents inside a model is controversial.

Many game theorists and rational expectations applied economists think it is a bad idea.

While these economists often construct models in which agents have different information, they prefer to assume that all
of the agents inside their model always share the same statistical model – i.e., the same joint probability distribution over
the random process being modeled.

For a statistician or an economic theorist, a statistical model is a joint probability distribution that is characterized by a
known parameter vector.

When working with a set of statistical models swept out by parameters, say 𝜃 in a known setΘ, economic theorists reduce
the set of models to a single model by imputing to all agents inside the model the same prior probability distribution over
𝜃.

Note

A set of statistical models that has a particular geometric structure is called a manifold of statistical models. Morris
endows traders with a shared manifold of statistical models.

Proceeding in this way adheres to the Harsanyi Common Priors Doctrine.
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[Harsanyi, 1967], [Harsanyi, 1968], [Harsanyi, 1968] argued that if two rational agents have the same information and
the same reasoning capabilities, they will have the same joint probability distribution over outcomes of interest.

Harsanyi interpreted disagreements about prospective outcomes as arising from differences in agents’ information sets,
not differences in their statistical models.

Evidently, [Harrison and Kreps, 1978] departed from the Harsanyi common statistical model assumption when they
hard-wired dogmatic disparate beliefs.

Morris [1996] abandons the Harsanyi doctrine less completely than Harrison and Kreps had.

• Morris does assume that agents share the same set of statistical models, but …
• Morris assumes that they have different initial prior distributions over the parameter that indexes the models

Morris’s agents express their initial ignorance about the parameter differently – they have different priors.

Morris defends his assumption by alluding to the apparent ‘‘mispricing’’ of initial public offerings presented by [Miller,
1977].

Miller described a situation in which agents have access to little or no data about a new enterprise.

Morris wanted his traders to be open to changing their opinions as information about the parameter arrives.

Knowledgeable statisticians have been known to disagree about an appropriate prior.

For example, Morris described different respectable ways to express ‘‘maximal ignorance’’ about the parameter of a
Bernoulli distribution

• a uniform distribution on [0, 1]
• a Jeffreys prior [Jeffreys, 1946] that is invariant to reparameterization; in the present situation, the Jeffreys prior
takes the form of a Beta distribution with parameters .5, .5

Is one of these priors more ‘‘rational’’ than the other?

Morris thinks not.

79.5 Beta priors

For tractability, assume trader 𝑖 has a Beta prior over the dividend probability

𝜃 ∼ Beta(𝑎𝑖, 𝑏𝑖)

where 𝑎𝑖, 𝑏𝑖 > 0 are the prior parameters.

Note

The Beta distribution also appears in these quantecon lectures Statistical Divergence Measures, Likelihood Ratio Pro-
cesses, Job Search VII: Search with Learning.

Suppose trader 𝑖 observes a history of 𝑡 periods in which a total of 𝑠 dividends are paid (i.e., 𝑠 successes with dividend
and 𝑡 − 𝑠 failures without dividend).
By Bayes’ rule, the posterior density over 𝜃 is:

𝜋𝑖(𝜃 ∣ 𝑠, 𝑡) = 𝜃𝑠(1 − 𝜃)𝑡−𝑠𝜋𝑖(𝜃)
∫1
0 𝜃𝑠(1 − 𝜃)𝑡−𝑠𝜋𝑖(𝜃)𝑑𝜃

where 𝜋𝑖(𝜃) is trader 𝑖’s prior density.
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Note

The Beta distribution is the conjugate prior for the Binomial likelihood. This means that when the prior is Beta(𝑎𝑖, 𝑏𝑖)
and we observe 𝑠 successes in 𝑡 trials, the posterior is Beta(𝑎𝑖 + 𝑠, 𝑏𝑖 + 𝑡 − 𝑠).

The posterior mean (or expected dividend probability) is:

𝜇𝑖(𝑠, 𝑡) = ∫
1

0
𝜃𝜋𝑖(𝜃 ∣ 𝑠, 𝑡)𝑑𝜃 = 𝔼[Beta(𝑎𝑖 + 𝑠, 𝑏𝑖 + 𝑡 − 𝑠)] = 𝑎𝑖 + 𝑠

𝑎𝑖 + 𝑏𝑖 + 𝑡

Morris refers to 𝜇𝑖(𝑠, 𝑡) as trader 𝑖’s fundamental valuation of the asset after history (𝑠, 𝑡).
This is the probability trader 𝑖 assigns to receiving a dividend next period.
It embeds trader 𝑖’s updated belief about 𝜃.

79.6 Market prices with learning

Fundamental valuations equal expected present values of dividends that our heterogeneous traders attach to the option of
holding the asset forever.

The equilibrium price process is determined by the condition that the asset is held at time 𝑡 by the trader who attaches
the highest valuation to the asset at time 𝑡.
An owner of the asset has the option to sell it after receiving that period’s dividend.

Traders take that into account.

That opens the possibility that a trader will be willing to pay more for the asset than that trader’s fundamental valuation.

Definition 79.6.1 (Most Optimistic Valuation)

After history (𝑠, 𝑡), the most optimistic fundamental valuation is:

𝜇∗(𝑠, 𝑡) = max
𝑖∈ℐ

𝜇𝑖(𝑠, 𝑡)

Definition 79.6.2 (Equilibrium Asset Price)

Write ̃𝑝(𝑠, 𝑡, 𝑟) for the competitive equilibrium price of the risky asset (in current dollars) after history (𝑠, 𝑡) when
the interest rate is 𝑟.
The equilibrium price satisfies:

̃𝑝(𝑠, 𝑡, 𝑟) = 1
1 + 𝑟[𝜇∗(𝑠, 𝑡){1 + ̃𝑝(𝑠 + 1, 𝑡 + 1, 𝑟)} + (1 − 𝜇∗(𝑠, 𝑡)) ̃𝑝(𝑠, 𝑡 + 1, 𝑟)]

The equilibrium price equals the highest expected discounted return among all traders from holding the asset to the next
period.
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Definition 79.6.3 (Normalized Price)

Define the normalized price as:

𝑝(𝑠, 𝑡, 𝑟) = 𝑟 ̃𝑝(𝑠, 𝑡, 𝑟)

Since the current “dollar” price of the riskless asset is 1/𝑟, this represents the price of the risky asset in terms of the
riskless asset.

Substituting the preceding formula into the equilibrium condition gives:

𝑝(𝑠, 𝑡, 𝑟) = 𝑟
1 + 𝑟𝜇∗(𝑠, 𝑡) + 1

1 + 𝑟[𝜇∗(𝑠, 𝑡)𝑝(𝑠 + 1, 𝑡 + 1, 𝑟) + (1 − 𝜇∗(𝑠, 𝑡))𝑝(𝑠, 𝑡 + 1, 𝑟)]

or equivalently:

𝑝(𝑠, 𝑡, 𝑟) = 𝜇∗(𝑠, 𝑡) + 𝑟
1 + 𝑟[𝜇∗(𝑠, 𝑡)𝑝(𝑠 + 1, 𝑡 + 1, 𝑟) + (1 − 𝜇∗(𝑠, 𝑡))𝑝(𝑠, 𝑡 + 1, 𝑟) − 𝜇∗(𝑠, 𝑡)]

A price function that satisfies the equilibrium condition can be computed recursively.

Set 𝑝0(𝑠, 𝑡, 𝑟) = 0 for all (𝑠, 𝑡, 𝑟), and define 𝑝𝑛+1(𝑠, 𝑡, 𝑟) by:

𝑝𝑛+1(𝑠, 𝑡, 𝑟) = 𝑟
1 + 𝑟𝜇∗(𝑠, 𝑡) + 1

1 + 𝑟[𝜇∗(𝑠, 𝑡)𝑝𝑛(𝑠 + 1, 𝑡 + 1, 𝑟) + (1 − 𝜇∗(𝑠, 𝑡))𝑝𝑛(𝑠, 𝑡 + 1, 𝑟)]

The sequence {𝑝𝑛(𝑠, 𝑡, 𝑟)} converges to the equilibrium price 𝑝(𝑠, 𝑡, 𝑟).

Definition 79.6.4 (Speculative Premium)

When the identity of the most optimistic trader can switch with future dividend realizations, the market price exceeds
every trader’s fundamental valuation.

In normalized units:

𝑝(𝑠, 𝑡, 𝑟) > 𝜇𝑖(𝑠, 𝑡) for all 𝑖 ∈ ℐ

Define the speculative premium as:

𝑝(𝑠, 𝑡, 𝑟) − 𝜇∗(𝑠, 𝑡) > 0

79.7 Two Traders

We now focus on an example with two traders with Beta priors with parameters (𝑎1, 𝑏1) and (𝑎2, 𝑏2).

Definition 79.7.1 (Rate Dominance (Beta Priors))

Trader 1 rate-dominates trader 2 if:

𝑎1 ≥ 𝑎2 and 𝑏1 ≤ 𝑏2
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Theorem 79.7.1 (Global Optimist (Two Traders))

For two traders with Beta priors:

1. If trader 1 rate-dominates trader 2, then trader 1 is a global optimist: 𝜇1(𝑠, 𝑡) ≥ 𝜇2(𝑠, 𝑡) for all histories (𝑠, 𝑡)
2. In this case where 𝑝(𝑠, 𝑡, 𝑟) = 𝜇1(𝑠, 𝑡) for all (𝑠, 𝑡, 𝑟), there is no speculative premium.

When neither trader rate-dominates the other, the identity of the most optimistic trader can switch as dividends accrue.

Along a history in which perpetual switching occurs, the price of the asset strictly exceeds both traders’ fundamental
valuations so long as traders continue to disagree:

𝑝(𝑠, 𝑡, 𝑟) > max{𝜇1(𝑠, 𝑡), 𝜇2(𝑠, 𝑡)}

Thus, along such a history, there is a persistent speculative premium.

79.7.1 Implementation

For computational tractability, let’s work with a finite horizon 𝑇 and solve by backward induction.

Note

On page 1122, Morris [1996] provides an argument that the limit as 𝑇 → +∞ of such finite-horizon economies
provides a useful selection algorithm that excludes additional equilibria that involve a Ponzi-scheme price component
that Morris dismisses as fragile.

FollowingDefinition 79.6.2, we use the discount factor parameterization 𝛽 = 1/(1+𝑟) and compute dollar prices ̃𝑝(𝑠, 𝑡)
via:

̃𝑝(𝑠, 𝑡) = 𝛽 max
𝑖∈{1,2}

[𝜇𝑖(𝑠, 𝑡){1 + ̃𝑝(𝑠 + 1, 𝑡 + 1)} + (1 − 𝜇𝑖(𝑠, 𝑡)) ̃𝑝(𝑠, 𝑡 + 1)]

We set the terminal price ̃𝑝(𝑠, 𝑇 ) equal to the perpetuity value under the most optimistic belief.
def posterior_mean(a, b, s, t):

"""
Compute posterior mean μ_i(s,t) for Beta(a, b) prior.
"""
return (a + s) / (a + b + t)

def perpetuity_value(a, b, s, t, β=.75):
"""
Compute perpetuity value (β/(1-β)) * μ_i(s,t).
"""
return (β / (1 - β)) * posterior_mean(a, b, s, t)

def price_learning_two_agents(prior1, prior2, β=.75, T=200):
"""
Compute \tilde p(s,t) for two Beta-prior traders via backward induction.
"""
a1, b1 = prior1
a2, b2 = prior2
price_array = np.zeros((T+1, T+1))

(continues on next page)
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(continued from previous page)

# Terminal condition: set to perpetuity value under max belief
for s in range(T+1):

perp1 = perpetuity_value(a1, b1, s, T, β)
perp2 = perpetuity_value(a2, b2, s, T, β)
price_array[s, T] = max(perp1, perp2)

# Backward induction
for t in range(T-1, -1, -1):

for s in range(t, -1, -1):
μ1 = posterior_mean(a1, b1, s, t)
μ2 = posterior_mean(a2, b2, s, t)

# One-step continuation values under each trader's beliefs
cont1 = μ1 * (1.0 + price_array[s+1, t+1]) \

+ (1.0 - μ1) * price_array[s, t+1]
cont2 = μ2 * (1.0 + price_array[s+1, t+1]) \

+ (1.0 - μ2) * price_array[s, t+1]
price_array[s, t] = β * max(cont1, cont2)

def μ1_fun(s, t):
return posterior_mean(a1, b1, s, t)

def μ2_fun(s, t):
return posterior_mean(a2, b2, s, t)

return price_array, μ1_fun, μ2_fun

79.7.2 Case A: global optimist (no premium)

Pick priors with rate dominance, e.g., trader 1: Beta(𝑎1, 𝑏1) = (2, 1) and trader 2: (𝑎2, 𝑏2) = (1, 2).
Trader 1 is the global optimist, so the normalized price equals trader 1’s fundamental valuation: 𝑝(𝑠, 𝑡, 𝑟) = 𝜇1(𝑠, 𝑡).
β = 0.75
price_go, μ1_go, μ2_go = price_learning_two_agents(

(2,1), (1,2), β=β, T=200)

perpetuity_1 = (β / (1 - β)) * μ1_go(0, 0)
perpetuity_2 = (β / (1 - β)) * μ2_go(0, 0)

print("Price at (0, 0) =", price_go[0,0])
print("Valuation of trader 1 at (0, 0) =", perpetuity_1)
print("Valuation of trader 2 at (0, 0) =", perpetuity_2)

Price at (0, 0) = 2.0
Valuation of trader 1 at (0, 0) = 2.0
Valuation of trader 2 at (0, 0) = 1.0

The price equals trader 1’s perpetuity value.
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79.7.3 Case B: perpetual switching (positive premium)

Now assume trader 1 has Beta(1, 1), trader 2 has Beta(1/2, 1/2).
These produce crossing posteriors, so there is no global optimist and the price exceeds both fundamentals early on.

price_ps, μ1_ps, μ2_ps = price_learning_two_agents(
(1,1), (0.5,0.5), β=β, T=200)

price_00 = price_ps[0,0]
μ1_00 = μ1_ps(0,0)
μ2_00 = μ2_ps(0,0)

perpetuity_1 = (β / (1 - β)) * μ1_ps(0, 0)
perpetuity_2 = (β / (1 - β)) * μ2_ps(0, 0)

print("Price at (0, 0) =", np.round(price_00, 6))
print("Valuation of trader 1 at (0, 0) =", perpetuity_1)
print("Valuation of trader 2 at (0, 0) =", perpetuity_2)

Price at (0, 0) = 1.599322
Valuation of trader 1 at (0, 0) = 1.5
Valuation of trader 2 at (0, 0) = 1.5

The resulting premium reflects the option value of reselling to whichever trader becomes temporarily more optimistic as
dividends arrive sequentially.

Within this setting, we can reproduce two key figures reported in Morris [1996]

def normalized_price_two_agents(prior1, prior2, r, T=250):
"""Return p(s,t,r) = r \tilde p(s,t,r) for two traders."""
β = 1.0 / (1.0 + r)
price_array, *_ = price_learning_two_agents(prior1, prior2, β=β, T=T)
return r * price_array

# Figure I: p*(0,0,r) as a function of r
r_grid = np.linspace(1e-3, 5.0, 200)
priors = ((1,1), (0.5,0.5))
p00 = np.array([normalized_price_two_agents(

priors[0], priors[1], r, T=300)[0,0]
for r in r_grid])

fig, ax = plt.subplots()
ax.plot(r_grid, p00, lw=2)
ax.set_xlabel(r'$r$')
ax.set_ylabel(r'$p^*(0,0,r)$')
ax.axhline(0.5, color='C1', linestyle='--')
plt.show()

In the first figure, notice that:

• The resale option pushes the normalized price 𝑝∗(0, 0, 𝑟) above fundamentals (0.5) for any finite 𝑟.
• As 𝑟 increases (𝛽 decreases), the option value fades and 𝑝∗(0, 0, 𝑟) → 0.5.
• At 𝑟 = 0.05 the premium is about 8–9%, consistent with Morris (1996, Section IV).
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Fig. 79.1: Normalized price against interest rate
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# Figure II: p*(t/2,t,0.05) as a function of t
r = 0.05
T = 60
p_mat = normalized_price_two_agents(priors[0], priors[1], r, T=T)
t_vals = np.arange(0, 54, 2)
s_vals = t_vals // 2
y = np.array([p_mat[s, t] for s, t in zip(s_vals, t_vals)])

fig, ax = plt.subplots()
ax.plot(t_vals, y, lw=2)
ax.set_xlabel(r'$t$')
ax.set_ylabel(r'$p^*(t/2,t,0.05)$')
ax.axhline(0.5, color='C1', linestyle='--')
plt.show()

p0 = p_mat[0,0]
μ0 = 0.5
print("Initial normalized premium at r=0.05 (%):",

np.round(100 * (p0 / μ0 - 1.0), 2))

Fig. 79.2: Normalized price against time

Initial normalized premium at r=0.05 (%): 8.85

In the second figure, notice that:

• Along the symmetric path 𝑠 = 𝑡/2, both traders’ fundamental valuations equal 0.5 at every 𝑡, yet the price starts
above 0.5 and declines toward 0.5 as learning reduces disagreement and the resale option loses value.
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79.7.4 General N–trader extension

The same recursion extends to any finite set of Beta priors {(𝑎𝑖, 𝑏𝑖)}𝑁
𝑖=1 by taking a max over 𝑖 each period.

def price_learning(priors, β=0.75, T=200):
"""
N-trader version with heterogeneous Beta priors.
"""
price_array = np.zeros((T+1, T+1))

def perp_i(i, s, t):
a, b = priors[i]
return perpetuity_value(a, b, s, t, β)

# Terminal condition
for s in range(T+1):

price_array[s, T] = max(
perp_i(i, s, T) for i in range(len(priors)))

# Backward induction
for t in range(T-1, -1, -1):

for s in range(t, -1, -1):
conts = []
for (a, b) in priors:

μ = posterior_mean(a, b, s, t)
conts.append(μ *
(1.0 + price_array[s+1, t+1])

+ (1.0 - μ) * price_array[s, t+1])
price_array[s, t] = β * max(conts)

return price_array

β = 0.75
priors = [(1,1), (0.5,0.5), (3,2)]
price_N = price_learning(priors, β=β, T=150)

# Compute valuations for each trader at (0,0)
μ_vals = [posterior_mean(a, b, 0, 0) for a, b in priors]
perp_vals = [(β / (1 - β)) * μ for μ in μ_vals]

print("Three-trader example at (s,t)=(0,0):")
print(f"Price at (0,0) = {np.round(price_N[0,0], 6)}")
print(f"\nTrader valuations:")
for i, (μ, perp) in enumerate(zip(μ_vals, perp_vals), 1):

print(f" Trader {i} = {np.round(perp, 6)}")

Three-trader example at (s,t)=(0,0):
Price at (0,0) = 1.937972

Trader valuations:
Trader 1 = 1.5
Trader 2 = 1.5
Trader 3 = 1.8

Note that the asset price is above all traders’ valuations.

Morris tells us that no rate dominance exists in this case.

Let’s verify this using the code below
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dominant = None
for i in range(len(priors)):

is_dom = all(
priors[i][0] >= priors[j][0] and priors[i][1] <= priors[j][1]

for j in range(len(priors)) if i != j)
if is_dom:

dominant = i
break

if dominant is not None:
print(f"\nTrader {dominant+1} is the global optimist (rate-dominant)")

else:
print(f"\nNo global optimist and speculative premium exists")

No global optimist and speculative premium exists

Indeed, there is no global optimist and a speculative premium exists.

79.8 Concluding remarks

Morris [1996] uses his model to interpret a ‘‘hot issue’’ anomaly described by [Miller, 1977] according to which opening
market prices of initial public offerings seem higher than values prices that emerge later.

79.9 Exercise

Exercise 79.9.1

Morris [Morris, 1996] provides a sharp characterization of when speculative bubbles arise.

The key condition is that there is no global optimist.

In this exercise, you will verify this condition for the following sets of traders with Beta priors:

1. Trader 1: Beta(2, 1), Trader 2: Beta(1, 2)
2. Trader 1: Beta(1, 1), Trader 2: Beta(1/2, 1/2)
3. Trader 1: Beta(3, 1), Trader 2: Beta(2, 1), Trader 3: Beta(1, 2)
4. Trader 1: Beta(1, 1), Trader 2: Beta(1/2, 1/2), Trader 3: Beta(3/2, 3/2)

Solution to Exercise 79.9.1

Here is one solution:
def check_rate_dominance(priors):

"""
Check if any trader rate-dominates all others.
"""
N = len(priors)

for i in range(N):
a_i, b_i = priors[i]
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is_dominant = True

for j in range(N):
if i == j:

continue
a_j, b_j = priors[j]

# Check rate dominance condition
if not (a_i >= a_j and b_i <= b_j):

is_dominant = False
break

if is_dominant:
return i

return None

# Test cases
test_cases = [

([(2, 1), (1, 2)], "Global optimist exists"),
([(1, 1), (0.5, 0.5)], "Perpetual switching"),
([(3, 1), (2, 1), (1, 2)], "Three traders with dominant"),
([(1, 1), (0.5, 0.5), (1.5, 1.5)], "Three traders, no dominant")

]

for priors, description in test_cases:
dominant = check_rate_dominance(priors)

print(f"\n{description}")
print(f"Priors: {priors}")
print("=="*8)
if dominant is not None:

print(f"Trader {dominant+1} is the global optimist (rate-dominant)")
else:

print(f"No global optimist exists")
print("=="*8 + "\n")

Global optimist exists
Priors: [(2, 1), (1, 2)]
================
Trader 1 is the global optimist (rate-dominant)
================

Perpetual switching
Priors: [(1, 1), (0.5, 0.5)]
================
No global optimist exists
================

Three traders with dominant
Priors: [(3, 1), (2, 1), (1, 2)]
================
Trader 1 is the global optimist (rate-dominant)
================
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Three traders, no dominant
Priors: [(1, 1), (0.5, 0.5), (1.5, 1.5)]
================
No global optimist exists
================
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80.1 Overview

In an earlier lecture on pandas, we looked at working with simple data sets.

Econometricians often need to work with more complex data sets, such as panels.

Common tasks include

• Importing data, cleaning it and reshaping it across several axes.

• Selecting a time series or cross-section from a panel.

• Grouping and summarizing data.

pandas (derived from ‘panel’ and ‘data’) contains powerful and easy-to-use tools for solving exactly these kinds of
problems.

In what follows, we will use a panel data set of real minimum wages from the OECD to create:

• summary statistics over multiple dimensions of our data

• a time series of the average minimum wage of countries in the dataset

• kernel density estimates of wages by continent

We will begin by reading in our long format panel data from a CSV file and reshaping the resulting DataFrame with
pivot_table to build a MultiIndex.

1493

https://python-programming.quantecon.org/pandas.html


Intermediate Quantitative Economics with Python

Additional detail will be added to our DataFrame using pandas’ merge function, and data will be summarized with
the groupby function.

80.2 Slicing and Reshaping Data

We will read in a dataset from the OECD of real minimum wages in 32 countries and assign it to realwage.

The dataset can be accessed with the following link:

url1 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_
↪static/lecture_specific/pandas_panel/realwage.csv'

import pandas as pd

# Display 6 columns for viewing purposes
pd.set_option('display.max_columns', 6)

# Reduce decimal points to 2
pd.options.display.float_format = '{:,.2f}'.format

realwage = pd.read_csv(url1)

Let’s have a look at what we’ve got to work with

realwage.head() # Show first 5 rows

Unnamed: 0 Time Country Series \
0 0 2006-01-01 Ireland In 2015 constant prices at 2015 USD PPPs
1 1 2007-01-01 Ireland In 2015 constant prices at 2015 USD PPPs
2 2 2008-01-01 Ireland In 2015 constant prices at 2015 USD PPPs
3 3 2009-01-01 Ireland In 2015 constant prices at 2015 USD PPPs
4 4 2010-01-01 Ireland In 2015 constant prices at 2015 USD PPPs

Pay period value
0 Annual 17,132.44
1 Annual 18,100.92
2 Annual 17,747.41
3 Annual 18,580.14
4 Annual 18,755.83

The data is currently in long format, which is difficult to analyze when there are several dimensions to the data.

We will use pivot_table to create a wide format panel, with a MultiIndex to handle higher dimensional data.

pivot_table arguments should specify the data (values), the index, and the columns we want in our resulting
dataframe.

By passing a list in columns, we can create a MultiIndex in our column axis

realwage = realwage.pivot_table(values='value',
index='Time',
columns=['Country', 'Series', 'Pay period'])

realwage.head()

Country Australia \
Series In 2015 constant prices at 2015 USD PPPs

(continues on next page)
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(continued from previous page)

Pay period Annual Hourly
Time
2006-01-01 20,410.65 10.33
2007-01-01 21,087.57 10.67
2008-01-01 20,718.24 10.48
2009-01-01 20,984.77 10.62
2010-01-01 20,879.33 10.57

Country ... \
Series In 2015 constant prices at 2015 USD exchange rates ...
Pay period Annual ...
Time ...
2006-01-01 23,826.64 ...
2007-01-01 24,616.84 ...
2008-01-01 24,185.70 ...
2009-01-01 24,496.84 ...
2010-01-01 24,373.76 ...

Country United States \
Series In 2015 constant prices at 2015 USD PPPs
Pay period Hourly
Time
2006-01-01 6.05
2007-01-01 6.24
2008-01-01 6.78
2009-01-01 7.58
2010-01-01 7.88

Country
Series In 2015 constant prices at 2015 USD exchange rates
Pay period Annual Hourly
Time
2006-01-01 12,594.40 6.05
2007-01-01 12,974.40 6.24
2008-01-01 14,097.56 6.78
2009-01-01 15,756.42 7.58
2010-01-01 16,391.31 7.88

[5 rows x 128 columns]

To more easily filter our time series data, later on, we will convert the index into a DateTimeIndex

realwage.index = pd.to_datetime(realwage.index)
type(realwage.index)

pandas.core.indexes.datetimes.DatetimeIndex

The columns contain multiple levels of indexing, known as a MultiIndex, with levels being ordered hierarchically
(Country > Series > Pay period).

A MultiIndex is the simplest and most flexible way to manage panel data in pandas

type(realwage.columns)

pandas.core.indexes.multi.MultiIndex
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realwage.columns.names

FrozenList(['Country', 'Series', 'Pay period'])

Like before, we can select the country (the top level of our MultiIndex)

realwage['United States'].head()

Series In 2015 constant prices at 2015 USD PPPs \
Pay period Annual Hourly
Time
2006-01-01 12,594.40 6.05
2007-01-01 12,974.40 6.24
2008-01-01 14,097.56 6.78
2009-01-01 15,756.42 7.58
2010-01-01 16,391.31 7.88

Series In 2015 constant prices at 2015 USD exchange rates
Pay period Annual Hourly
Time
2006-01-01 12,594.40 6.05
2007-01-01 12,974.40 6.24
2008-01-01 14,097.56 6.78
2009-01-01 15,756.42 7.58
2010-01-01 16,391.31 7.88

Stacking and unstacking levels of the MultiIndex will be used throughout this lecture to reshape our dataframe into
a format we need.

.stack() rotates the lowest level of the column MultiIndex to the row index (.unstack()works in the opposite
direction - try it out)

realwage.stack(future_stack=True).head()

Country Australia \
Series In 2015 constant prices at 2015 USD PPPs
Time Pay period
2006-01-01 Annual 20,410.65

Hourly 10.33
2007-01-01 Annual 21,087.57

Hourly 10.67
2008-01-01 Annual 20,718.24

Country \
Series In 2015 constant prices at 2015 USD exchange rates
Time Pay period
2006-01-01 Annual 23,826.64

Hourly 12.06
2007-01-01 Annual 24,616.84

Hourly 12.46
2008-01-01 Annual 24,185.70

Country Belgium ... \
Series In 2015 constant prices at 2015 USD PPPs ...
Time Pay period ...
2006-01-01 Annual 21,042.28 ...

(continues on next page)
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(continued from previous page)

Hourly 10.09 ...
2007-01-01 Annual 21,310.05 ...

Hourly 10.22 ...
2008-01-01 Annual 21,416.96 ...

Country United Kingdom \
Series In 2015 constant prices at 2015 USD exchange rates
Time Pay period
2006-01-01 Annual 20,376.32

Hourly 9.81
2007-01-01 Annual 20,954.13

Hourly 10.07
2008-01-01 Annual 20,902.87

Country United States \
Series In 2015 constant prices at 2015 USD PPPs
Time Pay period
2006-01-01 Annual 12,594.40

Hourly 6.05
2007-01-01 Annual 12,974.40

Hourly 6.24
2008-01-01 Annual 14,097.56

Country
Series In 2015 constant prices at 2015 USD exchange rates
Time Pay period
2006-01-01 Annual 12,594.40

Hourly 6.05
2007-01-01 Annual 12,974.40

Hourly 6.24
2008-01-01 Annual 14,097.56

[5 rows x 64 columns]

We can also pass in an argument to select the level we would like to stack

realwage.stack(level='Country', future_stack=True).head()

Series In 2015 constant prices at 2015 USD PPPs \
Pay period Annual Hourly
Time Country
2006-01-01 Australia 20,410.65 10.33

Belgium 21,042.28 10.09
Brazil 3,310.51 1.41
Canada 13,649.69 6.56
Chile 5,201.65 2.22

Series In 2015 constant prices at 2015 USD exchange rates
Pay period Annual Hourly
Time Country
2006-01-01 Australia 23,826.64 12.06

Belgium 20,228.74 9.70
Brazil 2,032.87 0.87
Canada 14,335.12 6.89
Chile 3,333.76 1.42

Using a DatetimeIndex makes it easy to select a particular time period.
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Selecting one year and stacking the two lower levels of the MultiIndex creates a cross-section of our panel data

realwage.loc['2015'].stack(level=(1, 2), future_stack=True).transpose().head()

Time 2015-01-01 \
Series In 2015 constant prices at 2015 USD PPPs
Pay period Annual Hourly
Country
Australia 21,715.53 10.99
Belgium 21,588.12 10.35
Brazil 4,628.63 2.00
Canada 16,536.83 7.95
Chile 6,633.56 2.80

Time
Series In 2015 constant prices at 2015 USD exchange rates
Pay period Annual Hourly
Country
Australia 25,349.90 12.83
Belgium 20,753.48 9.95
Brazil 2,842.28 1.21
Canada 17,367.24 8.35
Chile 4,251.49 1.81

For the rest of lecture, we will work with a dataframe of the hourly real minimum wages across countries and time,
measured in 2015 US dollars.

To create our filtered dataframe (realwage_f), we can use the xs method to select values at lower levels in the
multiindex, while keeping the higher levels (countries in this case)

realwage_f = realwage.xs(('Hourly', 'In 2015 constant prices at 2015 USD exchange␣
↪rates'),

level=('Pay period', 'Series'), axis=1)
realwage_f.head()

Country Australia Belgium Brazil ... Turkey United Kingdom \
Time ...
2006-01-01 12.06 9.70 0.87 ... 2.27 9.81
2007-01-01 12.46 9.82 0.92 ... 2.26 10.07
2008-01-01 12.24 9.87 0.96 ... 2.22 10.04
2009-01-01 12.40 10.21 1.03 ... 2.28 10.15
2010-01-01 12.34 10.05 1.08 ... 2.30 9.96

Country United States
Time
2006-01-01 6.05
2007-01-01 6.24
2008-01-01 6.78
2009-01-01 7.58
2010-01-01 7.88

[5 rows x 32 columns]
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80.3 Merging Dataframes and Filling NaNs

Similar to relational databases like SQL, pandas has built in methods to merge datasets together.

Using country information from WorldData.info, we’ll add the continent of each country to realwage_f with the
merge function.

The dataset can be accessed with the following link:

url2 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_
↪static/lecture_specific/pandas_panel/countries.csv'

worlddata = pd.read_csv(url2, sep=';')
worlddata.head()

Country (en) Country (de) Country (local) ... Deathrate \
0 Afghanistan Afghanistan Afganistan/Afqanestan ... 13.70
1 Egypt Ägypten Misr ... 4.70
2 Åland Islands Ålandinseln Åland ... 0.00
3 Albania Albanien Shqipëria ... 6.70
4 Algeria Algerien Al-Jaza’ir/Algérie ... 4.30

Life expectancy Url
0 51.30 https://www.laenderdaten.info/Asien/Afghanista...
1 72.70 https://www.laenderdaten.info/Afrika/Aegypten/...
2 0.00 https://www.laenderdaten.info/Europa/Aland/ind...
3 78.30 https://www.laenderdaten.info/Europa/Albanien/...
4 76.80 https://www.laenderdaten.info/Afrika/Algerien/...

[5 rows x 17 columns]

First, we’ll select just the country and continent variables from worlddata and rename the column to ‘Country’

worlddata = worlddata[['Country (en)', 'Continent']]
worlddata = worlddata.rename(columns={'Country (en)': 'Country'})
worlddata.head()

Country Continent
0 Afghanistan Asia
1 Egypt Africa
2 Åland Islands Europe
3 Albania Europe
4 Algeria Africa

We want to merge our new dataframe, worlddata, with realwage_f.

The pandas merge function allows dataframes to be joined together by rows.

Our dataframes will be merged using country names, requiring us to use the transpose of realwage_f so that rows
correspond to country names in both dataframes

realwage_f.transpose().head()

Time 2006-01-01 2007-01-01 2008-01-01 ... 2014-01-01 2015-01-01 \
Country ...
Australia 12.06 12.46 12.24 ... 12.67 12.83
Belgium 9.70 9.82 9.87 ... 10.01 9.95

(continues on next page)
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(continued from previous page)

Brazil 0.87 0.92 0.96 ... 1.21 1.21
Canada 6.89 6.96 7.24 ... 8.22 8.35
Chile 1.42 1.45 1.44 ... 1.76 1.81

Time 2016-01-01
Country
Australia 12.98
Belgium 9.76
Brazil 1.24
Canada 8.48
Chile 1.91

[5 rows x 11 columns]

We can use either left, right, inner, or outer join to merge our datasets:

• left join includes only countries from the left dataset

• right join includes only countries from the right dataset

• outer join includes countries that are in either the left and right datasets

• inner join includes only countries common to both the left and right datasets

By default, merge will use an inner join.

Here we will pass how='left' to keep all countries in realwage_f, but discard countries in worlddata that do
not have a corresponding data entry realwage_f.

This is illustrated by the red shading in the following diagram
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We will also need to specify where the country name is located in each dataframe, which will be the key that is used to
merge the dataframes ‘on’.

Our ‘left’ dataframe (realwage_f.transpose()) contains countries in the index, so we set left_index=True.

Our ‘right’ dataframe (worlddata) contains countries in the ‘Country’ column, so we set right_on='Country'

merged = pd.merge(realwage_f.transpose(), worlddata,
how='left', left_index=True, right_on='Country')

merged.head()

2006-01-01 00:00:00 2007-01-01 00:00:00 2008-01-01 00:00:00 ... \
17.00 12.06 12.46 12.24 ...
23.00 9.70 9.82 9.87 ...
32.00 0.87 0.92 0.96 ...
100.00 6.89 6.96 7.24 ...
38.00 1.42 1.45 1.44 ...

2016-01-01 00:00:00 Country Continent
17.00 12.98 Australia Australia
23.00 9.76 Belgium Europe
32.00 1.24 Brazil South America
100.00 8.48 Canada North America
38.00 1.91 Chile South America

[5 rows x 13 columns]

Countries that appeared in realwage_f but not in worlddata will have NaN in the Continent column.

To check whether this has occurred, we can use .isnull() on the continent column and filter the merged dataframe

merged[merged['Continent'].isnull()]

2006-01-01 00:00:00 2007-01-01 00:00:00 2008-01-01 00:00:00 ... \
NaN 3.42 3.74 3.87 ...
NaN 0.23 0.45 0.39 ...
NaN 1.50 1.64 1.71 ...

2016-01-01 00:00:00 Country Continent
NaN 5.28 Korea NaN
NaN 0.55 Russian Federation NaN
NaN 2.08 Slovak Republic NaN

[3 rows x 13 columns]

We have three missing values!

One option to deal with NaN values is to create a dictionary containing these countries and their respective continents.

.map() will match countries in merged['Country'] with their continent from the dictionary.

Notice how countries not in our dictionary are mapped with NaN

missing_continents = {'Korea': 'Asia',
'Russian Federation': 'Europe',
'Slovak Republic': 'Europe'}

merged['Country'].map(missing_continents)
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17.00 NaN
23.00 NaN
32.00 NaN
100.00 NaN
38.00 NaN
108.00 NaN
41.00 NaN
225.00 NaN
53.00 NaN
58.00 NaN
45.00 NaN
68.00 NaN
233.00 NaN
86.00 NaN
88.00 NaN
91.00 NaN
NaN Asia
117.00 NaN
122.00 NaN
123.00 NaN
138.00 NaN
153.00 NaN
151.00 NaN
174.00 NaN
175.00 NaN
NaN Europe
NaN Europe
198.00 NaN
200.00 NaN
227.00 NaN
241.00 NaN
240.00 NaN
Name: Country, dtype: object

We don’t want to overwrite the entire series with this mapping.

.fillna() only fills in NaN values in merged['Continent'] with the mapping, while leaving other values in
the column unchanged

merged['Continent'] = merged['Continent'].fillna(merged['Country'].map(missing_
↪continents))

# Check for whether continents were correctly mapped

merged[merged['Country'] == 'Korea']

2006-01-01 00:00:00 2007-01-01 00:00:00 2008-01-01 00:00:00 ... \
NaN 3.42 3.74 3.87 ...

2016-01-01 00:00:00 Country Continent
NaN 5.28 Korea Asia

[1 rows x 13 columns]

We will also combine the Americas into a single continent - this will make our visualization nicer later on.

To do this, we will use .replace() and loop through a list of the continent values we want to replace
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replace = ['Central America', 'North America', 'South America']

for country in replace:
merged.Continent = merged.Continent.replace(to_replace=country,

value='America')

Now that we have all the data we want in a single DataFrame, we will reshape it back into panel form with a Multi-
Index.

We should also ensure to sort the index using .sort_index() so that we can efficiently filter our dataframe later on.

By default, levels will be sorted top-down

merged = merged.set_index(['Continent', 'Country']).sort_index()
merged.head()

2006-01-01 2007-01-01 2008-01-01 ... 2014-01-01 \
Continent Country ...
America Brazil 0.87 0.92 0.96 ... 1.21

Canada 6.89 6.96 7.24 ... 8.22
Chile 1.42 1.45 1.44 ... 1.76
Colombia 1.01 1.02 1.01 ... 1.13
Costa Rica NaN NaN NaN ... 2.41

2015-01-01 2016-01-01
Continent Country
America Brazil 1.21 1.24

Canada 8.35 8.48
Chile 1.81 1.91
Colombia 1.13 1.12
Costa Rica 2.56 2.63

[5 rows x 11 columns]

While merging, we lost our DatetimeIndex, as we merged columns that were not in datetime format

merged.columns

Index([2006-01-01 00:00:00, 2007-01-01 00:00:00, 2008-01-01 00:00:00,
2009-01-01 00:00:00, 2010-01-01 00:00:00, 2011-01-01 00:00:00,
2012-01-01 00:00:00, 2013-01-01 00:00:00, 2014-01-01 00:00:00,
2015-01-01 00:00:00, 2016-01-01 00:00:00],

dtype='object')

Now that we have set the merged columns as the index, we can recreate a DatetimeIndex using .to_datetime()

merged.columns = pd.to_datetime(merged.columns)
merged.columns = merged.columns.rename('Time')
merged.columns

DatetimeIndex(['2006-01-01', '2007-01-01', '2008-01-01', '2009-01-01',
'2010-01-01', '2011-01-01', '2012-01-01', '2013-01-01',
'2014-01-01', '2015-01-01', '2016-01-01'],

dtype='datetime64[ns]', name='Time', freq=None)

The DatetimeIndex tends to work more smoothly in the row axis, so we will go ahead and transpose merged
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merged = merged.transpose()
merged.head()

Continent America ... Europe
Country Brazil Canada Chile ... Slovenia Spain United Kingdom
Time ...
2006-01-01 0.87 6.89 1.42 ... 3.92 3.99 9.81
2007-01-01 0.92 6.96 1.45 ... 3.88 4.10 10.07
2008-01-01 0.96 7.24 1.44 ... 3.96 4.14 10.04
2009-01-01 1.03 7.67 1.52 ... 4.08 4.32 10.15
2010-01-01 1.08 7.94 1.56 ... 4.81 4.30 9.96

[5 rows x 32 columns]

80.4 Grouping and Summarizing Data

Grouping and summarizing data can be particularly useful for understanding large panel datasets.

A simple way to summarize data is to call an aggregation method on the dataframe, such as .mean() or .max().

For example, we can calculate the average real minimum wage for each country over the period 2006 to 2016 (the default
is to aggregate over rows)

merged.mean().head(10)

Continent Country
America Brazil 1.09

Canada 7.82
Chile 1.62
Colombia 1.07
Costa Rica 2.53
Mexico 0.53
United States 7.15

Asia Israel 5.95
Japan 6.18
Korea 4.22

dtype: float64

Using this series, we can plot the average real minimum wage over the past decade for each country in our data set

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()

merged.mean().sort_values(ascending=False).plot(kind='bar',
title="Average real minimum wage 2006␣

↪- 2016")

# Set country labels
country_labels = merged.mean().sort_values(ascending=False).index.get_level_values(

↪'Country').tolist()
plt.xticks(range(0, len(country_labels)), country_labels)
plt.xlabel('Country')

plt.show()
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Passing in axis=1 to .mean() will aggregate over columns (giving the average minimum wage for all countries over
time)

merged.mean(axis=1).head()

Time
2006-01-01 4.69
2007-01-01 4.84
2008-01-01 4.90
2009-01-01 5.08
2010-01-01 5.11
dtype: float64

We can plot this time series as a line graph

merged.mean(axis=1).plot()
plt.title('Average real minimum wage 2006 - 2016')
plt.ylabel('2015 USD')

(continues on next page)
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(continued from previous page)

plt.xlabel('Year')
plt.show()

We can also specify a level of the MultiIndex (in the column axis) to aggregate over

merged.T.groupby(level='Continent').mean().T.head()

Continent America Asia Australia Europe
Time
2006-01-01 2.80 4.29 10.25 4.80
2007-01-01 2.85 4.44 10.73 4.94
2008-01-01 2.99 4.45 10.76 4.99
2009-01-01 3.23 4.53 10.97 5.16
2010-01-01 3.34 4.53 10.95 5.17

We can plot the average minimum wages in each continent as a time series

merged.T.groupby(level='Continent').mean().T.plot()
plt.title('Average real minimum wage')
plt.ylabel('2015 USD')
plt.xlabel('Year')
plt.show()
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We will drop Australia as a continent for plotting purposes

merged = merged.drop('Australia', level='Continent', axis=1)
merged.T.groupby(level='Continent').mean().T.plot()
plt.title('Average real minimum wage')
plt.ylabel('2015 USD')
plt.xlabel('Year')
plt.show()
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.describe() is useful for quickly retrieving a number of common summary statistics

merged.stack(future_stack=True).describe()

Continent America Asia Europe
count 69.00 44.00 200.00
mean 3.19 4.70 5.15
std 3.02 1.56 3.82
min 0.52 2.22 0.23
25% 1.03 3.37 2.02
50% 1.44 5.48 3.54
75% 6.96 5.95 9.70
max 8.48 6.65 12.39

This is a simplified way to use groupby.

Using groupby generally follows a ‘split-apply-combine’ process:

• split: data is grouped based on one or more keys

• apply: a function is called on each group independently

• combine: the results of the function calls are combined into a new data structure

The groupby method achieves the first step of this process, creating a new DataFrameGroupBy object with data
split into groups.

Let’s split merged by continent again, this time using the groupby function, and name the resulting object grouped
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grouped = merged.T.groupby(level='Continent')
grouped

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x76812a1aa2c0>

Calling an aggregation method on the object applies the function to each group, the results of which are combined in a
new data structure.

For example, we can return the number of countries in our dataset for each continent using .size().

In this case, our new data structure is a Series

grouped.size()

Continent
America 7
Asia 4
Europe 19
dtype: int64

Calling .get_group() to return just the countries in a single group, we can create a kernel density estimate of the
distribution of real minimum wages in 2016 for each continent.

grouped.groups.keys() will return the keys from the groupby object

continents = grouped.groups.keys()

for continent in continents:
sns.kdeplot(grouped.get_group(continent).T.loc['2015'].unstack(), label=continent,

↪ fill=True)

plt.title('Real minimum wages in 2015')
plt.xlabel('US dollars')
plt.legend()
plt.show()
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80.5 Final Remarks

This lecture has provided an introduction to some of pandas’ more advanced features, including multiindices, merging,
grouping and plotting.

Other tools thatmay be useful in panel data analysis include xarray, a python package that extends pandas toN-dimensional
data structures.

80.6 Exercises

Exercise 80.6.1

In these exercises, you’ll work with a dataset of employment rates in Europe by age and sex from Eurostat.

The dataset can be accessed with the following link:

url3 = 'https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/
↪lectures/_static/lecture_specific/pandas_panel/employ.csv'

Reading in the CSV file returns a panel dataset in long format. Use .pivot_table() to construct a wide format
dataframe with a MultiIndex in the columns.

Start off by exploring the dataframe and the variables available in the MultiIndex levels.
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Write a program that quickly returns all values in the MultiIndex.

Solution to Exercise 80.6.1

employ = pd.read_csv(url3)
employ = employ.pivot_table(values='Value',

index=['DATE'],
columns=['UNIT','AGE', 'SEX', 'INDIC_EM', 'GEO'])

employ.index = pd.to_datetime(employ.index) # ensure that dates are datetime format
employ.head()

UNIT Percentage of total population ... \
AGE From 15 to 24 years ...
SEX Females ...
INDIC_EM Active population ...
GEO Austria Belgium Bulgaria ...
DATE ...
2007-01-01 56.00 31.60 26.00 ...
2008-01-01 56.20 30.80 26.10 ...
2009-01-01 56.20 29.90 24.80 ...
2010-01-01 54.00 29.80 26.60 ...
2011-01-01 54.80 29.80 24.80 ...

UNIT Thousand persons \
AGE From 55 to 64 years
SEX Total
INDIC_EM Total employment (resident population concept - LFS)
GEO Switzerland Turkey
DATE
2007-01-01 NaN 1,282.00
2008-01-01 NaN 1,354.00
2009-01-01 NaN 1,449.00
2010-01-01 640.00 1,583.00
2011-01-01 661.00 1,760.00

UNIT
AGE
SEX
INDIC_EM
GEO United Kingdom
DATE
2007-01-01 4,131.00
2008-01-01 4,204.00
2009-01-01 4,193.00
2010-01-01 4,186.00
2011-01-01 4,164.00

[5 rows x 1440 columns]

This is a large dataset so it is useful to explore the levels and variables available

employ.columns.names

FrozenList(['UNIT', 'AGE', 'SEX', 'INDIC_EM', 'GEO'])

Variables within levels can be quickly retrieved with a loop
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for name in employ.columns.names:
print(name, employ.columns.get_level_values(name).unique())

UNIT Index(['Percentage of total population', 'Thousand persons'], dtype='object
↪', name='UNIT')

AGE Index(['From 15 to 24 years', 'From 25 to 54 years', 'From 55 to 64 years'],
↪ dtype='object', name='AGE')

SEX Index(['Females', 'Males', 'Total'], dtype='object', name='SEX')
INDIC_EM Index(['Active population', 'Total employment (resident population␣

↪concept - LFS)'], dtype='object', name='INDIC_EM')
GEO Index(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech␣

↪Republic',
'Denmark', 'Estonia', 'Euro area (17 countries)',
'Euro area (18 countries)', 'Euro area (19 countries)',
'European Union (15 countries)', 'European Union (27 countries)',
'European Union (28 countries)', 'Finland',
'Former Yugoslav Republic of Macedonia, the', 'France',
'France (metropolitan)',
'Germany (until 1990 former territory of the FRG)', 'Greece', 'Hungary',
'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg',
'Malta', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania',
'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Turkey',
'United Kingdom'],

dtype='object', name='GEO')

Exercise 80.6.2

Filter the above dataframe to only include employment as a percentage of ‘active population’.

Create a grouped boxplot using seaborn of employment rates in 2015 by age group and sex.

Hint

GEO includes both areas and countries.

Solution to Exercise 80.6.2

To easily filter by country, swap GEO to the top level and sort the MultiIndex

employ.columns = employ.columns.swaplevel(0,-1)
employ = employ.sort_index(axis=1)

We need to get rid of a few items in GEO which are not countries.

A fast way to get rid of the EU areas is to use a list comprehension to find the level values in GEO that begin with
‘Euro’

geo_list = employ.columns.get_level_values('GEO').unique().tolist()
countries = [x for x in geo_list if not x.startswith('Euro')]
employ = employ[countries]
employ.columns.get_level_values('GEO').unique()
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Index(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic',
'Denmark', 'Estonia', 'Finland',
'Former Yugoslav Republic of Macedonia, the', 'France',
'France (metropolitan)',
'Germany (until 1990 former territory of the FRG)', 'Greece', 'Hungary',
'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg',
'Malta', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania',
'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Turkey',
'United Kingdom'],

dtype='object', name='GEO')

Select only percentage employed in the active population from the dataframe

employ_f = employ.xs(('Percentage of total population', 'Active population'),
level=('UNIT', 'INDIC_EM'),
axis=1)

employ_f.head()

GEO Austria ... United Kingdom \
AGE From 15 to 24 years ... From 55 to 64 years
SEX Females Males Total ... Females Males
DATE ...
2007-01-01 56.00 62.90 59.40 ... 49.90 68.90
2008-01-01 56.20 62.90 59.50 ... 50.20 69.80
2009-01-01 56.20 62.90 59.50 ... 50.60 70.30
2010-01-01 54.00 62.60 58.30 ... 51.10 69.20
2011-01-01 54.80 63.60 59.20 ... 51.30 68.40

GEO
AGE
SEX Total
DATE
2007-01-01 59.30
2008-01-01 59.80
2009-01-01 60.30
2010-01-01 60.00
2011-01-01 59.70

[5 rows x 306 columns]

Drop the ‘Total’ value before creating the grouped boxplot

employ_f = employ_f.drop('Total', level='SEX', axis=1)

box = employ_f.loc['2015'].unstack().reset_index()
sns.boxplot(x="AGE", y=0, hue="SEX", data=box, palette=("husl"), showfliers=False)
plt.xlabel('')
plt.xticks(rotation=35)
plt.ylabel('Percentage of population (%)')
plt.title('Employment in Europe (2015)')
plt.legend(bbox_to_anchor=(1,0.5))
plt.show()
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EIGHTYONE

LINEAR REGRESSION IN PYTHON

Contents
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– Overview
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– Summary
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In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install linearmodels

81.1 Overview

Linear regression is a standard tool for analyzing the relationship between two or more variables.

In this lecture, we’ll use the Python package statsmodels to estimate, interpret, and visualize linear regression models.

Along the way, we’ll discuss a variety of topics, including

• simple and multivariate linear regression

• visualization

• endogeneity and omitted variable bias

• two-stage least squares

As an example, we will replicate results from Acemoglu, Johnson and Robinson’s seminal paper [Acemoglu et al., 2001].

• You can download a copy here.

In the paper, the authors emphasize the importance of institutions in economic development.

The main contribution is the use of settler mortality rates as a source of exogenous variation in institutional differences.
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Such variation is needed to determine whether it is institutions that give rise to greater economic growth, rather than the
other way around.

Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.iolib.summary2 import summary_col
from linearmodels.iv import IV2SLS
import seaborn as sns
sns.set_theme()

81.1.1 Prerequisites

This lecture assumes you are familiar with basic econometrics.

For an introductory text covering these topics, see, for example, [Wooldridge, 2015].

81.2 Simple Linear Regression

[Acemoglu et al., 2001] wish to determine whether or not differences in institutions can help to explain observed economic
outcomes.

How do we measure institutional differences and economic outcomes?

In this paper,

• economic outcomes are proxied by log GDP per capita in 1995, adjusted for exchange rates.

• institutional differences are proxied by an index of protection against expropriation on average over 1985-95,
constructed by the Political Risk Services Group.

These variables and other data used in the paper are available for download on Daron Acemoglu’s webpage.

We will use pandas’ .read_stata() function to read in data contained in the .dta files to dataframes

df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_
↪static/lecture_specific/ols/maketable1.dta?raw=true')

df1.head()

shortnam euro1900 excolony avexpr logpgp95 cons1 cons90 democ00a \
0 AFG 0.000000 1.0 NaN NaN 1.0 2.0 1.0
1 AGO 8.000000 1.0 5.363636 7.770645 3.0 3.0 0.0
2 ARE 0.000000 1.0 7.181818 9.804219 NaN NaN NaN
3 ARG 60.000004 1.0 6.386364 9.133459 1.0 6.0 3.0
4 ARM 0.000000 0.0 NaN 7.682482 NaN NaN NaN

cons00a extmort4 logem4 loghjypl baseco
0 1.0 93.699997 4.540098 NaN NaN
1 1.0 280.000000 5.634789 -3.411248 1.0
2 NaN NaN NaN NaN NaN
3 3.0 68.900002 4.232656 -0.872274 1.0
4 NaN NaN NaN NaN NaN
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Let’s use a scatterplot to see whether any obvious relationship exists between GDP per capita and the protection against
expropriation index

df1.plot(x='avexpr', y='logpgp95', kind='scatter')
plt.show()

The plot shows a fairly strong positive relationship between protection against expropriation and log GDP per capita.

Specifically, if higher protection against expropriation is a measure of institutional quality, then better institutions appear
to be positively correlated with better economic outcomes (higher GDP per capita).

Given the plot, choosing a linear model to describe this relationship seems like a reasonable assumption.

We can write our model as

𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 = 𝛽0 + 𝛽1𝑎𝑣𝑒𝑥𝑝𝑟𝑖 + 𝑢𝑖

where:

• 𝛽0 is the intercept of the linear trend line on the y-axis

• 𝛽1 is the slope of the linear trend line, representing the marginal effect of protection against risk on log GDP per
capita

• 𝑢𝑖 is a random error term (deviations of observations from the linear trend due to factors not included in the model)

Visually, this linear model involves choosing a straight line that best fits the data, as in the following plot (Figure 2 in
[Acemoglu et al., 2001])

# Dropping NA's is required to use numpy's polyfit
df1_subset = df1.dropna(subset=['logpgp95', 'avexpr'])

(continues on next page)
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(continued from previous page)

# Use only 'base sample' for plotting purposes
df1_subset = df1_subset[df1_subset['baseco'] == 1]

X = df1_subset['avexpr']
y = df1_subset['logpgp95']
labels = df1_subset['shortnam']

# Replace markers with country labels
fig, ax = plt.subplots()
ax.scatter(X, y, marker='')

for i, label in enumerate(labels):
ax.annotate(label, (X.iloc[i], y.iloc[i]))

# Fit a linear trend line
ax.plot(np.unique(X),

np.poly1d(np.polyfit(X, y, 1))(np.unique(X)),
color='black')

ax.set_xlim([3.3,10.5])
ax.set_ylim([4,10.5])
ax.set_xlabel('Average Expropriation Risk 1985-95')
ax.set_ylabel('Log GDP per capita, PPP, 1995')
ax.set_title('Figure 2: OLS relationship between expropriation \

risk and income')
plt.show()
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The most common technique to estimate the parameters (𝛽’s) of the linear model is Ordinary Least Squares (OLS).
As the name implies, an OLS model is solved by finding the parameters that minimize the sum of squared residuals, i.e.

min
̂𝛽

𝑁
∑
𝑖=1

𝑢̂2
𝑖

where 𝑢̂𝑖 is the difference between the observation and the predicted value of the dependent variable.

To estimate the constant term 𝛽0, we need to add a column of 1’s to our dataset (consider the equation if 𝛽0 was replaced
with 𝛽0𝑥𝑖 and 𝑥𝑖 = 1)
df1['const'] = 1

Now we can construct our model in statsmodels using the OLS function.

We will use pandas dataframes with statsmodels, however standard arrays can also be used as arguments

reg1 = sm.OLS(endog=df1['logpgp95'], exog=df1[['const', 'avexpr']], \
missing='drop')

type(reg1)

statsmodels.regression.linear_model.OLS

So far we have simply constructed our model.

We need to use .fit() to obtain parameter estimates ̂𝛽0 and ̂𝛽1
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results = reg1.fit()
type(results)

statsmodels.regression.linear_model.RegressionResultsWrapper

We now have the fitted regression model stored in results.

To view the OLS regression results, we can call the .summary() method.

Note that an observation was mistakenly dropped from the results in the original paper (see the note located in
maketable2.do from Acemoglu’s webpage), and thus the coefficients differ slightly.

print(results.summary())

OLS Regression Results
==============================================================================
Dep. Variable: logpgp95 R-squared: 0.611
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 171.4
Date: Mon, 27 Oct 2025 Prob (F-statistic): 4.16e-24
Time: 04:27:03 Log-Likelihood: -119.71
No. Observations: 111 AIC: 243.4
Df Residuals: 109 BIC: 248.8
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 4.6261 0.301 15.391 0.000 4.030 5.222
avexpr 0.5319 0.041 13.093 0.000 0.451 0.612
==============================================================================
Omnibus: 9.251 Durbin-Watson: 1.689
Prob(Omnibus): 0.010 Jarque-Bera (JB): 9.170
Skew: -0.680 Prob(JB): 0.0102
Kurtosis: 3.362 Cond. No. 33.2
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

From our results, we see that

• The intercept ̂𝛽0 = 4.63.
• The slope ̂𝛽1 = 0.53.
• The positive ̂𝛽1 parameter estimate implies that. institutional quality has a positive effect on economic outcomes,
as we saw in the figure.

• The p-value of 0.000 for ̂𝛽1 implies that the effect of institutions on GDP is statistically significant (using p < 0.05
as a rejection rule).

• The R-squared value of 0.611 indicates that around 61% of variation in log GDP per capita is explained by pro-
tection against expropriation.

Using our parameter estimates, we can now write our estimated relationship as

̂𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 = 4.63 + 0.53 𝑎𝑣𝑒𝑥𝑝𝑟𝑖
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This equation describes the line that best fits our data, as shown in Figure 2.

We can use this equation to predict the level of log GDP per capita for a value of the index of expropriation protection.

For example, for a country with an index value of 7.07 (the average for the dataset), we find that their predicted level of
log GDP per capita in 1995 is 8.38.

mean_expr = np.mean(df1_subset['avexpr'])
mean_expr

np.float32(6.515625)

predicted_logpdp95 = 4.63 + 0.53 * 7.07
predicted_logpdp95

8.3771

An easier (and more accurate) way to obtain this result is to use .predict() and set 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 1 and 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 =
𝑚𝑒𝑎𝑛_𝑒𝑥𝑝𝑟
results.predict(exog=[1, mean_expr])

array([8.09156367])

We can obtain an array of predicted 𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 for every value of 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 in our dataset by calling .predict() on
our results.

Plotting the predicted values against 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 shows that the predicted values lie along the linear line that we fitted above.

The observed values of 𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 are also plotted for comparison purposes

# Drop missing observations from whole sample

df1_plot = df1.dropna(subset=['logpgp95', 'avexpr'])

# Plot predicted values

fix, ax = plt.subplots()
ax.scatter(df1_plot['avexpr'], results.predict(), alpha=0.5,

label='predicted')

# Plot observed values

ax.scatter(df1_plot['avexpr'], df1_plot['logpgp95'], alpha=0.5,
label='observed')

ax.legend()
ax.set_title('OLS predicted values')
ax.set_xlabel('avexpr')
ax.set_ylabel('logpgp95')
plt.show()
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81.3 Extending the Linear Regression Model

So far we have only accounted for institutions affecting economic performance - almost certainly there are numerous
other factors affecting GDP that are not included in our model.

Leaving out variables that affect 𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 will result in omitted variable bias, yielding biased and inconsistent param-
eter estimates.

We can extend our bivariate regression model to a multivariate regression model by adding in other factors that may
affect 𝑙𝑜𝑔𝑝𝑔𝑝95𝑖.

[Acemoglu et al., 2001] consider other factors such as:

• the effect of climate on economic outcomes; latitude is used to proxy this

• differences that affect both economic performance and institutions, eg. cultural, historical, etc.; controlled for with
the use of continent dummies

Let’s estimate some of the extended models considered in the paper (Table 2) using data from maketable2.dta

df2 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_
↪static/lecture_specific/ols/maketable2.dta?raw=true')

# Add constant term to dataset
df2['const'] = 1

(continues on next page)
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(continued from previous page)

# Create lists of variables to be used in each regression
X1 = ['const', 'avexpr']
X2 = ['const', 'avexpr', 'lat_abst']
X3 = ['const', 'avexpr', 'lat_abst', 'asia', 'africa', 'other']

# Estimate an OLS regression for each set of variables
reg1 = sm.OLS(df2['logpgp95'], df2[X1], missing='drop').fit()
reg2 = sm.OLS(df2['logpgp95'], df2[X2], missing='drop').fit()
reg3 = sm.OLS(df2['logpgp95'], df2[X3], missing='drop').fit()

Now that we have fitted our model, we will use summary_col to display the results in a single table (model numbers
correspond to those in the paper)

info_dict={'R-squared' : lambda x: f"{x.rsquared:.2f}",
'No. observations' : lambda x: f"{int(x.nobs):d}"}

results_table = summary_col(results=[reg1,reg2,reg3],
float_format='%0.2f',
stars = True,
model_names=['Model 1',

'Model 3',
'Model 4'],

info_dict=info_dict,
regressor_order=['const',

'avexpr',
'lat_abst',
'asia',
'africa'])

results_table.add_title('Table 2 - OLS Regressions')

print(results_table)

Table 2 - OLS Regressions
=========================================

Model 1 Model 3 Model 4
-----------------------------------------
const 4.63*** 4.87*** 5.85***

(0.30) (0.33) (0.34)
avexpr 0.53*** 0.46*** 0.39***

(0.04) (0.06) (0.05)
lat_abst 0.87* 0.33

(0.49) (0.45)
asia -0.15

(0.15)
africa -0.92***

(0.17)
other 0.30

(0.37)
R-squared 0.61 0.62 0.72
R-squared Adj. 0.61 0.62 0.70
No. observations 111 111 111
R-squared 0.61 0.62 0.72
=========================================
Standard errors in parentheses.
* p<.1, ** p<.05, ***p<.01
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81.4 Endogeneity

As [Acemoglu et al., 2001] discuss, the OLS models likely suffer from endogeneity issues, resulting in biased and in-
consistent model estimates.

Namely, there is likely a two-way relationship between institutions and economic outcomes:

• richer countries may be able to afford or prefer better institutions

• variables that affect income may also be correlated with institutional differences

• the construction of the index may be biased; analysts may be biased towards seeing countries with higher income
having better institutions

To deal with endogeneity, we can use two-stage least squares (2SLS) regression, which is an extension of OLS regres-
sion.

This method requires replacing the endogenous variable 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 with a variable that is:

1. correlated with 𝑎𝑣𝑒𝑥𝑝𝑟𝑖

2. not correlated with the error term (ie. it should not directly affect the dependent variable, otherwise it would be
correlated with 𝑢𝑖 due to omitted variable bias)

The new set of regressors is called an instrument, which aims to remove endogeneity in our proxy of institutional
differences.

The main contribution of [Acemoglu et al., 2001] is the use of settler mortality rates to instrument for institutional
differences.

They hypothesize that higher mortality rates of colonizers led to the establishment of institutions that were more extractive
in nature (less protection against expropriation), and these institutions still persist today.

Using a scatterplot (Figure 3 in [Acemoglu et al., 2001]), we can see protection against expropriation is negatively cor-
related with settler mortality rates, coinciding with the authors’ hypothesis and satisfying the first condition of a valid
instrument.

# Dropping NA's is required to use numpy's polyfit
df1_subset2 = df1.dropna(subset=['logem4', 'avexpr'])

X = df1_subset2['logem4']
y = df1_subset2['avexpr']
labels = df1_subset2['shortnam']

# Replace markers with country labels
fig, ax = plt.subplots()
ax.scatter(X, y, marker='')

for i, label in enumerate(labels):
ax.annotate(label, (X.iloc[i], y.iloc[i]))

# Fit a linear trend line
ax.plot(np.unique(X),

np.poly1d(np.polyfit(X, y, 1))(np.unique(X)),
color='black')

ax.set_xlim([1.8,8.4])
ax.set_ylim([3.3,10.4])
ax.set_xlabel('Log of Settler Mortality')
ax.set_ylabel('Average Expropriation Risk 1985-95')
ax.set_title('Figure 3: First-stage relationship between settler mortality \

(continues on next page)
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(continued from previous page)

and expropriation risk')
plt.show()

The second condition may not be satisfied if settler mortality rates in the 17th to 19th centuries have a direct effect on
current GDP (in addition to their indirect effect through institutions).

For example, settler mortality rates may be related to the current disease environment in a country, which could affect
current economic performance.

[Acemoglu et al., 2001] argue this is unlikely because:

• The majority of settler deaths were due to malaria and yellow fever and had a limited effect on local people.

• The disease burden on local people in Africa or India, for example, did not appear to be higher than average,
supported by relatively high population densities in these areas before colonization.

As we appear to have a valid instrument, we can use 2SLS regression to obtain consistent and unbiased parameter esti-
mates.

First stage

The first stage involves regressing the endogenous variable (𝑎𝑣𝑒𝑥𝑝𝑟𝑖) on the instrument.

The instrument is the set of all exogenous variables in our model (and not just the variable we have replaced).

Using model 1 as an example, our instrument is simply a constant and settler mortality rates 𝑙𝑜𝑔𝑒𝑚4𝑖.

Therefore, we will estimate the first-stage regression as

𝑎𝑣𝑒𝑥𝑝𝑟𝑖 = 𝛿0 + 𝛿1𝑙𝑜𝑔𝑒𝑚4𝑖 + 𝑣𝑖

The data we need to estimate this equation is located in maketable4.dta (only complete data, indicated by baseco
= 1, is used for estimation)
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# Import and select the data
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_

↪static/lecture_specific/ols/maketable4.dta?raw=true')
df4 = df4[df4['baseco'] == 1]

# Add a constant variable
df4['const'] = 1

# Fit the first stage regression and print summary
results_fs = sm.OLS(df4['avexpr'],

df4[['const', 'logem4']],
missing='drop').fit()

print(results_fs.summary())

OLS Regression Results
==============================================================================
Dep. Variable: avexpr R-squared: 0.270
Model: OLS Adj. R-squared: 0.258
Method: Least Squares F-statistic: 22.95
Date: Mon, 27 Oct 2025 Prob (F-statistic): 1.08e-05
Time: 04:27:04 Log-Likelihood: -104.83
No. Observations: 64 AIC: 213.7
Df Residuals: 62 BIC: 218.0
Df Model: 1
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 9.3414 0.611 15.296 0.000 8.121 10.562
logem4 -0.6068 0.127 -4.790 0.000 -0.860 -0.354
==============================================================================
Omnibus: 0.035 Durbin-Watson: 2.003
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.172
Skew: 0.045 Prob(JB): 0.918
Kurtosis: 2.763 Cond. No. 19.4
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

Second stage

We need to retrieve the predicted values of 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 using .predict().

We then replace the endogenous variable 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 with the predicted values ̂𝑎𝑣𝑒𝑥𝑝𝑟𝑖 in the original linear model.

Our second stage regression is thus

𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 = 𝛽0 + 𝛽1 ̂𝑎𝑣𝑒𝑥𝑝𝑟𝑖 + 𝑢𝑖

df4['predicted_avexpr'] = results_fs.predict()

results_ss = sm.OLS(df4['logpgp95'],
df4[['const', 'predicted_avexpr']]).fit()

print(results_ss.summary())
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OLS Regression Results
==============================================================================
Dep. Variable: logpgp95 R-squared: 0.477
Model: OLS Adj. R-squared: 0.469
Method: Least Squares F-statistic: 56.60
Date: Mon, 27 Oct 2025 Prob (F-statistic): 2.66e-10
Time: 04:27:04 Log-Likelihood: -72.268
No. Observations: 64 AIC: 148.5
Df Residuals: 62 BIC: 152.9
Df Model: 1
Covariance Type: nonrobust
====================================================================================

coef std err t P>|t| [0.025 0.
↪975]

-----------------------------------------------------------------------------------
↪-

const 1.9097 0.823 2.320 0.024 0.264 3.
↪555

predicted_avexpr 0.9443 0.126 7.523 0.000 0.693 1.
↪195

==============================================================================
Omnibus: 10.547 Durbin-Watson: 2.137
Prob(Omnibus): 0.005 Jarque-Bera (JB): 11.010
Skew: -0.790 Prob(JB): 0.00407
Kurtosis: 4.277 Cond. No. 58.1
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly␣

↪specified.

The second-stage regression results give us an unbiased and consistent estimate of the effect of institutions on economic
outcomes.

The result suggests a stronger positive relationship than what the OLS results indicated.

Note that while our parameter estimates are correct, our standard errors are not and for this reason, computing 2SLS
‘manually’ (in stages with OLS) is not recommended.

We can correctly estimate a 2SLS regression in one step using the linearmodels package, an extension of statsmodels

Note that when using IV2SLS, the exogenous and instrument variables are split up in the function arguments (whereas
before the instrument included exogenous variables)

iv = IV2SLS(dependent=df4['logpgp95'],
exog=df4['const'],
endog=df4['avexpr'],
instruments=df4['logem4']).fit(cov_type='unadjusted')

print(iv.summary)

IV-2SLS Estimation Summary
==============================================================================
Dep. Variable: logpgp95 R-squared: 0.1870
Estimator: IV-2SLS Adj. R-squared: 0.1739
No. Observations: 64 F-statistic: 37.568
Date: Mon, Oct 27 2025 P-value (F-stat) 0.0000
Time: 04:27:04 Distribution: chi2(1)

(continues on next page)
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(continued from previous page)

Cov. Estimator: unadjusted

Parameter Estimates
==============================================================================

Parameter Std. Err. T-stat P-value Lower CI Upper CI
------------------------------------------------------------------------------
const 1.9097 1.0106 1.8897 0.0588 -0.0710 3.8903
avexpr 0.9443 0.1541 6.1293 0.0000 0.6423 1.2462
==============================================================================

Endogenous: avexpr
Instruments: logem4
Unadjusted Covariance (Homoskedastic)
Debiased: False

Given that we now have consistent and unbiased estimates, we can infer from themodel we have estimated that institutional
differences (stemming from institutions set up during colonization) can help to explain differences in income levels across
countries today.

[Acemoglu et al., 2001] use a marginal effect of 0.94 to calculate that the difference in the index between Chile and
Nigeria (ie. institutional quality) implies up to a 7-fold difference in income, emphasizing the significance of institutions
in economic development.

81.5 Summary

We have demonstrated basic OLS and 2SLS regression in statsmodels and linearmodels.

If you are familiar with R, you may want to use the formula interface to statsmodels, or consider using r2py to call
R from within Python.

81.6 Exercises

Exercise 81.6.1

In the lecture, we think the original model suffers from endogeneity bias due to the likely effect income has on
institutional development.

Although endogeneity is often best identified by thinking about the data and model, we can formally test for endo-
geneity using the Hausman test.

We want to test for correlation between the endogenous variable, 𝑎𝑣𝑒𝑥𝑝𝑟𝑖, and the errors, 𝑢𝑖

𝐻0 ∶ 𝐶𝑜𝑣(𝑎𝑣𝑒𝑥𝑝𝑟𝑖, 𝑢𝑖) = 0 (𝑛𝑜 𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦)
𝐻1 ∶ 𝐶𝑜𝑣(𝑎𝑣𝑒𝑥𝑝𝑟𝑖, 𝑢𝑖) ≠ 0 (𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦)

This test is running in two stages.

First, we regress 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 on the instrument, 𝑙𝑜𝑔𝑒𝑚4𝑖

𝑎𝑣𝑒𝑥𝑝𝑟𝑖 = 𝜋0 + 𝜋1𝑙𝑜𝑔𝑒𝑚4𝑖 + 𝜐𝑖
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Second, we retrieve the residuals ̂𝜐𝑖 and include them in the original equation

𝑙𝑜𝑔𝑝𝑔𝑝95𝑖 = 𝛽0 + 𝛽1𝑎𝑣𝑒𝑥𝑝𝑟𝑖 + 𝛼 ̂𝜐𝑖 + 𝑢𝑖

If 𝛼 is statistically significant (with a p-value < 0.05), then we reject the null hypothesis and conclude that 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 is
endogenous.

Using the above information, estimate a Hausman test and interpret your results.

Solution to Exercise 81.6.1

# Load in data
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/

↪heads/main/lectures/_static/lecture_specific/ols/maketable4.dta')

# Add a constant term
df4['const'] = 1

# Estimate the first stage regression
reg1 = sm.OLS(endog=df4['avexpr'],

exog=df4[['const', 'logem4']],
missing='drop').fit()

# Retrieve the residuals
df4['resid'] = reg1.resid

# Estimate the second stage residuals
reg2 = sm.OLS(endog=df4['logpgp95'],

exog=df4[['const', 'avexpr', 'resid']],
missing='drop').fit()

print(reg2.summary())

OLS Regression Results
==============================================================================
Dep. Variable: logpgp95 R-squared: 0.689
Model: OLS Adj. R-squared: 0.679
Method: Least Squares F-statistic: 74.05
Date: Mon, 27 Oct 2025 Prob (F-statistic): 1.07e-17
Time: 04:27:04 Log-Likelihood: -62.031
No. Observations: 70 AIC: 130.1
Df Residuals: 67 BIC: 136.8
Df Model: 2
Covariance Type: nonrobust
==============================================================================

coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 2.4782 0.547 4.530 0.000 1.386 3.570
avexpr 0.8564 0.082 10.406 0.000 0.692 1.021
resid -0.4951 0.099 -5.017 0.000 -0.692 -0.298
==============================================================================
Omnibus: 17.597 Durbin-Watson: 2.086
Prob(Omnibus): 0.000 Jarque-Bera (JB): 23.194
Skew: -1.054 Prob(JB): 9.19e-06
Kurtosis: 4.873 Cond. No. 53.8
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is␣

↪correctly specified.
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The output shows that the coefficient on the residuals is statistically significant, indicating 𝑎𝑣𝑒𝑥𝑝𝑟𝑖 is endogenous.

Exercise 81.6.2

The OLS parameter 𝛽 can also be estimated using matrix algebra and numpy (you may need to review the numpy
lecture to complete this exercise).

The linear equation we want to estimate is (written in matrix form)

𝑦 = 𝑋𝛽 + 𝑢

To solve for the unknown parameter 𝛽, we want to minimize the sum of squared residuals

min
̂𝛽
𝑢̂′𝑢̂

Rearranging the first equation and substituting into the second equation, we can write

min
̂𝛽

(𝑌 − 𝑋 ̂𝛽)′(𝑌 − 𝑋 ̂𝛽)

Solving this optimization problem gives the solution for the ̂𝛽 coefficients

̂𝛽 = (𝑋′𝑋)−1𝑋′𝑦

Using the above information, compute ̂𝛽 from model 1 using numpy - your results should be the same as those in the
statsmodels output from earlier in the lecture.

Solution to Exercise 81.6.2

# Load in data
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/

↪heads/main/lectures/_static/lecture_specific/ols/maketable1.dta')
df1 = df1.dropna(subset=['logpgp95', 'avexpr'])

# Add a constant term
df1['const'] = 1

# Define the X and y variables
y = np.asarray(df1['logpgp95'])
X = np.asarray(df1[['const', 'avexpr']])

# Compute β_hat
β_hat = np.linalg.solve(X.T @ X, X.T @ y)

# Print out the results from the 2 x 1 vector β_hat
print(f'β_0 = {β_hat[0]:.2}')
print(f'β_1 = {β_hat[1]:.2}')

β_0 = 4.6
β_1 = 0.53

It is also possible to use np.linalg.inv(X.T @ X) @ X.T @ y to solve for 𝛽, however .solve() is
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preferred as it involves fewer computations.
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82.1 Overview

In Linear Regression in Python, we estimated the relationship between dependent and explanatory variables using linear
regression.

But what if a linear relationship is not an appropriate assumption for our model?

One widely used alternative is maximum likelihood estimation, which involves specifying a class of distributions, indexed
by unknown parameters, and then using the data to pin down these parameter values.

The benefit relative to linear regression is that it allows more flexibility in the probabilistic relationships between variables.

Here we illustrate maximum likelihood by replicating Daniel Treisman’s (2016) paper, Russia’s Billionaires, which con-
nects the number of billionaires in a country to its economic characteristics.

The paper concludes that Russia has a higher number of billionaires than economic factors such as market size and tax
rate predict.

We’ll require the following imports:

import numpy as np
import jax.numpy as jnp
import jax

(continues on next page)
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(continued from previous page)

import pandas as pd
from typing import NamedTuple

from jax.scipy.special import factorial, gammaln
from jax.scipy.stats import norm

from statsmodels.api import Poisson
from statsmodels.iolib.summary2 import summary_col

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

82.1.1 Prerequisites

We assume familiarity with basic probability and multivariate calculus.

82.2 Set up and assumptions

Let’s consider the steps we need to go through in maximum likelihood estimation and how they pertain to this study.

82.2.1 Flow of ideas

The first step with maximum likelihood estimation is to choose the probability distribution believed to be generating the
data.

More precisely, we need to make an assumption as to which parametric class of distributions is generating the data.

• e.g., the class of all normal distributions, or the class of all gamma distributions.

Each such class is a family of distributions indexed by a finite number of parameters.

• e.g., the class of normal distributions is a family of distributions indexed by its mean 𝜇 ∈ (−∞, ∞) and standard
deviation 𝜎 ∈ (0, ∞).

We’ll let the data pick out a particular element of the class by pinning down the parameters.

The parameter estimates so produced will be calledmaximum likelihood estimates.

82.2.2 Counting billionaires

Treisman [Treisman, 2016] is interested in estimating the number of billionaires in different countries.

The number of billionaires is integer-valued.

Hence we consider distributions that take values only in the nonnegative integers.

(This is one reason least squares regression is not the best tool for the present problem, since the dependent variable in
linear regression is not restricted to integer values.)

One integer distribution is the Poisson distribution, the probability mass function (pmf) of which is

𝑓(𝑦) = 𝜇𝑦

𝑦! 𝑒−𝜇, 𝑦 = 0, 1, 2, … , ∞

We can plot the Poisson distribution over 𝑦 for different values of 𝜇 as follows

1534 Chapter 82. Maximum Likelihood Estimation

https://en.wikipedia.org/wiki/Poisson_distribution


Intermediate Quantitative Economics with Python

@jax.jit
def poisson_pmf(y, μ):

return μ**y / factorial(y) * jnp.exp(-μ)

y_values = range(0, 25)

fig, ax = plt.subplots(figsize=(12, 8))

for μ in [1, 5, 10]:
distribution = []
for y_i in y_values:

distribution.append(poisson_pmf(y_i, μ))
ax.plot(

y_values,
distribution,
label=rf"$\mu$={μ}",
alpha=0.5,
marker="o",
markersize=8,

)

ax.grid()
ax.set_xlabel(r"$y$", fontsize=14)
ax.set_ylabel(r"$f(y \mid \mu)$", fontsize=14)
ax.axis(xmin=0, ymin=0)
ax.legend(fontsize=14)

plt.show()

Notice that the Poisson distribution begins to resemble a normal distribution as the mean of 𝑦 increases.
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Let’s have a look at the distribution of the data we’ll be working with in this lecture.

Treisman’s main source of data is Forbes’ annual rankings of billionaires and their estimated net worth.

The dataset mle/fp.dta can be downloaded from here or its AER page.

# Load in data and view
df = pd.read_stata(

"https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_
↪static/lecture_specific/mle/fp.dta"

)
df.head()

country ccode year cyear numbil numbil0 numbilall netw \
0 United States 2.0 1990.0 21990.0 NaN NaN NaN NaN
1 United States 2.0 1991.0 21991.0 NaN NaN NaN NaN
2 United States 2.0 1992.0 21992.0 NaN NaN NaN NaN
3 United States 2.0 1993.0 21993.0 NaN NaN NaN NaN
4 United States 2.0 1994.0 21994.0 NaN NaN NaN NaN

netw0 netwall ... gattwto08 mcapbdol mcapbdol08 lnmcap08 \
0 NaN NaN ... 0.0 3060.000000 11737.599609 9.370638
1 NaN NaN ... 0.0 4090.000000 11737.599609 9.370638
2 NaN NaN ... 0.0 4490.000000 11737.599609 9.370638
3 NaN NaN ... 0.0 5136.198730 11737.599609 9.370638
4 NaN NaN ... 0.0 5067.016113 11737.599609 9.370638

topintaxnew topint08 rintr noyrs roflaw nrrents
0 39.799999 39.799999 4.988405 20.0 1.61 NaN
1 39.799999 39.799999 4.988405 20.0 1.61 NaN
2 39.799999 39.799999 4.988405 20.0 1.61 NaN
3 39.799999 39.799999 4.988405 20.0 1.61 NaN
4 39.799999 39.799999 4.988405 20.0 1.61 NaN

[5 rows x 36 columns]

Using a histogram, we can view the distribution of the number of billionaires per country, numbil0, in 2008 (the United
States is dropped for plotting purposes)

numbil0_2008 = df[
(df["year"] == 2008) & (df["country"] != "United States")

].loc[:, "numbil0"]

plt.subplots(figsize=(12, 8))
plt.hist(numbil0_2008, bins=30)
plt.xlim(left=0)
plt.grid()
plt.xlabel("Number of billionaires in 2008")
plt.ylabel("Count")
plt.show()
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From the histogram, it appears that the Poisson assumption is not unreasonable (albeit with a very low 𝜇 and some
outliers).

82.3 Conditional distributions

In Treisman’s paper, the dependent variable — the number of billionaires 𝑦𝑖 in country 𝑖 — is modeled as a function of
GDP per capita, population size, and years membership in GATT and WTO.

Hence, the distribution of 𝑦𝑖 needs to be conditioned on the vector of explanatory variables x𝑖.

The standard formulation — the so-called Poisson regression model — is as follows:

𝑓(𝑦𝑖 ∣ x𝑖) = 𝜇𝑦𝑖
𝑖

𝑦𝑖!
𝑒−𝜇𝑖 ; 𝑦𝑖 = 0, 1, 2, … , ∞. (82.1)

where 𝜇𝑖 = exp(x′
𝑖𝛽) = exp(𝛽0 + 𝛽1𝑥𝑖1 + … + 𝛽𝑘𝑥𝑖𝑘)

To illustrate the idea that the distribution of 𝑦𝑖 depends on x𝑖 let’s run a simple simulation.

We use our poisson_pmf function from above and arbitrary values for 𝛽 and x𝑖

y_values = range(0, 20)

# Define a parameter vector with estimates
β = jnp.array([0.26, 0.18, 0.25, -0.1, -0.22])

# Create some observations X
datasets = [

jnp.array([0, 1, 1, 1, 2]),

(continues on next page)
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jnp.array([2, 3, 2, 4, 0]),
jnp.array([3, 4, 5, 3, 2]),
jnp.array([6, 5, 4, 4, 7]),

]

fig, ax = plt.subplots(figsize=(12, 8))

for X in datasets:
μ = jnp.exp(X @ β)
distribution = []
for y_i in y_values:

distribution.append(poisson_pmf(y_i, μ))
ax.plot(

y_values,
distribution,
label=rf"$\mu_i$={μ:.1}",
marker="o",
markersize=8,
alpha=0.5,

)

ax.grid()
ax.legend()
ax.set_xlabel(r"$y \mid x_i$")
ax.set_ylabel(r"$f(y \mid x_i; \beta )$")
ax.axis(xmin=0, ymin=0)
plt.show()
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We can see that the distribution of 𝑦𝑖 is conditional on x𝑖 (𝜇𝑖 is no longer constant).

82.4 Maximum likelihood estimation

In our model for number of billionaires, the conditional distribution contains 4 (𝑘 = 4) parameters that we need to
estimate.

We will label our entire parameter vector as 𝛽 where

𝛽 =
⎡
⎢⎢
⎣

𝛽0
𝛽1
𝛽2
𝛽3

⎤
⎥⎥
⎦

To estimate the model using MLE, we want to maximize the likelihood that our estimate 𝛽̂ is the true parameter 𝛽.
Intuitively, we want to find the 𝛽̂ that best fits our data.

First, we need to construct the likelihood function ℒ(𝛽), which is similar to a joint probability density function.
Assume we have some data 𝑦𝑖 = {𝑦1, 𝑦2} and 𝑦𝑖 ∼ 𝑓(𝑦𝑖).
If 𝑦1 and 𝑦2 are independent, the joint pmf of these data is 𝑓(𝑦1, 𝑦2) = 𝑓(𝑦1) ⋅ 𝑓(𝑦2).
If 𝑦𝑖 follows a Poisson distribution with 𝜆 = 7, we can visualize the joint pmf like so
def plot_joint_poisson(μ=7, y_n=20):

yi_values = jnp.arange(0, y_n, 1)

# Create coordinate points of X and Y
X, Y = jnp.meshgrid(yi_values, yi_values)

# Multiply distributions together
Z = poisson_pmf(X, μ) * poisson_pmf(Y, μ)

fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection="3d")
ax.plot_surface(X, Y, Z.T, cmap="terrain", alpha=0.6)
ax.scatter(X, Y, Z.T, color="black", alpha=0.5, linewidths=1)
ax.set(xlabel=r"$y_1$", ylabel=r"$y_2$")
ax.set_zlabel(r"$f(y_1, y_2)$", labelpad=10)
plt.show()

plot_joint_poisson(μ=7, y_n=20)
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Similarly, the joint pmf of our data (which is distributed as a conditional Poisson distribution) can be written as

𝑓(𝑦1, 𝑦2, … , 𝑦𝑛 ∣ x1, x2, … , x𝑛; 𝛽) =
𝑛

∏
𝑖=1

𝜇𝑦𝑖
𝑖

𝑦𝑖!
𝑒−𝜇𝑖

𝑦𝑖 is conditional on both the values of x𝑖 and the parameters 𝛽.
The likelihood function is the same as the joint pmf, but treats the parameter 𝛽 as a random variable and takes the
observations (𝑦𝑖, x𝑖) as given

ℒ(𝛽 ∣ 𝑦1, 𝑦2, … , 𝑦𝑛 ; x1, x2, … , x𝑛) =
𝑛

∏
𝑖=1

𝜇𝑦𝑖
𝑖

𝑦𝑖!
𝑒−𝜇𝑖

=𝑓(𝑦1, 𝑦2, … , 𝑦𝑛 ∣ x1, x2, … , x𝑛; 𝛽)

Now that we have our likelihood function, we want to find the 𝛽̂ that yields the maximum likelihood value

max
𝛽

ℒ(𝛽)
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In doing so it is generally easier to maximize the log-likelihood (consider differentiating 𝑓(𝑥) = 𝑥 exp(𝑥) vs. 𝑓(𝑥) =
log(𝑥) + 𝑥).
Given that taking a logarithm is a monotone increasing transformation, a maximizer of the likelihood function will also
be a maximizer of the log-likelihood function.

In our case the log-likelihood is

logℒ(𝛽) = log(𝑓(𝑦1; 𝛽) ⋅ 𝑓(𝑦2; 𝛽) ⋅ … ⋅ 𝑓(𝑦𝑛; 𝛽))

=
𝑛

∑
𝑖=1

log 𝑓(𝑦𝑖; 𝛽)

=
𝑛

∑
𝑖=1

log(𝜇𝑦𝑖
𝑖

𝑦𝑖!
𝑒−𝜇𝑖)

=
𝑛

∑
𝑖=1

𝑦𝑖 log𝜇𝑖 −
𝑛

∑
𝑖=1

𝜇𝑖 −
𝑛

∑
𝑖=1

log 𝑦𝑖!

The MLE of the Poisson for ̂𝛽 can be obtained by solving

max
𝛽

(
𝑛

∑
𝑖=1

𝑦𝑖 log𝜇𝑖 −
𝑛

∑
𝑖=1

𝜇𝑖 −
𝑛

∑
𝑖=1

log 𝑦𝑖!)

However, no analytical solution exists to the above problem – to find the MLE we need to use numerical methods.

82.5 MLE with numerical methods

Many distributions do not have nice, analytical solutions and therefore require numerical methods to solve for parameter
estimates.

One such numerical method is the Newton-Raphson algorithm.

Our goal is to find the maximum likelihood estimate 𝛽̂.
At 𝛽̂, the first derivative of the log-likelihood function will be equal to 0.
Let’s illustrate this by supposing

logℒ(𝛽) = −(𝛽 − 10)2 − 10

@jax.jit
def logL(β):

return -((β - 10) ** 2) - 10

To find the value of the gradient of the above function, we can use jax.grad which auto-differentiates the given function.

We further use jax.vmap which vectorizes the given function i.e. the function acting upon scalar inputs can now be used
with vector inputs.

dlogL = jax.vmap(jax.grad(logL))

β = jnp.linspace(1, 20)

fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(12, 8))

(continues on next page)
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ax1.plot(β, logL(β), lw=2)
ax2.plot(β, dlogL(β), lw=2)

ax1.set_ylabel(
r"$log \mathcal{L(\beta)}$", rotation=0, labelpad=35, fontsize=15

)
ax2.set_ylabel(

r"$\frac{dlog \mathcal{L(\beta)}}{d \beta}$ ",
rotation=0,
labelpad=35,
fontsize=19,

)
ax2.set_xlabel(r"$\beta$", fontsize=15)
ax1.grid(), ax2.grid()
plt.axhline(c="black")
plt.show()

The plot shows that the maximum likelihood value (the top plot) occurs when 𝑑 logℒ(𝛽)
𝑑𝛽 = 0 (the bottom plot).

Therefore, the likelihood is maximized when 𝛽 = 10.
We can also ensure that this value is amaximum (as opposed to a minimum) by checking that the second derivative (slope
of the bottom plot) is negative.

The Newton-Raphson algorithm finds a point where the first derivative is 0.

To use the algorithm, we take an initial guess at the maximum value, 𝛽0 (the OLS parameter estimates might be a
reasonable guess), then

1. Use the updating rule to iterate the algorithm

𝛽(𝑘+1) = 𝛽(𝑘) − 𝐻−1(𝛽(𝑘))𝐺(𝛽(𝑘))
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where:

𝐺(𝛽(𝑘)) =
𝑑 logℒ(𝛽(𝑘))

𝑑𝛽(𝑘)

𝐻(𝛽(𝑘)) =
𝑑2 logℒ(𝛽(𝑘))

𝑑𝛽(𝑘)𝑑𝛽′
(𝑘)

2. Check whether 𝛽(𝑘+1) − 𝛽(𝑘) < 𝑡𝑜𝑙

• If true, then stop iterating and set 𝛽̂ = 𝛽(𝑘+1)

• If false, then update 𝛽(𝑘+1)

As can be seen from the updating equation, 𝛽(𝑘+1) = 𝛽(𝑘) only when 𝐺(𝛽(𝑘)) = 0 i.e. where the first derivative is equal
to 0.

(In practice, we stop iterating when the difference is below a small tolerance threshold.)

Let’s have a go at implementing the Newton-Raphson algorithm.

First, we’ll create a class called PoissonRegression so we can easily recompute the values of the log likelihood,
gradient and Hessian for every iteration

class PoissonRegression(NamedTuple):
X: jnp.ndarray
y: jnp.ndarray

Now we can define the log likelihood function in Python

@jax.jit
def logL(β, model):

y = model.y
μ = jnp.exp(model.X @ β)
return jnp.sum(model.y * jnp.log(μ) - μ - jnp.log(factorial(y)))

To find the gradient of the poisson_logL, we again use jax.grad.

According to the documentation,

• jax.jacfwd uses forward-mode automatic differentiation, which is more efficient for “tall” Jacobian matrices,
while

• jax.jacrev uses reverse-mode, which is more efficient for “wide” Jacobian matrices.

(The documentation also states that when matrices that are near-square, jax.jacfwd probably has an edge over jax.
jacrev.)

Therefore, to find the Hessian, we can directly use jax.jacfwd.

G_logL = jax.grad(logL)
H_logL = jax.jacfwd(G_logL)

Our function newton_raphson will take a PoissonRegression object that has an initial guess of the parameter
vector 𝛽0.

The algorithm will update the parameter vector according to the updating rule, and recalculate the gradient and Hessian
matrices at the new parameter estimates.

Iteration will end when either:

• The difference between the parameter and the updated parameter is below a tolerance level.
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• The maximum number of iterations has been achieved (meaning convergence is not achieved).

So we can get an idea of what’s going on while the algorithm is running, an option display=True is added to print
out values at each iteration.

def newton_raphson(model, β, tol=1e-3, max_iter=100, display=True):

i = 0
error = 100 # Initial error value

# Print header of output
if display:

header = f'{"Iteration_k":<13}{"Log-likelihood":<16}{"θ":<60}'
print(header)
print("-" * len(header))

# While loop runs while any value in error is greater
# than the tolerance until max iterations are reached
while jnp.any(error > tol) and i < max_iter:

H, G = jnp.squeeze(H_logL(β, model)), G_logL(β, model)
β_new = β - (jnp.dot(jnp.linalg.inv(H), G))
error = jnp.abs(β_new - β)
β = β_new

if display:
β_list = [f"{t:.3}" for t in list(β.flatten())]
update = f"{i:<13}{logL(β, model):<16.8}{β_list}"
print(update)

i += 1

print(f"Number of iterations: {i}")
print(f"β_hat = {β.flatten()}")

return β

Let’s try out our algorithm with a small dataset of 5 observations and 3 variables in X.

X = jnp.array([[1, 2, 5], [1, 1, 3], [1, 4, 2], [1, 5, 2], [1, 3, 1]])

y = jnp.array([1, 0, 1, 1, 0])

# Take a guess at initial βs
init_β = jnp.array([0.1, 0.1, 0.1])

# Create an object with Poisson model values
poi = PoissonRegression(X=X, y=y)

# Use newton_raphson to find the MLE
β_hat = newton_raphson(poi, init_β, display=True)

Iteration_k Log-likelihood θ
-----------------------------------------------------------------------------------

↪------

0 -4.3447633 ['-1.49', '0.265', '0.244']
1 -3.5742409 ['-3.38', '0.528', '0.474']
2 -3.3999527 ['-5.06', '0.782', '0.702']

(continues on next page)
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3 -3.3788645 ['-5.92', '0.909', '0.82']
4 -3.3783555 ['-6.07', '0.933', '0.843']
5 -3.3783557 ['-6.08', '0.933', '0.843']
6 -3.3783557 ['-6.08', '0.933', '0.843']
Number of iterations: 7
β_hat = [-6.078486 0.9334028 0.8432968]

As this was a simple model with few observations, the algorithm achieved convergence in only 7 iterations.

You can see that with each iteration, the log-likelihood value increased.

Remember, our objective was to maximize the log-likelihood function, which the algorithm has worked to achieve.

Also, note that the increase in logℒ(𝛽(𝑘)) becomes smaller with each iteration.
This is because the gradient is approaching 0 as we reach the maximum, and therefore the numerator in our updating
equation is becoming smaller.

The gradient vector should be close to 0 at 𝛽̂
G_logL(β_hat, poi)

Array([ 7.4505806e-09, -2.9802322e-07, 3.7252903e-08], dtype=float32)

The iterative process can be visualized in the following diagram, where the maximum is found at 𝛽 = 10
@jax.jit
def logL(x):

return -((x - 10) ** 2) - 10

@jax.jit
def find_tangent(β, a=0.01):

y1 = logL(β)
y2 = logL(β + a)
x = jnp.array([[β, 1], [β + a, 1]])
m, c = jnp.linalg.lstsq(x, jnp.array([y1, y2]), rcond=None)[0]
return m, c

β = jnp.linspace(2, 18)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(β, logL(β), lw=2, c="black")

for β in [7, 8.5, 9.5, 10]:
β_line = jnp.linspace(β - 2, β + 2)
m, c = find_tangent(β)
y = m * β_line + c
ax.plot(β_line, y, "-", c="purple", alpha=0.8)
ax.text(β + 2.05, y[-1], rf"$G({β}) = {abs(m):.0f}$", fontsize=12)
ax.vlines(β, -24, logL(β), linestyles="--", alpha=0.5)
ax.hlines(logL(β), 6, β, linestyles="--", alpha=0.5)

ax.set(ylim=(-24, -4), xlim=(6, 13))
ax.set_xlabel(r"$\beta$", fontsize=15)
ax.set_ylabel(

r"$log \mathcal{L(\beta)}$", rotation=0, labelpad=25, fontsize=15
)

(continues on next page)
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ax.grid(alpha=0.3)
plt.show()

Note that our implementation of the Newton-Raphson algorithm is rather basic — for more robust implementations see,
for example, scipy.optimize.

82.6 Maximum likelihood estimation with statsmodels

Now that we know what’s going on under the hood, we can apply MLE to an interesting application.

We’ll use the Poisson regression model in statsmodels to obtain a richer output with standard errors, test values, and
more.

statsmodels uses the same algorithm as above to find the maximum likelihood estimates.

Before we begin, let’s re-estimate our simple model with statsmodels to confirm we obtain the same coefficients and
log-likelihood value.

Now, as statsmodels accepts only NumPy arrays, we can use np.arraymethod to convert them to NumPy arrays.

X = jnp.array([[1, 2, 5], [1, 1, 3], [1, 4, 2], [1, 5, 2], [1, 3, 1]])

y = jnp.array([1, 0, 1, 1, 0])

y_numpy = np.array(y)
X_numpy = np.array(X)
stats_poisson = Poisson(y_numpy, X_numpy).fit()
print(stats_poisson.summary())
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Optimization terminated successfully.
Current function value: 0.675671
Iterations 7

Poisson Regression Results
==============================================================================
Dep. Variable: y No. Observations: 5
Model: Poisson Df Residuals: 2
Method: MLE Df Model: 2
Date: Mon, 27 Oct 2025 Pseudo R-squ.: 0.2546
Time: 04:23:55 Log-Likelihood: -3.3784
converged: True LL-Null: -4.5325
Covariance Type: nonrobust LLR p-value: 0.3153
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -6.0785 5.279 -1.151 0.250 -16.425 4.268
x1 0.9334 0.829 1.126 0.260 -0.691 2.558
x2 0.8433 0.798 1.057 0.291 -0.720 2.407
==============================================================================

Now let’s replicate results from Daniel Treisman’s paper, Russia’s Billionaires, mentioned earlier in the lecture.

Treisman starts by estimating equation (82.1), where:

• 𝑦𝑖 is 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑙𝑙𝑖𝑜𝑛𝑎𝑖𝑟𝑒𝑠𝑖

• 𝑥𝑖1 is log𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎𝑖

• 𝑥𝑖2 is log 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖

• 𝑥𝑖3 is 𝑦𝑒𝑎𝑟𝑠 𝑖𝑛 𝐺𝐴𝑇 𝑇 𝑖 – years membership in GATT and WTO (to proxy access to international markets)

The paper only considers the year 2008 for estimation.

We will set up our variables for estimation like so (you should have the data assigned to df from earlier in the lecture)

# Keep only year 2008
df = df[df["year"] == 2008]

# Add a constant
df["const"] = 1

# Variable sets
reg1 = ["const", "lngdppc", "lnpop", "gattwto08"]
reg2 = [

"const",
"lngdppc",
"lnpop",
"gattwto08",
"lnmcap08",
"rintr",
"topint08",

]
reg3 = [

"const",
"lngdppc",
"lnpop",
"gattwto08",
"lnmcap08",
"rintr",

(continues on next page)
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"topint08",
"nrrents",
"roflaw",

]

Then we can use the Poisson function from statsmodels to fit the model.

We’ll use robust standard errors as in the author’s paper

# Specify model
poisson_reg = Poisson(df[["numbil0"]], df[reg1], missing="drop").fit(

cov_type="HC0"
)
print(poisson_reg.summary())

Optimization terminated successfully.
Current function value: 2.226090
Iterations 9

Poisson Regression Results
==============================================================================
Dep. Variable: numbil0 No. Observations: 197
Model: Poisson Df Residuals: 193
Method: MLE Df Model: 3
Date: Mon, 27 Oct 2025 Pseudo R-squ.: 0.8574
Time: 04:23:55 Log-Likelihood: -438.54
converged: True LL-Null: -3074.7
Covariance Type: HC0 LLR p-value: 0.000
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -29.0495 2.578 -11.268 0.000 -34.103 -23.997
lngdppc 1.0839 0.138 7.834 0.000 0.813 1.355
lnpop 1.1714 0.097 12.024 0.000 0.980 1.362
gattwto08 0.0060 0.007 0.868 0.386 -0.008 0.019
==============================================================================

Success! The algorithm was able to achieve convergence in 9 iterations.

Our output indicates that GDP per capita, population, and years of membership in the General Agreement on Tariffs and
Trade (GATT) are positively related to the number of billionaires a country has, as expected.

Let’s also estimate the author’s more full-featured models and display them in a single table

regs = [reg1, reg2, reg3]
reg_names = ["Model 1", "Model 2", "Model 3"]
info_dict = {

"Pseudo R-squared": lambda x: f"{x.prsquared:.2f}",
"No. observations": lambda x: f"{int(x.nobs):d}",

}
regressor_order = [

"const",
"lngdppc",
"lnpop",
"gattwto08",
"lnmcap08",
"rintr",
"topint08",

(continues on next page)
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"nrrents",
"roflaw",

]
results = []

for reg in regs:
result = Poisson(df[["numbil0"]], df[reg], missing="drop").fit(

cov_type="HC0", maxiter=100, disp=0
)
results.append(result)

results_table = summary_col(
results=results,
float_format="%0.3f",
stars=True,
model_names=reg_names,
info_dict=info_dict,
regressor_order=regressor_order,

)
results_table.add_title(

"Table 1 - Explaining the Number of Billionaires \
in 2008"

)
print(results_table)

Table 1 - Explaining the Number of Billionaires in 2008
=================================================

Model 1 Model 2 Model 3
-------------------------------------------------
const -29.050*** -19.444*** -20.858***

(2.578) (4.820) (4.255)
lngdppc 1.084*** 0.717*** 0.737***

(0.138) (0.244) (0.233)
lnpop 1.171*** 0.806*** 0.929***

(0.097) (0.213) (0.195)
gattwto08 0.006 0.007 0.004

(0.007) (0.006) (0.006)
lnmcap08 0.399** 0.286*

(0.172) (0.167)
rintr -0.010 -0.009

(0.010) (0.010)
topint08 -0.051*** -0.058***

(0.011) (0.012)
nrrents -0.005

(0.010)
roflaw 0.203

(0.372)
No. observations 197 131 131
Pseudo R-squared 0.86 0.90 0.90
=================================================
Standard errors in parentheses.
* p<.1, ** p<.05, ***p<.01

The output suggests that the frequency of billionaires is positively correlated with GDP per capita, population size, stock
market capitalization, and negatively correlated with top marginal income tax rate.

To analyze our results by country, we can plot the difference between the predicted and actual values, then sort from

82.6. Maximum likelihood estimation with statsmodels 1549



Intermediate Quantitative Economics with Python

highest to lowest and plot the first 15

data = [
"const",
"lngdppc",
"lnpop",
"gattwto08",
"lnmcap08",
"rintr",
"topint08",
"nrrents",
"roflaw",
"numbil0",
"country",

]
results_df = df[data].dropna()

# Use last model (model 3)
results_df["prediction"] = results[-1].predict()

# Calculate difference
results_df["difference"] = results_df["numbil0"] - results_df["prediction"]

# Sort in descending order
results_df.sort_values("difference", ascending=False, inplace=True)

# Plot the first 15 data points
results_df[:15].plot(

"country", "difference", kind="bar", figsize=(12, 8), legend=False
)
plt.ylabel("Number of billionaires above predicted level")
plt.xlabel("Country")
plt.show()
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As we can see, Russia has by far the highest number of billionaires in excess of what is predicted by the model (around
50 more than expected).

Treisman uses this empirical result to discuss possible reasons for Russia’s excess of billionaires, including the origination
of wealth in Russia, the political climate, and the history of privatization in the years after the USSR.

82.7 Summary

In this lecture, we used Maximum Likelihood Estimation to estimate the parameters of a Poisson model.

statsmodels contains other built-in likelihood models such as Probit and Logit.

For further flexibility, statsmodels provides a way to specify the distribution manually using the GenericLike-
lihoodModel class - an example notebook can be found here.
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82.8 Exercises

Exercise 82.8.1

Suppose we wanted to estimate the probability of an event 𝑦𝑖 occurring, given some observations.

We could use a probit regression model, where the pmf of 𝑦𝑖 is

𝑓(𝑦𝑖; 𝛽) = 𝜇𝑦𝑖
𝑖 (1 − 𝜇𝑖)1−𝑦𝑖 , 𝑦𝑖 = 0, 1

where 𝜇𝑖 = Φ(x′
𝑖𝛽)

Φ represents the cumulative normal distribution and constrains the predicted 𝑦𝑖 to be between 0 and 1 (as required for
a probability).

𝛽 is a vector of coefficients.

Following the example in the lecture, write a class to represent the Probit model.

To begin, find the log-likelihood function and derive the gradient and Hessian.

The jax.scipy.stats module norm contains the functions needed to compute the cdf and pdf of the normal
distribution.

Solution to Exercise 82.8.1

The log-likelihood can be written as

logℒ =
𝑛

∑
𝑖=1

[𝑦𝑖 logΦ(x′
𝑖𝛽) + (1 − 𝑦𝑖) log(1 − Φ(x′

𝑖𝛽))]

Using the fundamental theorem of calculus, the derivative of a cumulative probability distribution is its marginal
distribution

𝜕
𝜕𝑠Φ(𝑠) = 𝜙(𝑠)

where 𝜙 is the marginal normal distribution.

The gradient vector of the Probit model is

𝜕 logℒ
𝜕𝛽 =

𝑛
∑
𝑖=1

[𝑦𝑖
𝜙(x′

𝑖𝛽)
Φ(x′

𝑖𝛽) − (1 − 𝑦𝑖)
𝜙(x′

𝑖𝛽)
1 − Φ(x′

𝑖𝛽)]x𝑖

The Hessian of the Probit model is

𝜕2 logℒ
𝜕𝛽𝜕𝛽′ = −

𝑛
∑
𝑖=1

𝜙(x′
𝑖𝛽)[𝑦𝑖

𝜙(x′
𝑖𝛽) + x′

𝑖𝛽Φ(x′
𝑖𝛽)

[Φ(x′
𝑖𝛽)]2 + (1 − 𝑦𝑖)

𝜙(x′
𝑖𝛽) − x′

𝑖𝛽(1 − Φ(x′
𝑖𝛽))

[1 − Φ(x′
𝑖𝛽)]2 ]x𝑖x

′
𝑖

Using these results, we can write a class for the Probit model as follows

class ProbitRegression(NamedTuple):
X: jnp.ndarray
y: jnp.ndarray

@jax.jit
def logL(β, model):

y = model.y
μ = norm.cdf(model.X @ β.T)
return y @ jnp.log(μ) + (1 - y) @ jnp.log(1 - μ)
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G_logL = jax.grad(logL)
H_logL = jax.jacfwd(G_logL)

Exercise 82.8.2

Use the following dataset and initial values of 𝛽 to estimate the MLE with the Newton-Raphson algorithm developed
earlier in the lecture

X =
⎡
⎢
⎢
⎢
⎣

1 2 4
1 1 1
1 4 3
1 5 6
1 3 5

⎤
⎥
⎥
⎥
⎦

𝑦 =
⎡
⎢
⎢
⎢
⎣

1
0
1
1
0

⎤
⎥
⎥
⎥
⎦

𝛽(0) = ⎡⎢
⎣

0.1
0.1
0.1

⎤⎥
⎦

Verify your results with statsmodels - you can import the Probit function with the following import statement

from statsmodels.discrete.discrete_model import Probit

Note that the simple Newton-Raphson algorithm developed in this lecture is very sensitive to initial values, and
therefore you may fail to achieve convergence with different starting values.

Solution to Exercise 82.8.2

Here is one solution
X = jnp.array([[1, 2, 4], [1, 1, 1], [1, 4, 3], [1, 5, 6], [1, 3, 5]])

y = jnp.array([1, 0, 1, 1, 0])

# Take a guess at initial βs
β = jnp.array([0.1, 0.1, 0.1])

# Create a model of Probit regression
prob = ProbitRegression(y=y, X=X)

# Run Newton-Raphson algorithm
newton_raphson(prob, β)

Iteration_k Log-likelihood θ
--------------------------------------------------------------------------------

↪---------

0 -2.3796887 ['-1.34', '0.775', '-0.157']
1 -2.3687525 ['-1.53', '0.775', '-0.0981']
2 -2.3687296 ['-1.55', '0.778', '-0.0971']
3 -2.3687291 ['-1.55', '0.778', '-0.0971']
Number of iterations: 4
β_hat = [-1.5462587 0.77778953 -0.09709755]

Array([-1.5462587 , 0.77778953, -0.09709755], dtype=float32)

# Use statsmodels to verify results
y_numpy = np.array(y)
X_numpy = np.array(X)
print(Probit(y_numpy, X_numpy).fit().summary())
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Optimization terminated successfully.
Current function value: 0.473746
Iterations 6

Probit Regression Results
==============================================================================
Dep. Variable: y No. Observations: 5
Model: Probit Df Residuals: 2
Method: MLE Df Model: 2
Date: Mon, 27 Oct 2025 Pseudo R-squ.: 0.2961
Time: 04:23:57 Log-Likelihood: -2.3687
converged: True LL-Null: -3.3651
Covariance Type: nonrobust LLR p-value: 0.3692
==============================================================================

coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
const -1.5463 1.866 -0.829 0.407 -5.204 2.111
x1 0.7778 0.788 0.986 0.324 -0.768 2.323
x2 -0.0971 0.590 -0.165 0.869 -1.254 1.060
==============================================================================
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CHAPTER

EIGHTYTHREE

FIRST-PRICE AND SECOND-PRICE AUCTIONS

This lecture is designed to set the stage for a subsequent lecture about Multiple Good Allocation Mechanisms

In that lecture, a planner or auctioneer simultaneously allocates several goods to set of people.

In the present lecture, a single good is allocated to one person within a set of people.

Here we’ll learn about and simulate two classic auctions :

• a First-Price Sealed-Bid Auction (FPSB)

• a Second-Price Sealed-Bid Auction (SPSB) created by William Vickrey [Vickrey, 1961]

We’ll also learn about and apply a

• Revenue Equivalent Theorem

We recommend watching this video about second price auctions by Anders Munk-Nielsen:

https://youtu.be/qwWk_Bqtue8

and

https://youtu.be/eYTGQCGpmXI

Anders Munk-Nielsen put his code on GitHub.

Much of our Python code below is based on his.

83.1 First-price sealed-bid auction (FPSB)

Protocols:

• A single good is auctioned.

• Prospective buyers simultaneously submit sealed bids.

• Each bidder knows only his/her own bid.

• The good is allocated to the person who submits the highest bid.

• The winning bidder pays price she has bid.

Detailed Setting:

There are 𝑛 > 2 prospective buyers named 𝑖 = 1, 2, … , 𝑛.
Buyer 𝑖 attaches value 𝑣𝑖 to the good being sold.
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Buyer 𝑖 wants to maximize the expected value of her surplus defined as 𝑣𝑖 − 𝑝, where 𝑝 is the price that she pays,
conditional on her winning the auction.

Evidently,

• If 𝑖 bids exactly 𝑣𝑖, she pays what she thinks it is worth and gathers no surplus value.

• Buyer 𝑖 will never want to bid more than 𝑣𝑖.

• If buyer 𝑖 bids 𝑏 < 𝑣𝑖 and wins the auction, then she gathers surplus value 𝑣𝑖 − 𝑏 > 0.
• If buyer 𝑖 bids 𝑏 < 𝑣𝑖 and someone else bids more than 𝑏, buyer 𝑖 loses the auction and gets no surplus value.
• To proceed, buyer 𝑖 wants to know the probability that she wins the auction as a function of her bid 𝑣𝑖

– this requires that she know a probability distribution of bids 𝑣𝑗 made by prospective buyers 𝑗 ≠ 𝑖
• Given her idea about that probability distribution, buyer 𝑖 wants to set a bid that maximizes the mathematical
expectation of her surplus value.

Bids are sealed, so no bidder knows bids submitted by other prospective buyers.

This means that bidders are in effect participating in a game in which players do not know payoffs of other players.

This is a Bayesian game, a Nash equilibrium of which is called a Bayesian Nash equilibrium.

To complete the specification of the situation, we’ll assume that prospective buyers’ valuations are independently and
identically distributed according to a probability distribution that is known by all bidders.

Bidder optimally chooses to bid less than 𝑣𝑖.

83.1.1 Characterization of FPSB auction

A FPSB auction has a unique symmetric Bayesian Nash Equilibrium.

The optimal bid of buyer 𝑖 is

E[𝑦𝑖|𝑦𝑖 < 𝑣𝑖] (83.1)

where 𝑣𝑖 is the valuation of bidder 𝑖 and 𝑦𝑖 is the maximum valuation of all other bidders:

𝑦𝑖 = max
𝑗≠𝑖

𝑣𝑗 (83.2)

A proof for this assertion is available at the Wikipedia page about Vickrey auctions

83.2 Second-price sealed-bid auction (SPSB)

Protocols: In a second-price sealed-bid (SPSB) auction, the winner pays the second-highest bid.

83.3 Characterization of SPSB auction

In a SPSB auction bidders optimally choose to bid their values.

Formally, a dominant strategy profile in a SPSB auction with a single, indivisible item has each bidder bidding its value.

A proof is provided at the Wikipedia page about Vickrey auctions
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83.4 Uniform distribution of private values

We assume valuation 𝑣𝑖 of bidder 𝑖 is distributed 𝑣𝑖
i.i.d.∼ 𝑈(0, 1).

Under this assumption, we can analytically compute probability distributions of prices bid in both FPSB and SPSB.

We’ll simulate outcomes and, by using a law of large numbers, verify that the simulated outcomes agree with analytical
ones.

We can use our simulation to illustrate a Revenue Equivalence Theorem that asserts that on average first-price and
second-price sealed bid auctions provide a seller the same revenue.

To read about the revenue equivalence theorem, see this Wikepedia page

83.5 Setup

There are 𝑛 bidders.

Each bidder knows that there are 𝑛 − 1 other bidders.

83.6 First price sealed bid auction

An optimal bid for bidder 𝑖 in a FPSB is described by equations (83.1) and (83.2).

When bids are i.i.d. draws from a uniform distribution, the CDF of 𝑦𝑖 is

̃𝐹𝑛−1(𝑦) = P(𝑦𝑖 ≤ 𝑦) = P(max
𝑗≠𝑖

𝑣𝑗 ≤ 𝑦)

= ∏
𝑗≠𝑖

P(𝑣𝑗 ≤ 𝑦)

= 𝑦𝑛−1

and the PDF of 𝑦𝑖 is ̃𝑓𝑛−1(𝑦) = (𝑛 − 1)𝑦𝑛−2.

Then bidder 𝑖’s optimal bid in a FPSB auction is:

E(𝑦𝑖|𝑦𝑖 < 𝑣𝑖) =
∫𝑣𝑖
0 𝑦𝑖 ̃𝑓𝑛−1(𝑦𝑖)𝑑𝑦𝑖

∫𝑣𝑖
0

̃𝑓𝑛−1(𝑦𝑖)𝑑𝑦𝑖

=
∫𝑣𝑖
0 (𝑛 − 1)𝑦𝑛−1

𝑖 𝑑𝑦𝑖

∫𝑣𝑖
0 (𝑛 − 1)𝑦𝑛−2

𝑖 𝑑𝑦𝑖

= 𝑛 − 1
𝑛 𝑦𝑖∣

𝑣𝑖

0

= 𝑛 − 1
𝑛 𝑣𝑖
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83.7 Second price sealed bid auction

In a SPSB, it is optimal for bidder 𝑖 to bid 𝑣𝑖.

83.8 Python code

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import scipy.interpolate as interp

# for plots
plt.rcParams.update({"text.usetex": True, 'font.size': 14})
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']

# ensure the notebook generates the same randomness
np.random.seed(1337)

We repeat an auction with 5 bidders for 100,000 times.

The valuations of each bidder is distributed 𝑈(0, 1).
N = 5
R = 100_000

v = np.random.uniform(0, 1, (N, R))

# BNE in first-price sealed bid

b_star = lambda vi, N: ((N-1)/N) * vi
b = b_star(v,N)

We compute and sort bid price distributions that emerge under both FPSB and SPSB.

# Bidders' values are sorted in ascending order in each auction.
# We record the order because we want to apply it to bid price and their id.
idx = np.argsort(v, axis=0)

# same as np.sort(v, axis=0), except now we retain the idx
v = np.take_along_axis(v, idx, axis=0)
b = np.take_along_axis(b, idx, axis=0)

# the id for the bidders is created.
ii = np.repeat(np.arange(1, N+1)[:, None], R, axis=1)
# the id is sorted according to bid price as well.
ii = np.take_along_axis(ii, idx, axis=0)

# In FPSB and SPSB, winners are those with highest values.
winning_player = ii[-1, :]

# highest bid
winner_pays_fpsb = b[-1, :]
# 2nd-highest valuation
winner_pays_spsb = v[-2, :]
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Let’s now plot the winning bids 𝑏(𝑛) (i.e. the payment) against valuations, 𝑣(𝑛) for both FPSB and SPSB.

Note that

• FPSB: There is a unique bid corresponding to each valuation

• SPSB: Because it equals the valuation of a second-highest bidder, what a winner pays varies even holding fixed the
winner’s valuation. So here there is a frequency distribution of payments for each valuation.

# We intend to compute average payments of different groups of bidders
binned = stats.binned_statistic(v[-1, :], v[-2, :], statistic='mean', bins=20)
xx = binned.bin_edges
xx = [(xx[ii]+xx[ii+1])/2 for ii in range(len(xx)-1)]
yy = binned.statistic

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(xx, yy, label='SPSB average payment')
ax.plot(v[-1, :], b[-1, :], '--', alpha=0.8, label='FPSB analytic')
ax.plot(v[-1, :], v[-2, :], 'o', alpha=0.05,

markersize=0.1, label='SPSB: actual bids')

ax.legend(loc='best')
ax.set_xlabel('Valuation, $v_i$')
ax.set_ylabel('Bid, $b_i$')
sns.despine()
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83.9 Revenue equivalence theorem

We now compare FPSB and a SPSB auctions from the point of view of the revenues that a seller can expect to acquire.

Expected Revenue FPSB:

The winner with valuation 𝑦 pays 𝑛−1
𝑛 ∗ 𝑦, where n is the number of bidders.

Above we computed that the CDF is 𝐹𝑛(𝑦) = 𝑦𝑛 and the PDF is 𝑓𝑛 = 𝑛𝑦𝑛−1.

Consequently, expected revenue is

R = ∫
1

0

𝑛 − 1
𝑛 𝑣𝑖 × 𝑛𝑣𝑛−1

𝑖 𝑑𝑣𝑖 = 𝑛 − 1
𝑛 + 1

Expected Revenue SPSB:

The expected revenue equals n × expected payment of a bidder.

Computing this we get

TR = 𝑛Evi [Eyi [𝑦𝑖|𝑦𝑖 < 𝑣𝑖]P(𝑦𝑖 < 𝑣𝑖) + 0 × P(𝑦𝑖 > 𝑣𝑖)]
= 𝑛Evi [Eyi [𝑦𝑖|𝑦𝑖 < 𝑣𝑖] ̃𝐹𝑛−1(𝑣𝑖)]

= 𝑛Evi [
𝑛 − 1

𝑛 × 𝑣𝑖 × 𝑣𝑛−1
𝑖 ]

= (𝑛 − 1)Evi [𝑣𝑛
𝑖 ]

= 𝑛 − 1
𝑛 + 1

Thus, while probability distributions of winning bids typically differ across the two types of auction, we deduce that
expected payments are identical in FPSB and SPSB.

fig, ax = plt.subplots(figsize=(6, 4))

for payment, label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB']):
print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f' % (

label, payment.mean(), payment.std(), np.median(payment)))
ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

The average payment of FPSB: 0.6665. Std.: 0.1129. Median: 0.6967
The average payment of SPSB: 0.6667. Std.: 0.1782. Median: 0.6862
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Summary of FPSB and SPSB results with uniform distribution on [0, 1]

Auction: Sealed-Bid First-Price Second-Price

Winner Agent with highest bid Agent with highest bid
Winner pays Winner’s bid Second-highest bid
Loser pays 0 0
Dominant strategy No dominant strategy Bidding truthfully is dominant strategy
Bayesian Nash equilibrium Bidder 𝑖 bids 𝑛−1

𝑛 𝑣𝑖 Bidder 𝑖 truthfully bids 𝑣𝑖
Auctioneer’s revenue 𝑛−1

𝑛+1
𝑛−1
𝑛+1

Detour: Computing a Bayesian Nash Equibrium for FPSB

The Revenue Equivalence Theorem lets us find an optimal bidding strategy for a FPSB auction from outcomes of a SPSB
auction.

Let 𝑏(𝑣𝑖) be the optimal bid in a FPSB auction.

The revenue equivalence theorem tells us that a bidder agent with value 𝑣𝑖 on average receives the same payment in the
two types of auction.

Consequently,

𝑏(𝑣𝑖)P(𝑦𝑖 < 𝑣𝑖) + 0 ∗ P(𝑦𝑖 ≥ 𝑣𝑖) = E𝑦𝑖
[𝑦𝑖|𝑦𝑖 < 𝑣𝑖]P(𝑦𝑖 < 𝑣𝑖) + 0 ∗ P(𝑦𝑖 ≥ 𝑣𝑖)

It follows that an optimal bidding strategy in a FPSB auction is 𝑏(𝑣𝑖) = E𝑦𝑖
[𝑦𝑖|𝑦𝑖 < 𝑣𝑖].
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83.10 Calculation of bid price in FPSB

In equations (83.1) and (83.2), we displayed formulas for optimal bids in a symmetric Bayesian Nash Equilibrium of a
FPSB auction.

E[𝑦𝑖|𝑦𝑖 < 𝑣𝑖]

where

• 𝑣𝑖 = value of bidder 𝑖
• 𝑦𝑖 =: maximum value of all bidders except 𝑖, i.e., 𝑦𝑖 = max𝑗≠𝑖 𝑣𝑗

Above, we computed an optimal bid price in a FPSB auction analytically for a case in which private values are uniformly
distributed.

For most probability distributions of private values, analytical solutions aren’t easy to compute.

Instead, we can compute bid prices in FPSB auctions numerically as functions of the distribution of private values.

def evaluate_largest(v_hat, array, order=1):
"""
A method to estimate the largest (or certain-order largest) value of the other␣

↪biders,
conditional on player 1 wins the auction.

Parameters:
----------
v_hat : float, the value of player 1. The biggest value in the auction that␣

↪player 1 wins.

array: 2 dimensional array of bidders' values in shape of (N,R),
where N: number of players, R: number of auctions

order: int. The order of largest number among bidders who lose.
e.g. the order for largest number beside winner is 1.

the order for second-largest number beside winner is 2.

"""
N, R = array.shape

# drop the first row because we assume first row is the winner's bid
array_residual = array[1:, :].copy()

winning_auctions_mask = (array_residual < v_hat).all(axis=0)

num_winning_auctions = np.sum(winning_auctions_mask)

if num_winning_auctions == 0:
return np.nan

array_conditional = array_residual[:, winning_auctions_mask]

array_conditional_sorted = np.sort(array_conditional, axis=0)

order_largest_bids = array_conditional_sorted[-order, :]

return np.mean(order_largest_bids)
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We can check the accuracy of our evaluate_largest method by comparing it with an analytical solution.

We find that the evaluate_largest method functions well

v_grid = np.linspace(0.3, 1, 8)
bid_analytical = b_star(v_grid, N)

# Redraw valuations
v = np.random.uniform(0, 1, (N, R))
bid_simulated = [evaluate_largest(ii, v) for ii in v_grid]

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, bid_analytical, '-', color='k', label='Analytical')
ax.plot(v_grid, bid_simulated, '--', color='r', label='Simulated')

ax.legend(loc='best')
ax.set_xlabel('Valuation, $v_i$')
ax.set_ylabel('Bid, $b_i$')
ax.set_title('Solution for FPSB')
sns.despine()
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83.11 𝜒2 Distribution

Let’s try an example in which the distribution of private values is a 𝜒2 distribution.

We’ll start by taking a look at a 𝜒2 distribution with the help of the following Python code:

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N * R,))

plt.hist(v, bins=50, edgecolor='w')
plt.xlabel('Values: $v$')
plt.show()

Now we’ll get Python to construct a bid price function

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N, R))

# we compute the quantile of v as our grid
pct_quantile = np.linspace(0, 100, 101)[1:-1]
v_grid = np.percentile(v.flatten(), q=pct_quantile)

# nan values are returned for some low quantiles due to lack of observations
EV = [evaluate_largest(ii, v) for ii in v_grid]

# we insert 0 into our grid and bid price function as a complement
EV = np.insert(EV, 0, 0)

(continues on next page)
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(continued from previous page)

v_grid = np.insert(v_grid, 0, 0)

b_star_num = interp.interp1d(v_grid, EV, fill_value="extrapolate")

We check our bid price function by computing and visualizing the result.

pct_quantile_fine = np.linspace(0, 100, 1001)[1:-1]
v_grid_fine = np.percentile(v.flatten(), q=pct_quantile_fine)

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, EV, 'or', label='Simulation on Grid')
ax.plot(v_grid_fine, b_star_num(v_grid_fine),

'-', label='Interpolation Solution')

ax.legend(loc='best')
ax.set_xlabel('Valuation, $v_i$')
ax.set_ylabel('Optimal Bid in FPSB')
sns.despine()

Now we can use Python to compute the probability distribution of the price paid by the winning bidder

b = b_star_num(v)

idx = np.argsort(v, axis=0)
# same as np.sort(v, axis=0), except now we retain the idx
v = np.take_along_axis(v, idx, axis=0)
b = np.take_along_axis(b, idx, axis=0)

ii = np.repeat(np.arange(1, N + 1)[:, None], R, axis=1)
ii = np.take_along_axis(ii, idx, axis=0)

(continues on next page)
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winning_player = ii[-1, :]

# highest bid
winner_pays_fpsb = b[-1, :]
# 2nd-highest valuation
winner_pays_spsb = v[-2, :]

fig, ax = plt.subplots(figsize=(6, 4))

for payment, label in zip([winner_pays_fpsb, winner_pays_spsb],
['FPSB', 'SPSB']):

print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f' % (
label, payment.mean(), payment.std(), np.median(payment)))

ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180
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83.12 Code summary

We assemble the functions that we have used into a Python class

class bid_price_solution:

def __init__(self, array):
"""
A class that can plot the value distribution of bidders,
compute the optimal bid price for bidders in FPSB
and plot the distribution of winner's payment in both FPSB and SPSB

Parameters:
----------

array: 2 dimensional array of bidders' values in shape of (N, R),
where N: number of players, R: number of auctions

"""
self.value_mat = array.copy()

return None

def plot_value_distribution(self):
plt.hist(self.value_mat.flatten(), bins=50, edgecolor='w')
plt.xlabel('Values: $v$')
plt.show()

return None

def evaluate_largest(self, v_hat, order=1):
N, R = self.value_mat.shape

# drop the first row because we assume first row is the winner's bid
array_residual = self.value_mat[1:, :].copy()

winning_auctions_mask = (array_residual < v_hat).all(axis=0)

num_winning_auctions = np.sum(winning_auctions_mask)

if num_winning_auctions == 0:
return np.nan

array_conditional = array_residual[:, winning_auctions_mask]
array_conditional_sorted = np.sort(array_conditional, axis=0)
order_largest_bids = array_conditional_sorted[-order, :]

return np.mean(order_largest_bids)

def compute_optimal_bid_FPSB(self):
# we compute the quantile of v as our grid
pct_quantile = np.linspace(0, 100, 101)[1:-1]
v_grid = np.percentile(self.value_mat.flatten(), q=pct_quantile)

# nan values are returned for some low quantiles due to lack of observations
EV = [self.evaluate_largest(ii) for ii in v_grid]

(continues on next page)
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(continued from previous page)

# we insert 0 into our grid and bid price function as a complement
EV = np.insert(EV, 0, 0)
v_grid = np.insert(v_grid, 0, 0)

self.b_star_num = interp.interp1d(v_grid, EV,
fill_value="extrapolate")

pct_quantile_fine = np.linspace(0, 100, 1001)[1:-1]
v_grid_fine = np.percentile(self.value_mat.flatten(),

q=pct_quantile_fine)

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, EV, 'or', label='Simulation on Grid')
ax.plot(v_grid_fine, self.b_star_num(v_grid_fine),

'-', label='Interpolation Solution')

ax.legend(loc='best')
ax.set_xlabel('Valuation, $v_i$')
ax.set_ylabel('Optimal Bid in FPSB')
sns.despine()

return None

def plot_winner_payment_distribution(self):
self.b = self.b_star_num(self.value_mat)

idx = np.argsort(self.value_mat, axis=0)
# same as np.sort(v, axis=0), except now we retain the idx
self.v = np.take_along_axis(self.value_mat, idx, axis=0)
self.b = np.take_along_axis(self.b, idx, axis=0)

N, R = self.value_mat.shape
self.ii = np.repeat(np.arange(1, N + 1)[:, None], R, axis=1)
self.ii = np.take_along_axis(self.ii, idx, axis=0)

winning_player = self.ii[-1, :]

# highest bid
winner_pays_fpsb = self.b[-1, :]
# 2nd-highest valuation
winner_pays_spsb = self.v[-2, :]

fig, ax = plt.subplots(figsize=(6, 4))

for payment, label in zip([winner_pays_fpsb, winner_pays_spsb],
['FPSB', 'SPSB']):

print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f' %
(label, payment.mean(), payment.std(), np.median(payment)))

ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')

(continues on next page)
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(continued from previous page)

sns.despine()

return None

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N, R))

chi_squ_case = bid_price_solution(v)

chi_squ_case.plot_value_distribution()

chi_squ_case.compute_optimal_bid_FPSB()
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chi_squ_case.plot_winner_payment_distribution()

The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180
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CHAPTER

EIGHTYFOUR

MULTIPLE GOOD ALLOCATION MECHANISMS

!pip install prettytable

84.1 Overview

This lecture describes two mechanisms for allocating 𝑛 private goods (“houses”) to 𝑚 people (“buyers”).

We assume that 𝑚 > 𝑛 so that there are more potential buyers than there are houses.

Prospective buyers regard the houses as substitutes.

Buyer 𝑗 attaches value 𝑣𝑖𝑗 to house 𝑖.
These values are private

• 𝑣𝑖𝑗 is known only to person 𝑗 unless person 𝑗 chooses to tell someone.
We require that a mechanism allocate at most one house to one prospective buyer.

We describe two distinct mechanisms

• A multiple rounds, ascending bid auction

• A special case of a Groves-Clarke [Groves, 1973], [Clarke, 1971] mechanism with a benevolent social planner

Note

In 1994, the multiple rounds, ascending bid auction was actually used by Stanford University to sell leases to 9 lots
on the Stanford campus to eligible faculty members.

We begin with overviews of the two mechanisms.

84.2 Ascending Bids Auction for Multiple Goods

An auction is administered by an auctioneer

The auctioneer has an 𝑛 × 1 vector 𝑟 of reservation prices on the 𝑛 houses.

The auctioneer sells house 𝑖 only if the final price bid for it exceeds 𝑟𝑖

The auctioneer allocates all 𝑛 houses simultaneously

The auctioneer does not know bidders’ private values 𝑣𝑖𝑗
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There are multiple rounds

• during each round, active participants can submit bids on any of the 𝑛 houses

• each bidder can bid on only one house during one round

• a person who was high bidder on a particular house in one round is understood to submit that same bid for the same
house in the next round

• between rounds, a bidder who was not a high bidder can change the house on which he/she chooses to bid

• the auction ends when the price of no house changes from one round to the next

• all 𝑛 houses are allocated after the final round

• house 𝑖 is retained by the auctioneer if not prospective buyer offers more that 𝑟𝑖 for the house

In this auction, person 𝑗 never tells anyone else his/her private values 𝑣𝑖𝑗

84.3 A Benevolent Planner

This mechanism is designed so that all prospective buyers voluntarily choose to reveal their private values to a social
planner who uses them to construct a socially optimal allocation.

Among all feasible allocations, a socially optimal allocation maximizes the sum of private values across all prospective
buyers.

The planner tells everyone in advance how he/she will allocate houses based on the matrix of values that prospective
buyers report.

The mechanism provide every prospective buyer an incentive to reveal his vector of private values to the planner.

After the planner receives everyone’s vector of private values, the planner deploys a sequential algorithm to determine
an allocation of houses and a set of fees that he charges awardees for the negative externality that their presence impose
on other prospective buyers.

84.4 Equivalence of Allocations

Remarkably, these two mechanisms can produce virtually identical allocations.

We construct Python code for both mechanism.

We also work out some examples by hand or almost by hand.

Next, let’s dive down into the details.

84.5 Ascending Bid Auction

84.5.1 Basic Setting

We start with a more detailed description of the setting.

• A seller owns 𝑛 houses that he wants to sell for the maximum possible amounts to a set of 𝑚 prospective eligible
buyers.

• The seller wants to sell at most one house to each potential buyer.
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• There are 𝑚 potential eligible buyers, identified by 𝑗 = [1, 2, … , 𝑚]
– Each potential buyer is permitted to buy at most one house.

– Buyer 𝑗 would be willing to pay at most 𝑣𝑖𝑗 for house 𝑖.
– Buyer 𝑗 knows 𝑣𝑖𝑗, 𝑖 = 1, … , 𝑛, but no one else does.
– If buyer 𝑗 pays 𝑝𝑖 for house 𝑖, he enjoys surplus value 𝑣𝑖𝑗 − 𝑝𝑖.

– Each buyer 𝑗 wants to choose the 𝑖 that maximizes his/her surplus value 𝑣𝑖𝑗 − 𝑝𝑖.

– The seller wants to maximize ∑𝑖 𝑝𝑖.

The seller conducts a simultaneous, multiple goods, ascending bid auction.

Outcomes of the auction are

• An 𝑛 × 1 vector 𝑝 of sales prices 𝑝 = [𝑝1, … , 𝑝𝑛] for the 𝑛 houses.

• An 𝑛 × 𝑚 matrix 𝑄 of 0’s and 1’s, where 𝑄𝑖𝑗 = 1 if and only if person 𝑗 bought house 𝑖.
• An 𝑛 × 𝑚 matrix 𝑆 of surplus values consisting of all zeros unless person 𝑗 bought house 𝑖, in which case 𝑆𝑖𝑗 =

𝑣𝑖𝑗 − 𝑝𝑖

We describe rules for the auction it terms of pseudo code.

The pseudo code will provide a road map for writing Python code to implement the auction.

84.6 Pseudocode

Here is a quick sketch of a possible simple structure for our Python code

Inputs:

• 𝑛, 𝑚.

• an 𝑛 × 𝑚 non-negative matrix 𝑣 of private values
• an 𝑛 × 1 vector 𝑟 of seller-specified reservation prices
• the seller will not accept a price less than 𝑟𝑖 for house 𝑖
• we are free to think of these reservation prices as private values of a fictitious 𝑚+1 th buyer who does not actually
participate in the auction

• initial bids can be thought of starting at 𝑟
• a scalar 𝜖 of seller-specified minimum price-bid increments

For each round of the auction, new bids on a house must be at least the prevailing highest bid so far plus 𝜖
Auction Protocols

• the auction consists of a finite number of rounds

• in each round, a prospective buyer can bid on one and only one house

• after each round, a house is temporarily awarded to the person who made the highest bid for that house

– temporarily winning bids on each house are announced

– this sets the stage to move on to the next round

• a new round is held
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– bids for temporary winners from the previous round are again attached to the houses on which they bid;
temporary winners of the last round leave their bids from the previous round unchanged

– all other active prospective buyers must submit a new bid on some house

– new bids on a house must be at least equal to the prevailing temporary price that won the last round plus 𝜖
– if a person does not submit a new bid and was also not a temporary winner from the previous round, that
person must drop out of the auction permanently

– for each house, the highest bid, whether it is a new bid or was the temporary winner from the previous round,
is announced, with the person who made that new (temporarily) winning bid being (temporarily) awarded
the house to start the next round

• rounds continue until no price on any house changes from the previous round

• houses are sold to the winning bidders from the final round at the prices that they bid

Outputs:

• an 𝑛 × 1 vector 𝑝 of sales prices
• an 𝑛 × 𝑚 matrix 𝑆 of surplus values consisting of all zeros unless person 𝑗 bought house 𝑖, in which case 𝑆𝑖𝑗 =

𝑣𝑖𝑗 − 𝑝𝑖

• an 𝑛 × (𝑚 + 1) matrix 𝑄 of 0’s and 1’s that tells which buyer bought which house. (The last column accounts for
unsold houses.)

Proposed buyer strategy:

In this pseudo code and the actual Python code below, we’ll assume that all buyers choose to use the following strategy

• The strategy is optimal for each buyer

Each buyer 𝑗 = 1, … , 𝑚 uses the same strategy.

The strategy has the form:

• Let ̌𝑝𝑡 be the 𝑛 × 1 vector of prevailing highest-bid prices at the beginning of round 𝑡
• Let 𝜖 > 0 be the minimum bid increment specified by the seller

• For each prospective buyer 𝑗, compute the index of the best house to bid on during round 𝑡, namely ̂𝑖𝑡 =
argmax𝑖{[𝑣𝑖𝑗 − ̌𝑝𝑡

𝑖 − 𝜖]}
• If max𝑖{[𝑣𝑖𝑗 − ̌𝑝𝑡

𝑖 − 𝜖]} ≤ 0, person 𝑗 permanently drops out of the auction at round 𝑡
• If 𝑣 ̂𝑖𝑡,𝑗 − ̌𝑝𝑡

𝑖 − 𝜖 > 0, person 𝑗 bids ̌𝑝𝑡
𝑖 + 𝜖 on house 𝑗

Resolving ambiguities: The protocols we have described so far leave open two possible sources of ambiguity.

(1) The optimal bid choice for buyers in each round. It is possible that a buyer has the same surplus value for multiple
houses. The argmax function in Python always returns the first argmax element. We instead prefer to randomize among
such winner. For that reason, we write our own argmax function below.

(2) Seller’s choice of winner if same price bid cast by several buyers. To resolve this ambiguity, we use the
np.random.choice function below.

Given the randomness in outcomes, it is possible that different allocations of houses could emerge from the same inputs.

However, this will happen only when the bid price increment 𝜖 is nonnegligible.
import numpy as np
import prettytable as pt

np.random.seed(100)
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np.set_printoptions(precision=3, suppress=True)

84.7 An Example

Before building a Python class, let’s step by step solve things almost “by hand” to grasp how the auction proceeds.

A step-by-step procedure also helps reduce bugs, especially when the value matrix is peculiar (e.g. the differences between
values are negligible, a column containing identical values or multiple buyers have the same valuation etc.).

Fortunately, our auction behaves well and robustly with various peculiar matrices.

We provide some examples later in this lecture.

v = np.array([[8, 5, 9, 4],
[4, 11, 7, 4],
[9, 7, 6, 4]])

n, m = v.shape
r = np.array([2, 1, 0])
ϵ = 1
p = r.copy()
buyer_list = np.arange(m)
house_list = np.arange(n)

v

array([[ 8, 5, 9, 4],
[ 4, 11, 7, 4],
[ 9, 7, 6, 4]])

Remember that column indexes 𝑗 indicate buyers and row indexes 𝑖 indicate houses.
The above value matrix 𝑣 is peculiar in the sense that Buyer 3 (indexed from 0) puts the same value 4 on every house
being sold.

Maybe buyer 3 is a bureaucrat who purchases these house simply by following instructions from his superior.

r

array([2, 1, 0])

def find_argmax_with_randomness(v):
"""
We build our own verion of argmax function such that the argmax index will be␣

↪returned randomly
when there are multiple maximum values. This function is similiar to np.argmax(v,

↪axis=0)

Parameters:
----------
v: 2 dimensional np.array

"""

n, m = v.shape
index_array = np.arange(n)

(continues on next page)
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(continued from previous page)

result=[]

for ii in range(m):
max_value = v[:,ii].max()
result.append(np.random.choice(index_array[v[:,ii] == max_value]))

return np.array(result)

def present_dict(dt):
"""
A function that present the information in table.

Parameters:
----------
dt: dictionary.

"""

ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *dt.keys()]
ymtb.add_row(['Buyer', *dt.values()])
print(ymtb)

Check Kick Off Condition

def check_kick_off_condition(v, r, ϵ):
"""
A function that checks whether the auction could be initiated given the␣

↪reservation price and value matrix.
To avoid the situation that the reservation prices are so high that no one would␣

↪even bid in the first round.

Parameters:
----------
v : value matrix of the shape (n,m).

r: the reservation price

ϵ: the minimun price increment in each round

"""

# we convert the price vector to a matrix in the same shape as value matrix to␣
↪facilitate subtraction

p_start = (ϵ+r)[:,None] @ np.ones(m)[None,:]

surplus_value = v - p_start
buyer_decision = (surplus_value > 0).any(axis = 0)
return buyer_decision.any()

check_kick_off_condition(v, r, ϵ)

np.True_
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84.7.1 round 1

submit bid

def submit_initial_bid(p_initial, ϵ, v):
"""
A function that describes the bid information in the first round.

Parameters:
----------
p_initial: the price (or the reservation prices) at the beginning of auction.

v: the value matrix

ϵ: the minimun price increment in each round

Returns:
----------
p: price array after this round of bidding

bid_info: a dictionary that contains bidding information (house number as keys␣
↪and buyer as values).

"""

p = p_initial.copy()
p_start_mat = (ϵ + p)[:,None] @ np.ones(m)[None,:]
surplus_value = v - p_start_mat

# we only care about active buyers who have positve surplus values
active_buyer_diagnosis = (surplus_value > 0).any(axis = 0)
active_buyer_list = buyer_list[active_buyer_diagnosis]
active_buyer_surplus_value = surplus_value[:,active_buyer_diagnosis]
active_buyer_choice = find_argmax_with_randomness(active_buyer_surplus_value)
# choice means the favourite houses given the current price and ϵ

# we only retain the unique house index because prices increase once at one round
house_bid = list(set(active_buyer_choice))
p[house_bid] += ϵ

bid_info = {}
for house_num in house_bid:

bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]

return p, bid_info

p, bid_info = submit_initial_bid(p, ϵ, v)

p

array([3, 2, 1])

present_dict(bid_info)

+--------------+-----+-----+-------+
| House Number | 0 | 1 | 2 |

(continues on next page)
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(continued from previous page)

+--------------+-----+-----+-------+
| Buyer | [2] | [1] | [0 3] |
+--------------+-----+-----+-------+

check terminal condition

Notice that two buyers bid for house 2 (indexed from 0).

Because the auction protocol does not specify a selection rule in this case, we simply select a winner randomly.

This is reasonable because the seller can’t distinguish these buyers and doesn’t know the valuation of each buyer.

It is both convenient and practical for him to just pick a winner randomly.

There is a 50% probability that Buyer 3 is chosen as the winner for house 2, although he values it less than buyer 0.

In this case, buyer 0 has to bid one more time with a higher price, which crowds out Buyer 3.

Therefore, final price could be 3 or 4, depending on the winner in the last round.

def check_terminal_condition(bid_info, p, v):
"""
A function that checks whether the auction ends.

Recall that the auction ends when either losers have non-positive surplus values␣
↪for each house

or there is no loser (every buyer gets a house).

Parameters:
----------
bid_info: a dictionary that contains bidding information of house numbers (as␣

↪keys) and buyers (as values).

p: np.array. price array of houses

v: value matrix

Returns:
----------
allocation: a dictionary that descirbe how the houses bid are assigned.

winner_list: a list of winners

loser_list: a list of losers

"""

# there may be several buyers bidding one house, we choose a winner randomly
winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]

allocation = {house_num:winner for house_num,winner in zip(bid_info.keys(),winner_
↪list)}

loser_set = set(buyer_list).difference(set(winner_list))
loser_list = list(loser_set)
loser_num = len(loser_list)

if loser_num == 0:
print('The auction ends because every buyer gets one house.')

(continues on next page)
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(continued from previous page)

return allocation,winner_list,loser_list

p_mat = (ϵ + p)[:,None] @ np.ones(loser_num)[None,:]
loser_surplus_value = v[:,loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis = 0)

print(~(loser_decision.any()))

return allocation,winner_list,loser_list

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+

winner_list

[np.int64(2), np.int64(1), np.int64(0)]

loser_list

[np.int64(3)]

84.7.2 round 2

From the second round on, the auction proceeds differently from the first round.

Now only active losers (those who have positive surplus values) have an incentive to submit bids to displace temporary
winners from the previous round.

def submit_bid(loser_list, p, ϵ, v, bid_info):
"""
A function that executes the bid operation after the first round.
After the first round, only active losers would cast a new bid with price as old␣

↪price + increment.
By such bid, winners of last round are replaced by the active losers.

Parameters:
----------
loser_list: a list that includes the indexes of losers

p: np.array. price array of houses

ϵ: minimum increment of bid price

(continues on next page)
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(continued from previous page)

v: value matrix

bid_info: a dictionary that contains bidding information of house numbers (as␣
↪keys) and buyers (as values).

Returns:
----------
p_end: a price array after this round of bidding

bid_info: a dictionary that contains updated bidding information.

"""

p_end=p.copy()

loser_num = len(loser_list)
p_mat = (ϵ + p_end)[:,None] @ np.ones(loser_num)[None,:]
loser_surplus_value = v[:,loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis = 0)

active_loser_list = np.array(loser_list)[loser_decision]
active_loser_surplus_value = loser_surplus_value[:,loser_decision]
active_loser_choice = find_argmax_with_randomness(active_loser_surplus_value)

# we retain the unique house index and increasing the corresponding bid price
house_bid = list(set(active_loser_choice))
p_end[house_bid] += ϵ

# we record the bidding information from active losers
bid_info_active_loser = {}
for house_num in house_bid:

bid_info_active_loser[house_num] = active_loser_list[active_loser_choice ==␣
↪house_num]

# we update the bidding information according to the bidding from actice losers
for house_num in bid_info_active_loser.keys():

bid_info[house_num] = bid_info_active_loser[house_num]

return p_end,bid_info

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 2, 2])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [3] |
+--------------+-----+-----+-----+
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allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 3 |
+--------------+---+---+---+

84.7.3 round 3

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 2, 3])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+

84.7.4 round 4

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 3, 3])
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present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [3] | [0] |
+--------------+-----+-----+-----+

Notice that Buyer 3 now switches to bid for house 1 having recongized that house 2 is no longer his best option.

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 3 | 0 |
+--------------+---+---+---+

84.7.5 round 5

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 4, 3])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

Now Buyer 1 bids for house 1 again with price at 4, which crowds out Buyer 3, marking the end of the auction.

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

True

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+
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# as for the houses unsold

house_unsold_list = list(set(house_list).difference(set(allocation.keys())))
house_unsold_list

[]

total_revenue = p[list(allocation.keys())].sum()
total_revenue

np.int64(10)

84.8 A Python Class

Above we simulated an ascending bid auction step by step.

When defining functions, we repeatedly computed some intermediate objects because our Python function loses track of
variables once the function is executed.

That of course led to redundancy in our code

It is much more efficient to collect all of the aforementioned code into a class that records information about all rounds.

class ascending_bid_auction:

def __init__(self, v, r, ϵ):
"""
A class that simulates an ascending bid auction for houses.

Given buyers' value matrix, sellers' reservation prices and minimum increment␣
↪of bid prices,

this class can execute an ascending bid auction and present information round␣
↪by round until the end.

Parameters:
----------
v: 2 dimensional value matrix

r: np.array of reservation prices

ϵ: minimum increment of bid price

"""

self.v = v.copy()
self.n,self.m = self.v.shape
self.r = r
self.ϵ = ϵ
self.p = r.copy()
self.buyer_list = np.arange(self.m)
self.house_list = np.arange(self.n)
self.bid_info_history = []
self.allocation_history = []
self.winner_history = []
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84.8. A Python Class 1587



Intermediate Quantitative Economics with Python

(continued from previous page)

self.loser_history = []

def find_argmax_with_randomness(self, v):
n,m = v.shape
index_array = np.arange(n)
result=[]

for ii in range(m):
max_value = v[:,ii].max()
result.append(np.random.choice(index_array[v[:,ii] == max_value]))

return np.array(result)

def check_kick_off_condition(self):
# we convert the price vector to a matrix in the same shape as value matrix␣

↪to facilitate subtraction
p_start = (self.ϵ + self.r)[:,None] @ np.ones(self.m)[None,:]
self.surplus_value = self.v - p_start
buyer_decision = (self.surplus_value > 0).any(axis = 0)
return buyer_decision.any()

def submit_initial_bid(self):
# we intend to find the optimal choice of each buyer
p_start_mat = (self.ϵ + self.p)[:,None] @ np.ones(self.m)[None,:]
self.surplus_value = self.v - p_start_mat

# we only care about active buyers who have positve surplus values
active_buyer_diagnosis = (self.surplus_value > 0).any(axis = 0)
active_buyer_list = self.buyer_list[active_buyer_diagnosis]
active_buyer_surplus_value = self.surplus_value[:,active_buyer_diagnosis]
active_buyer_choice = self.find_argmax_with_randomness(active_buyer_surplus_

↪value)

# we only retain the unique house index because prices increase once at one␣
↪round

house_bid = list(set(active_buyer_choice))
self.p[house_bid] += self.ϵ

bid_info = {}
for house_num in house_bid:

bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]
self.bid_info_history.append(bid_info)

print('The bid information is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *bid_info.keys()]
ymtb.add_row(['Buyer', *bid_info.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)
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self.winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
self.winner_history.append(self.winner_list)

self.allocation = {house_num:[winner] for house_num,winner in zip(bid_info.
↪keys(),self.winner_list)}

self.allocation_history.append(self.allocation)

loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('\n')

def check_terminal_condition(self):
loser_num = len(self.loser_list)

if loser_num == 0:
print('The auction ends because every buyer gets one house.')
print('\n')
return True

p_mat = (self.ϵ + self.p)[:,None] @ np.ones(loser_num)[None,:]
self.loser_surplus_value = self.v[:,self.loser_list] - p_mat
self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

return ~(self.loser_decision.any())

def submit_bid(self):
bid_info = self.allocation_history[-1].copy() # we only record the bid info␣

↪of winner

loser_num = len(self.loser_list)
p_mat = (self.ϵ + self.p)[:,None] @ np.ones(loser_num)[None,:]
self.loser_surplus_value = self.v[:,self.loser_list] - p_mat
self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

active_loser_list = np.array(self.loser_list)[self.loser_decision]
active_loser_surplus_value = self.loser_surplus_value[:,self.loser_decision]
active_loser_choice = self.find_argmax_with_randomness(active_loser_surplus_

↪value)

# we retain the unique house index and increasing the corresponding bid price
house_bid = list(set(active_loser_choice))
self.p[house_bid] += self.ϵ

# we record the bidding information from active losers
bid_info_active_loser = {}
for house_num in house_bid:

bid_info_active_loser[house_num] = active_loser_list[active_loser_choice␣
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↪== house_num]

# we update the bidding information according to the bidding from actice␣
↪losers

for house_num in bid_info_active_loser.keys():
bid_info[house_num] = bid_info_active_loser[house_num]

self.bid_info_history.append(bid_info)

print('The bid information is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *bid_info.keys()]
ymtb.add_row(['Buyer', *bid_info.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

self.winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
self.winner_history.append(self.winner_list)

self.allocation = {house_num:[winner] for house_num,winner in zip(bid_info.
↪keys(),self.winner_list)}

self.allocation_history.append(self.allocation)

loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('\n')

def start_auction(self):
print('The Ascending Bid Auction for Houses')
print('\n')

print('Basic Information: %d houses, %d buyers'%(self.n, self.m))

print('The valuation matrix is as follows')
ymtb = pt.PrettyTable()
ymtb.field_names = ['Buyer Number', *(np.arange(self.m))]
for ii in range(self.n):

ymtb.add_row(['House %d'%(ii), *self.v[ii,:]])
print(ymtb)

print('The reservation prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.r])
print(ymtb)
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print('The minimum increment of bid price is %.2f' % self.ϵ)
print('\n')

ctr = 1
if self.check_kick_off_condition():

print('Auction starts successfully')
print('\n')
print('Round %d'% ctr)

self.submit_initial_bid()

while True:
if self.check_terminal_condition():

print('Auction ends')
print('\n')

print('The final result is as follows')
print('\n')
print('The allocation plan is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.allocation.keys()]
ymtb.add_row(['Buyer', *self.allocation.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)

self.house_unsold_list = list(set(self.house_list).
↪difference(set(self.allocation.keys())))

print('The houses unsold are')
print(self.house_unsold_list)

self.total_revenue = self.p[list(self.allocation.keys())].sum()
print('The total revenue is %.2f' % self.total_revenue)

break

ctr += 1
print('Round %d'% ctr)
self.submit_bid()

# we compute the surplus matrix S and the quantity matrix X as required␣
↪in 1.1

self.S = np.zeros((self.n, self.m))
for ii,jj in zip(self.allocation.keys(),self.allocation.values()):

self.S[ii,jj] = self.v[ii,jj] - self.p[ii]

self.Q = np.zeros((self.n, self.m + 1)) # the last column records the␣
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↪houses unsold
for ii,jj in zip(self.allocation.keys(),self.allocation.values()):

self.Q[ii,jj] = 1
for ii in self.house_unsold_list:

self.Q[ii,-1] = 1

# we sort the allocation result by the house number
house_sold_list = list(self.allocation.keys())
house_sold_list.sort()

dict_temp = {}
for ii in house_sold_list:

dict_temp[ii] = self.allocation[ii]
self.allocation = dict_temp

else:
print('The auction can not start because of high reservation prices')

Let’s use our class to conduct the auction described in one of the above examples.

v = np.array([[8,5,9,4],[4,11,7,4],[9,7,6,4]])
r = np.array([2,1,0])
ϵ = 1

auction_1 = ascending_bid_auction(v, r, ϵ)

auction_1.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+
| Buyer Number | 0 | 1 | 2 | 3 |
+--------------+---+----+---+---+
| House 0 | 8 | 5 | 9 | 4 |
| House 1 | 4 | 11 | 7 | 4 |
| House 2 | 9 | 7 | 6 | 4 |
+--------------+---+----+---+---+
The reservation prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 2 | 1 | 0 |
+--------------+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-----+-------+
| House Number | 0 | 1 | 2 |
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+--------------+-----+-----+-------+
| Buyer | [2] | [1] | [0 3] |
+--------------+-----+-----+-------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3)]

Round 2
The bid information is
+--------------+---------------+---------------+-----+
| House Number | 0 | 1 | 2 |
+--------------+---------------+---------------+-----+
| Buyer | [np.int64(2)] | [np.int64(1)] | [3] |
+--------------+---------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 2 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(3)]
The losers are
[np.int64(0)]

Round 3
The bid information is
+--------------+---------------+---------------+-----+
| House Number | 0 | 1 | 2 |
+--------------+---------------+---------------+-----+
| Buyer | [np.int64(2)] | [np.int64(1)] | [0] |
+--------------+---------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 3 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3)]

Round 4
The bid information is
+--------------+---------------+-----+---------------+
| House Number | 0 | 1 | 2 |
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+--------------+---------------+-----+---------------+
| Buyer | [np.int64(2)] | [3] | [np.int64(0)] |
+--------------+---------------+-----+---------------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 3 | 3 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(3), np.int64(0)]
The losers are
[np.int64(1)]

Round 5
The bid information is
+--------------+---------------+-----+---------------+
| House Number | 0 | 1 | 2 |
+--------------+---------------+-----+---------------+
| Buyer | [np.int64(2)] | [1] | [np.int64(0)] |
+--------------+---------------+-----+---------------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3)]

Auction ends

The final result is as follows

The allocation plan is
+--------------+---------------+---------------+---------------+
| House Number | 0 | 1 | 2 |
+--------------+---------------+---------------+---------------+
| Buyer | [np.int64(2)] | [np.int64(1)] | [np.int64(0)] |
+--------------+---------------+---------------+---------------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3)]
The houses unsold are
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[]
The total revenue is 10.00

# the surplus matrix S

auction_1.S

array([[0., 0., 6., 0.],
[0., 7., 0., 0.],
[6., 0., 0., 0.]])

# the quantity matrix X

auction_1.Q

array([[0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.],
[1., 0., 0., 0., 0.]])

84.9 Robustness Checks

Let’s do some stress testing of our code by applying it to auctions characterized by different matrices of private values.

1. number of houses = number of buyers

v2 = np.array([[8,5,9],[4,11,7],[9,7,6]])

auction_2 = ascending_bid_auction(v2, r, ϵ)

auction_2.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
| House 0 | 8 | 5 | 9 |
| House 1 | 4 | 11 | 7 |
| House 2 | 9 | 7 | 6 |
+--------------+---+----+---+
The reservation prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 2 | 1 | 0 |
+--------------+---+---+---+
The minimum increment of bid price is 1.00
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Auction starts successfully

Round 1
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
+--------------+---------------+---------------+---------------+
| House Number | 0 | 1 | 2 |
+--------------+---------------+---------------+---------------+
| Buyer | [np.int64(2)] | [np.int64(1)] | [np.int64(0)] |
+--------------+---------------+---------------+---------------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[]
The houses unsold are
[]
The total revenue is 6.00

2. multilple excess buyers

v3 = np.array([[8,5,9,4,3],[4,11,7,4,6],[9,7,6,4,2]])

auction_3 = ascending_bid_auction(v3, r, ϵ)
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auction_3.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 5 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+---+
| Buyer Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+----+---+---+---+
| House 0 | 8 | 5 | 9 | 4 | 3 |
| House 1 | 4 | 11 | 7 | 4 | 6 |
| House 2 | 9 | 7 | 6 | 4 | 2 |
+--------------+---+----+---+---+---+
The reservation prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 2 | 1 | 0 |
+--------------+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+-------+
| House Number | 0 | 1 | 2 |
+--------------+-----+-------+-------+
| Buyer | [2] | [1 4] | [0 3] |
+--------------+-----+-------+-------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(4), np.int64(3)]
The losers are
[np.int64(0), np.int64(1)]

Round 2
The bid information is
+--------------+---------------+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+---------------+-----+-----+
| Buyer | [np.int64(2)] | [1] | [0] |
+--------------+---------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
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| Price | 3 | 3 | 2 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3), np.int64(4)]

Round 3
The bid information is
+--------------+---------------+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+---------------+-----+-----+
| Buyer | [np.int64(2)] | [4] | [3] |
+--------------+---------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(4), np.int64(3)]
The losers are
[np.int64(0), np.int64(1)]

Round 4
The bid information is
+--------------+---------------+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+---------------+-----+-----+
| Buyer | [np.int64(2)] | [1] | [0] |
+--------------+---------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 5 | 4 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3), np.int64(4)]

Auction ends

The final result is as follows

The allocation plan is
+--------------+---------------+---------------+---------------+
| House Number | 0 | 1 | 2 |
+--------------+---------------+---------------+---------------+
| Buyer | [np.int64(2)] | [np.int64(1)] | [np.int64(0)] |
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+--------------+---------------+---------------+---------------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 5 | 4 |
+--------------+---+---+---+
The winners are
[np.int64(2), np.int64(1), np.int64(0)]
The losers are
[np.int64(3), np.int64(4)]
The houses unsold are
[]
The total revenue is 12.00

3. more houses than buyers

v4 = np.array([[8,5,4],[4,11,7],[9,7,9],[6,4,5],[2,2,2]])
r2 = np.array([2,1,0,1,1])

auction_4 = ascending_bid_auction(v4, r2, ϵ)

auction_4.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
| House 0 | 8 | 5 | 4 |
| House 1 | 4 | 11 | 7 |
| House 2 | 9 | 7 | 9 |
| House 3 | 6 | 4 | 5 |
| House 4 | 2 | 2 | 2 |
+--------------+---+----+---+
The reservation prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 1 | 0 | 1 | 1 |
+--------------+---+---+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+
| House Number | 1 | 2 |
+--------------+-----+-------+
| Buyer | [1] | [0 2] |
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+--------------+-----+-------+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 1 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

Round 2
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [0] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 2 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

Round 3
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [2] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 3 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

Round 4
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [0] |
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+--------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

Round 5
The bid information is
+--------------+-----+---------------+
| House Number | 1 | 2 |
+--------------+-----+---------------+
| Buyer | [2] | [np.int64(0)] |
+--------------+-----+---------------+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 3 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(2), np.int64(0)]
The losers are
[np.int64(1)]

Round 6
The bid information is
+--------------+-----+---------------+
| House Number | 1 | 2 |
+--------------+-----+---------------+
| Buyer | [1] | [np.int64(0)] |
+--------------+-----+---------------+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 4 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

Round 7
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [2] |

(continues on next page)
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+--------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

Round 8
The bid information is
+--------------+---------------+---------------+-----+
| House Number | 1 | 2 | 0 |
+--------------+---------------+---------------+-----+
| Buyer | [np.int64(1)] | [np.int64(2)] | [0] |
+--------------+---------------+---------------+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 3 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(2), np.int64(0)]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
+--------------+---------------+---------------+---------------+
| House Number | 1 | 2 | 0 |
+--------------+---------------+---------------+---------------+
| Buyer | [np.int64(1)] | [np.int64(2)] | [np.int64(0)] |
+--------------+---------------+---------------+---------------+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 3 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[np.int64(1), np.int64(2), np.int64(0)]
The losers are
[]

(continues on next page)
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The houses unsold are
[np.int64(3), np.int64(4)]
The total revenue is 12.00

4. some houses have extremely high reservation prices

v5 = np.array([[8,5,4],[4,11,7],[9,7,9],[6,4,5],[2,2,2]])
r3 = np.array([10,1,0,1,1])

auction_5 = ascending_bid_auction(v5, r3, ϵ)

auction_5.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
| House 0 | 8 | 5 | 4 |
| House 1 | 4 | 11 | 7 |
| House 2 | 9 | 7 | 9 |
| House 3 | 6 | 4 | 5 |
| House 4 | 2 | 2 | 2 |
+--------------+---+----+---+
The reservation prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 1 | 0 | 1 | 1 |
+--------------+----+---+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+
| House Number | 1 | 2 |
+--------------+-----+-------+
| Buyer | [1] | [0 2] |
+--------------+-----+-------+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 1 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

(continues on next page)
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Round 2
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [2] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 2 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

Round 3
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [0] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 3 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

Round 4
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [2] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 4 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

(continues on next page)
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Round 5
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [0] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 5 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

Round 6
The bid information is
+--------------+-----+---------------+
| House Number | 1 | 2 |
+--------------+-----+---------------+
| Buyer | [2] | [np.int64(0)] |
+--------------+-----+---------------+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 3 | 5 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(2), np.int64(0)]
The losers are
[np.int64(1)]

Round 7
The bid information is
+--------------+-----+---------------+
| House Number | 1 | 2 |
+--------------+-----+---------------+
| Buyer | [1] | [np.int64(0)] |
+--------------+-----+---------------+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 5 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(0)]
The losers are
[np.int64(2)]

(continues on next page)
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Round 8
The bid information is
+--------------+---------------+-----+
| House Number | 1 | 2 |
+--------------+---------------+-----+
| Buyer | [np.int64(1)] | [2] |
+--------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 6 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(2)]
The losers are
[np.int64(0)]

Round 9
The bid information is
+--------------+---------------+---------------+-----+
| House Number | 1 | 2 | 3 |
+--------------+---------------+---------------+-----+
| Buyer | [np.int64(1)] | [np.int64(2)] | [0] |
+--------------+---------------+---------------+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(2), np.int64(0)]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
+--------------+---------------+---------------+---------------+
| House Number | 1 | 2 | 3 |
+--------------+---------------+---------------+---------------+
| Buyer | [np.int64(1)] | [np.int64(2)] | [np.int64(0)] |
+--------------+---------------+---------------+---------------+
The bid prices for houses are
+--------------+----+---+---+---+---+

(continues on next page)
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| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+----+---+---+---+---+
The winners are
[np.int64(1), np.int64(2), np.int64(0)]
The losers are
[]
The houses unsold are
[np.int64(0), np.int64(4)]
The total revenue is 12.00

5. reservation prices are so high that the auction can’t start

r4 = np.array([15,15,15])

auction_6 = ascending_bid_auction(v, r4, ϵ)

auction_6.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+
| Buyer Number | 0 | 1 | 2 | 3 |
+--------------+---+----+---+---+
| House 0 | 8 | 5 | 9 | 4 |
| House 1 | 4 | 11 | 7 | 4 |
| House 2 | 9 | 7 | 6 | 4 |
+--------------+---+----+---+---+
The reservation prices for houses are
+--------------+----+----+----+
| House Number | 0 | 1 | 2 |
+--------------+----+----+----+
| Price | 15 | 15 | 15 |
+--------------+----+----+----+
The minimum increment of bid price is 1.00

The auction can not start because of high reservation prices

84.10 A Groves-Clarke Mechanism

We now decribe an alternative way for society to allocate 𝑛 houses to 𝑚 possible buyers in a way that maximizes total
value across all potential buyers.

We continue to assume that each buyer can purchase at most one house.

The mechanism is a very special case of a Groves-Clarke mechanism [Groves, 1973], [Clarke, 1971].

Its special structure substantially simplifies writing Python code to find an optimal allocation.

Our mechanims works like this.

84.10. A Groves-Clarke Mechanism 1607



Intermediate Quantitative Economics with Python

• The values 𝑉𝑖𝑗 are private information to person 𝑗
• The mechanism makes each person 𝑗 willing to tell a social planner his private values 𝑉𝑖,𝑗 for all 𝑖 = 1, … , 𝑛.
• The social planner asks all potential bidders to tell the planner their private values 𝑉𝑖𝑗

• The social planner tells no one these, but uses them to allocate houses and set prices

• The mechanism is designed in a way that makes all prospective buyers want to tell the planner their private values

– truth telling is a dominant strategy for each potential buyer

• The planner finds a house, bidder pair with highest private value by computing ( ̃𝑖, ̃𝑗) = argmax(𝑉𝑖𝑗)

• The planner assigns house ̃𝑖 to buyer ̃𝑗
• The planner charges buyer ̃𝑗 the price max− ̃𝑗 𝑉 ̃𝑖,𝑗, where − ̃𝑗 means all 𝑗’s except ̃𝑗.

• The planner creates a matrix of private values for the remaining houses − ̃𝑖 by deleting row (i.e., house) ̃𝑖 and
column (i.e., buyer) ̃𝑗 from 𝑉 .

– (But in doing this, the planner keeps track of the real names of the bidders and the houses).

• The planner returns to the original step and repeat it.

• The planner iterates until all 𝑛 houses are allocated and the charges for all 𝑛 houses are set.

84.11 An Example Solved by Hand

Let’s see how our Groves-Clarke algorithm would work for the following simple matrix 𝑉 matrix of private values

𝑉 =
⎡
⎢⎢
⎣

10 9 8 7 6
9 9 7 6 6
8 6 6 9 4
7 5 6 4 9

⎤
⎥⎥
⎦

Remark: In the first step, when the highest private value corresponds to more than one house, bidder pairs, we choose
the pair with the highest sale price. If a highest sale price corresponds to two or more pairs with highest private values,
we randomly choose one.

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6], # record the origianl values
[9, 9, 7, 6, 6],
[8, 6, 6, 9, 4],
[7, 5, 6, 4, 9]])

V = np.copy(V_orig) # used iteratively
n, m = V.shape
p = np.zeros(n) # prices of houses
Q = np.zeros((n, m)) # keep record the status of houses and buyers

First assignment

First, we find house, bidder pair with highest private value.

i, j = np.where(V==np.max(V))
i, j

(array([0]), array([0]))
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So, house 0 will be sold to buyer 0 at a price of 9. We then update the sale price of house 0 and the status matrix Q.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
p, Q

(array([9., 0., 0., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]))

Then we remove row 0 and column 0 from 𝑉 . To keep the real number of houses and buyers, we set this row and this
column to -1, which will have the same result as removing them since 𝑉 ≥ 0.
V[i, :] = -1
V[:, j] = -1
V

array([[-1, -1, -1, -1, -1],
[-1, 9, 7, 6, 6],
[-1, 6, 6, 9, 4],
[-1, 5, 6, 4, 9]])

Second assignment

We find house, bidder pair with the highest private value again.

i, j = np.where(V==np.max(V))
i, j

(array([1, 2, 3]), array([1, 3, 4]))

In this special example, there are three pairs (1, 1), (2, 3) and (3, 4) with the highest private value. To solve this problem,
we choose the one with highest sale price.

p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j

(array([1]), array([1]))

So, house 1 will be sold to buyer 1 at a price of 7. We update matrices.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V

(array([9., 7., 0., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],

(continues on next page)

84.11. An Example Solved by Hand 1609



Intermediate Quantitative Economics with Python

(continued from previous page)

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, 6, 9, 4],
[-1, -1, 6, 4, 9]]))

Third assignment

i, j = np.where(V==np.max(V))
i, j

(array([2, 3]), array([3, 4]))

In this special example, there are two pairs (2, 3) and (3, 4) with the highest private value.

To resolve the assignment, we choose the one with highest sale price.

p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j

(array([2, 3]), array([3, 4]))

The two pairs even have the same sale price.

We randomly choose one pair.

k = np.random.choice(len(i))
i, j = i[k], j[k]
i, j

(np.int64(2), np.int64(3))

Finally, house 2 will be sold to buyer 3.

We update matrices accordingly.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V

(array([9., 7., 6., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, 6, -1, 9]]))
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Fourth assignment

i, j = np.where(V==np.max(V))
i, j

(array([3]), array([4]))

House 3 will be sold to buyer 4.

The final outcome follows.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
S = V_orig*Q - np.diag(p)@Q
p, Q, V, S

(array([9., 7., 6., 6.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1]]),

array([[1., 0., 0., 0., 0.],
[0., 2., 0., 0., 0.],
[0., 0., 0., 3., 0.],
[0., 0., 0., 0., 3.]]))

84.12 Another Python Class

It is efficient to assemble our calculations in a single Python Class.

class GC_Mechanism:

def __init__(self, V):
"""
Implementation of the special Groves Clarke Mechanism for house auction.

Parameters:
----------
V: 2 dimensional private value matrix

"""

self.V_orig = V.copy()
self.V = V.copy()
self.n, self.m = self.V.shape
self.p = np.zeros(self.n)
self.Q = np.zeros((self.n, self.m))
self.S = np.copy(self.Q)

(continues on next page)
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def find_argmax(self):
"""
Find the house-buyer pair with the highest value.
When the highest private value corresponds to more than one house, bidder␣

↪pairs,
we choose the pair with the highest sale price.
Moreoever, if the highest sale price corresponds to two or more pairs with␣

↪highest private value,
We randomly choose one.

Parameters:
----------
V: 2 dimensional private value matrix with -1 indicating revomed rows and␣

↪columns

Returns:
----------
i: the index of the sold house

j: the index of the buyer

"""
i, j = np.where(self.V==np.max(self.V))

if (len(i)>1):
p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(self.V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]

if (len(i)>1):
k = np.random.choice(len(i))
k = np.array([k])
i, j = i[k], j[k]

return i, j

def update_status(self, i, j):
self.p[i] = np.max(np.delete(self.V[i, :], j))
self.Q[i, j] = 1
self.V[i, :] = -1
self.V[:, j] = -1

def calculate_surplus(self):
self.S = self.V_orig*self.Q - np.diag(self.p)@self.Q

def start(self):
while (np.max(self.V)>=0):

i, j = self.find_argmax()
self.update_status(i, j)
print("House %i is sold to buyer %i at price %i"%(i[0], j[0], self.

↪p[i[0]]))
print("\n")

self.calculate_surplus()
print("Prices of house:\n", self.p)
print("\n")
print("The status matrix:\n", self.Q)

(continues on next page)
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print("\n")
print("The surplus matrix:\n", self.S)

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6],
[9, 9, 7, 6, 6],
[8, 6, 6, 9, 4],
[7, 5, 6, 4, 9]])

gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 7

House 2 is sold to buyer 3 at price 6

House 3 is sold to buyer 4 at price 6

Prices of house:
[9. 7. 6. 6.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]
[0. 0. 0. 0. 1.]]

The surplus matrix:
[[1. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 3.]]

84.12.1 Elaborations

Here we use some additional notation designed to conform with standard notation in parts of the VCG literature.

We want to verify that our pseudo code is indeed a pivot mechanism, also called a VCG (Vickrey-Clarke-Groves)
mechanism.

• The mechanism is named after [Groves, 1973], [Clarke, 1971], and [Vickrey, 1961].

To prepare for verifying this, we add some notation.

Let 𝑋 be the set of feasible allocations of houses under the protocols above (i.e., at most one house to each person).

Let 𝑋(𝑣) be the allocation that the mechanism chooses for matrix 𝑣 of private values.
The mechanism maps a matrix 𝑣 of private values into an 𝑥 ∈ 𝑋.
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Let 𝑣𝑗(𝑥) be the value that person 𝑗 attaches to allocation 𝑥 ∈ 𝑋.

Let ̌𝑡𝑗(𝑣) the payment that the mechanism charges person 𝑗.
The VCG mechanism chooses the allocation

𝑋(𝑣) = argmax𝑥∈𝑋

𝑚
∑
𝑗=1

𝑣𝑗(𝑥) (84.1)

and charges person 𝑗 a “social cost”

̌𝑡𝑗(𝑣) = max
𝑥∈𝑋

∑
𝑘≠𝑗

𝑣𝑘(𝑥) − ∑
𝑘≠𝑗

𝑣𝑘(𝑋(𝑣)) (84.2)

In our setting, equation (84.1) says that the VCG allocation allocates houses to maximize the total value of the successful
prospective buyers.

In our setting, equation (84.2) says that the mechanism charges people for the externality that their presence in society
imposes on other prospective buyers.

Thus, notice that according to equation (84.2):

• unsuccessful prospective buyers pay 0 because removing them from “society” would not affect the allocation chosen
by the mechanim

• successful prospective buyers pay the difference between the total value society could achieve without them present
and the total value that others present in society do achieve under the mechanism.

The generalized second-price auction described in our pseudo code above does indeed satisfy (1). We want to compute
̌𝑡𝑗 for 𝑗 = 1, … , 𝑚 and compare with 𝑝𝑗 from the second price auction.

84.12.2 Social Cost

Using the GC_Mechanism class, we can calculate the social cost of each buyer.

Let’s see a simpler example with private value matrix

𝑉 = ⎡⎢
⎣

10 9 8 7 6
9 8 7 6 6
8 7 6 5 4

⎤⎥
⎦

To begin with, we implement the GC mechanism and see the outcome.

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6],
[9, 8, 7, 6, 6],
[8, 7, 6, 5, 4]])

gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 7

House 2 is sold to buyer 2 at price 5

(continues on next page)
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(continued from previous page)

Prices of house:
[9. 7. 5.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]]

The surplus matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]]

We exclude buyer 0 and calculate the allocation.

V_exc_0 = np.copy(V_orig)
V_exc_0[:, 0] = -1
V_exc_0
gc_mechanism_exc_0 = GC_Mechanism(V_exc_0)
gc_mechanism_exc_0.start()

House 0 is sold to buyer 1 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:
[8. 6. 4.]

The status matrix:
[[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[-0. 1. 0. 0. 0.]
[-0. 0. 1. 0. 0.]
[-0. 0. 0. 1. 0.]]

Calculate the social cost of buyer 0.

print("The social cost of buyer 0:",
np.sum(gc_mechanism_exc_0.Q*gc_mechanism_exc_0.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 0, axis=1)))
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The social cost of buyer 0: 7.0

Repeat this process for buyer 1 and buyer 2

V_exc_1 = np.copy(V_orig)
V_exc_1[:, 1] = -1
V_exc_1
gc_mechanism_exc_1 = GC_Mechanism(V_exc_1)
gc_mechanism_exc_1.start()

print("\nThe social cost of buyer 1:",
np.sum(gc_mechanism_exc_1.Q*gc_mechanism_exc_1.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 1, axis=1)))

House 0 is sold to buyer 0 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:
[8. 6. 4.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[ 2. -0. 0. 0. 0.]
[ 0. -0. 1. 0. 0.]
[ 0. -0. 0. 1. 0.]]

The social cost of buyer 1: 6.0

V_exc_2 = np.copy(V_orig)
V_exc_2[:, 2] = -1
V_exc_2
gc_mechanism_exc_2 = GC_Mechanism(V_exc_2)
gc_mechanism_exc_2.start()

print("\nThe social cost of buyer 2:",
np.sum(gc_mechanism_exc_2.Q*gc_mechanism_exc_2.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 2, axis=1)))

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 6

(continues on next page)
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(continued from previous page)

House 2 is sold to buyer 3 at price 4

Prices of house:
[9. 6. 4.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[ 1. 0. -0. 0. 0.]
[ 0. 2. -0. 0. 0.]
[ 0. 0. -0. 1. 0.]]

The social cost of buyer 2: 5.0
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CHAPTER

EIGHTYFIVE

TROUBLESHOOTING

Contents

• Troubleshooting

– Fixing Your Local Environment

– Reporting an Issue

This page is for readers experiencing errors when running the code from the lectures.

85.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever

1. it is executed in a Jupyter notebook and

2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?

Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.

Here’s a useful article on how to update Anaconda.

Another option is to simply remove Anaconda and reinstall.

You also need to keep the external code libraries, such as QuantEcon.py up to date.

For this task you can either

• use pip install --upgrade quantecon on the command line, or

• execute !pip install --upgrade quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.

First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture
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Second, you can report an issue, so we can try to fix your local set up.

We like getting feedback on the lectures so please don’t hesitate to get in touch.

85.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.

Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.

Finally, you can provide direct feedback to contact@quantecon.org
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CHAPTER

EIGHTYSEVEN

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status

aiyagari 2025-10-27 03:39 cache 72.39 ✅
ak2 2025-10-27 03:39 cache 12.6 ✅
ak_aiyagari 2025-10-27 03:39 cache 41.6 ✅
ar1_bayes 2025-10-27 03:45 cache 343.37 ✅
ar1_turningpts 2025-10-27 03:46 cache 37.95 ✅
back_prop 2025-10-27 03:48 cache 101.2 ✅
bayes_nonconj 2025-10-27 04:05 cache 1071.34 ✅
cake_eating_numerical 2025-10-27 04:06 cache 23.99 ✅
cake_eating_problem 2025-10-27 04:06 cache 2.03 ✅
career 2025-10-27 04:06 cache 12.51 ✅
cass_fiscal 2025-10-27 04:06 cache 18.18 ✅
cass_fiscal_2 2025-10-27 04:06 cache 6.0 ✅
cass_koopmans_1 2025-10-27 04:07 cache 13.31 ✅
cass_koopmans_2 2025-10-27 04:07 cache 7.2 ✅
coleman_policy_iter 2025-10-27 04:07 cache 10.79 ✅
cross_product_trick 2025-10-27 04:07 cache 1.11 ✅
divergence_measures 2025-10-27 04:07 cache 14.83 ✅
egm_policy_iter 2025-10-27 04:07 cache 5.26 ✅
eig_circulant 2025-10-27 04:07 cache 6.5 ✅
exchangeable 2025-10-27 04:08 cache 8.12 ✅
finite_markov 2025-10-27 04:08 cache 6.23 ✅
ge_arrow 2025-10-27 04:08 cache 2.14 ✅
harrison_kreps 2025-10-27 04:08 cache 3.83 ✅
hoist_failure 2025-10-27 04:09 cache 54.6 ✅
house_auction 2025-10-27 04:09 cache 3.2 ✅
ifp 2025-10-27 04:09 cache 39.57 ✅
ifp_advanced 2025-10-27 04:10 cache 24.93 ✅
imp_sample 2025-10-27 04:14 cache 250.32 ✅
intro 2025-10-27 04:14 cache 0.91 ✅
inventory_dynamics 2025-10-27 04:14 cache 10.36 ✅
jv 2025-10-27 04:15 cache 15.98 ✅
kalman 2025-10-27 04:15 cache 9.34 ✅
kalman_2 2025-10-27 04:15 cache 43.2 ✅
kesten_processes 2025-10-27 04:16 cache 31.65 ✅
lagrangian_lqdp 2025-10-27 04:16 cache 28.37 ✅
lake_model 2025-10-27 04:17 cache 35.96 ✅

continues on next page

1625



Intermediate Quantitative Economics with Python

Table 87.1 – continued from previous page

Document Modified Method Run Time (s) Status

likelihood_bayes 2025-10-29 01:13 cache 54.73 ✅
likelihood_ratio_process 2025-10-27 04:18 cache 23.34 ✅
likelihood_ratio_process_2 2025-10-27 04:19 cache 30.61 ✅
likelihood_var 2025-10-27 04:19 cache 21.59 ✅
linear_algebra 2025-10-27 04:19 cache 2.59 ✅
linear_models 2025-10-27 04:19 cache 8.97 ✅
lln_clt 2025-10-27 04:19 cache 11.66 ✅
lq_inventories 2025-10-27 04:20 cache 13.14 ✅
lqcontrol 2025-10-27 04:20 cache 5.36 ✅
markov_asset 2025-10-27 04:20 cache 5.58 ✅
markov_perf 2025-10-27 04:20 cache 4.6 ✅
mccall_correlated 2025-10-27 04:21 cache 79.33 ✅
mccall_fitted_vfi 2025-10-27 04:21 cache 5.88 ✅
mccall_model 2025-10-27 04:22 cache 15.5 ✅
mccall_model_with_separation 2025-10-27 04:22 cache 7.74 ✅
mccall_q 2025-10-27 04:22 cache 18.45 ✅
mix_model 2025-10-27 04:23 cache 77.41 ✅
mle 2025-10-27 04:23 cache 10.68 ✅
morris_learn 2025-10-27 04:24 cache 17.46 ✅
multi_hyper 2025-10-27 04:24 cache 19.0 ✅
multivariate_normal 2025-10-27 04:24 cache 4.61 ✅
navy_captain 2025-10-27 04:25 cache 30.6 ✅
newton_method 2025-10-27 04:26 cache 54.63 ✅
odu 2025-10-27 04:26 cache 51.59 ✅
ols 2025-10-27 04:27 cache 8.53 ✅
opt_transport 2025-10-27 04:27 cache 16.02 ✅
optgrowth 2025-10-27 04:28 cache 65.89 ✅
optgrowth_fast 2025-10-27 04:28 cache 18.4 ✅
pandas_panel 2025-10-27 04:28 cache 4.72 ✅
perm_income 2025-10-27 04:28 cache 3.85 ✅
perm_income_cons 2025-10-27 04:29 cache 8.19 ✅
prob_matrix 2025-10-27 04:29 cache 9.53 ✅
prob_meaning 2025-10-27 04:30 cache 61.94 ✅
qr_decomp 2025-10-27 04:30 cache 1.22 ✅
rand_resp 2025-10-27 04:30 cache 2.91 ✅
rational_expectations 2025-10-27 04:30 cache 3.83 ✅
re_with_feedback 2025-10-27 04:30 cache 11.27 ✅
samuelson 2025-10-27 04:30 cache 12.19 ✅
sir_model 2025-10-27 04:30 cache 3.13 ✅
stats_examples 2025-10-27 04:30 cache 4.5 ✅
status 2025-10-27 04:31 cache 7.77 ✅
svd_intro 2025-10-27 04:31 cache 1.42 ✅
troubleshooting 2025-10-27 04:14 cache 0.91 ✅
two_auctions 2025-10-27 04:31 cache 25.53 ✅
uncertainty_traps 2025-10-27 04:31 cache 2.71 ✅
util_rand_resp 2025-10-27 04:31 cache 2.94 ✅
var_dmd 2025-10-27 04:14 cache 0.91 ✅
von_neumann_model 2025-10-27 04:31 cache 2.91 ✅
wald_friedman 2025-10-27 04:32 cache 20.72 ✅
wald_friedman_2 2025-10-27 04:32 cache 14.53 ✅

continues on next page
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Table 87.1 – continued from previous page

Document Modified Method Run Time (s) Status

wealth_dynamics 2025-10-27 04:32 cache 32.33 ✅
zreferences 2025-10-27 04:14 cache 0.91 ✅

These lectures are built on linux instances through github actions.

These lectures are using the following python version

!python --version

Python 3.13.5

and the following package versions

!conda list

This lecture series has access to the following GPU

!nvidia-smi

Mon Oct 27 04:31:02 2025
+----------------------------------------------------------------------------------

↪-------+
| NVIDIA-SMI 575.51.03 Driver Version: 575.51.03 CUDA Version:␣

↪12.9 |
|-----------------------------------------+------------------------+---------------

↪-------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile␣

↪Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util ␣

↪Compute M. |
| | | ␣

↪MIG M. |
|=========================================+========================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | ␣

↪ 0 |
| N/A 24C P8 9W / 70W | 0MiB / 15360MiB | 0% ␣

↪Default |
| | | ␣

↪ N/A |
+-----------------------------------------+------------------------+---------------

↪-------+

+----------------------------------------------------------------------------------
↪-------+

| Processes: ␣
↪ |

| GPU GI CI PID Type Process name GPU␣
↪Memory |

| ID ID ␣
↪Usage |

|=========================================================================================|
| No running processes found ␣

↪ |

(continues on next page)
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(continued from previous page)

+----------------------------------------------------------------------------------
↪-------+

You can check the backend used by JAX using:

import jax
# Check if JAX is using GPU
print(f"JAX backend: {jax.devices()[0].platform}")

JAX backend: gpu
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